2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/drivers/net/tg3.c
Matt Carlson 24bb4fb6da tg3: Fix phylib locking strategy
Felix Radensky noted that chip resets were generating stack trace dumps.
This is because the driver is attempting to acquire the mdio bus mutex
while holding the tp->lock spinlock.  The fix is to change the code such
that every phy access takes the tp->lock spinlock instead.

Signed-off-by: Matt Carlson <mcarlson@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-10-07 03:37:39 -07:00

14345 lines
380 KiB
C

/*
* tg3.c: Broadcom Tigon3 ethernet driver.
*
* Copyright (C) 2001, 2002, 2003, 2004 David S. Miller (davem@redhat.com)
* Copyright (C) 2001, 2002, 2003 Jeff Garzik (jgarzik@pobox.com)
* Copyright (C) 2004 Sun Microsystems Inc.
* Copyright (C) 2005-2009 Broadcom Corporation.
*
* Firmware is:
* Derived from proprietary unpublished source code,
* Copyright (C) 2000-2003 Broadcom Corporation.
*
* Permission is hereby granted for the distribution of this firmware
* data in hexadecimal or equivalent format, provided this copyright
* notice is accompanying it.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/brcmphy.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/workqueue.h>
#include <linux/prefetch.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#ifdef CONFIG_SPARC
#include <asm/idprom.h>
#include <asm/prom.h>
#endif
#define BAR_0 0
#define BAR_2 2
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define TG3_VLAN_TAG_USED 1
#else
#define TG3_VLAN_TAG_USED 0
#endif
#include "tg3.h"
#define DRV_MODULE_NAME "tg3"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "3.102"
#define DRV_MODULE_RELDATE "September 1, 2009"
#define TG3_DEF_MAC_MODE 0
#define TG3_DEF_RX_MODE 0
#define TG3_DEF_TX_MODE 0
#define TG3_DEF_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
/* length of time before we decide the hardware is borked,
* and dev->tx_timeout() should be called to fix the problem
*/
#define TG3_TX_TIMEOUT (5 * HZ)
/* hardware minimum and maximum for a single frame's data payload */
#define TG3_MIN_MTU 60
#define TG3_MAX_MTU(tp) \
((tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) ? 9000 : 1500)
/* These numbers seem to be hard coded in the NIC firmware somehow.
* You can't change the ring sizes, but you can change where you place
* them in the NIC onboard memory.
*/
#define TG3_RX_RING_SIZE 512
#define TG3_DEF_RX_RING_PENDING 200
#define TG3_RX_JUMBO_RING_SIZE 256
#define TG3_DEF_RX_JUMBO_RING_PENDING 100
#define TG3_RSS_INDIR_TBL_SIZE 128
/* Do not place this n-ring entries value into the tp struct itself,
* we really want to expose these constants to GCC so that modulo et
* al. operations are done with shifts and masks instead of with
* hw multiply/modulo instructions. Another solution would be to
* replace things like '% foo' with '& (foo - 1)'.
*/
#define TG3_RX_RCB_RING_SIZE(tp) \
(((tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) && \
!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) ? 1024 : 512)
#define TG3_TX_RING_SIZE 512
#define TG3_DEF_TX_RING_PENDING (TG3_TX_RING_SIZE - 1)
#define TG3_RX_RING_BYTES (sizeof(struct tg3_rx_buffer_desc) * \
TG3_RX_RING_SIZE)
#define TG3_RX_JUMBO_RING_BYTES (sizeof(struct tg3_ext_rx_buffer_desc) * \
TG3_RX_JUMBO_RING_SIZE)
#define TG3_RX_RCB_RING_BYTES(tp) (sizeof(struct tg3_rx_buffer_desc) * \
TG3_RX_RCB_RING_SIZE(tp))
#define TG3_TX_RING_BYTES (sizeof(struct tg3_tx_buffer_desc) * \
TG3_TX_RING_SIZE)
#define NEXT_TX(N) (((N) + 1) & (TG3_TX_RING_SIZE - 1))
#define TG3_DMA_BYTE_ENAB 64
#define TG3_RX_STD_DMA_SZ 1536
#define TG3_RX_JMB_DMA_SZ 9046
#define TG3_RX_DMA_TO_MAP_SZ(x) ((x) + TG3_DMA_BYTE_ENAB)
#define TG3_RX_STD_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_STD_DMA_SZ)
#define TG3_RX_JMB_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_JMB_DMA_SZ)
/* minimum number of free TX descriptors required to wake up TX process */
#define TG3_TX_WAKEUP_THRESH(tnapi) ((tnapi)->tx_pending / 4)
#define TG3_RAW_IP_ALIGN 2
/* number of ETHTOOL_GSTATS u64's */
#define TG3_NUM_STATS (sizeof(struct tg3_ethtool_stats)/sizeof(u64))
#define TG3_NUM_TEST 6
#define FIRMWARE_TG3 "tigon/tg3.bin"
#define FIRMWARE_TG3TSO "tigon/tg3_tso.bin"
#define FIRMWARE_TG3TSO5 "tigon/tg3_tso5.bin"
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("David S. Miller (davem@redhat.com) and Jeff Garzik (jgarzik@pobox.com)");
MODULE_DESCRIPTION("Broadcom Tigon3 ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_FIRMWARE(FIRMWARE_TG3);
MODULE_FIRMWARE(FIRMWARE_TG3TSO);
MODULE_FIRMWARE(FIRMWARE_TG3TSO5);
#define TG3_RSS_MIN_NUM_MSIX_VECS 2
static int tg3_debug = -1; /* -1 == use TG3_DEF_MSG_ENABLE as value */
module_param(tg3_debug, int, 0);
MODULE_PARM_DESC(tg3_debug, "Tigon3 bitmapped debugging message enable value");
static struct pci_device_id tg3_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5700)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5701)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702FE)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702X)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703X)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702A3)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703A3)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5782)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5788)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5789)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705F)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5720)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5721)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5722)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5750)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5750M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751F)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753F)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5756)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5786)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787F)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5781)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5784)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5764)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5723)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761E)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761SE)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_G)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_F)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57760)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57790)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57788)},
{PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9DXX)},
{PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9MXX)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1000)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1001)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1003)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC9100)},
{PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_TIGON3)},
{}
};
MODULE_DEVICE_TABLE(pci, tg3_pci_tbl);
static const struct {
const char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[TG3_NUM_STATS] = {
{ "rx_octets" },
{ "rx_fragments" },
{ "rx_ucast_packets" },
{ "rx_mcast_packets" },
{ "rx_bcast_packets" },
{ "rx_fcs_errors" },
{ "rx_align_errors" },
{ "rx_xon_pause_rcvd" },
{ "rx_xoff_pause_rcvd" },
{ "rx_mac_ctrl_rcvd" },
{ "rx_xoff_entered" },
{ "rx_frame_too_long_errors" },
{ "rx_jabbers" },
{ "rx_undersize_packets" },
{ "rx_in_length_errors" },
{ "rx_out_length_errors" },
{ "rx_64_or_less_octet_packets" },
{ "rx_65_to_127_octet_packets" },
{ "rx_128_to_255_octet_packets" },
{ "rx_256_to_511_octet_packets" },
{ "rx_512_to_1023_octet_packets" },
{ "rx_1024_to_1522_octet_packets" },
{ "rx_1523_to_2047_octet_packets" },
{ "rx_2048_to_4095_octet_packets" },
{ "rx_4096_to_8191_octet_packets" },
{ "rx_8192_to_9022_octet_packets" },
{ "tx_octets" },
{ "tx_collisions" },
{ "tx_xon_sent" },
{ "tx_xoff_sent" },
{ "tx_flow_control" },
{ "tx_mac_errors" },
{ "tx_single_collisions" },
{ "tx_mult_collisions" },
{ "tx_deferred" },
{ "tx_excessive_collisions" },
{ "tx_late_collisions" },
{ "tx_collide_2times" },
{ "tx_collide_3times" },
{ "tx_collide_4times" },
{ "tx_collide_5times" },
{ "tx_collide_6times" },
{ "tx_collide_7times" },
{ "tx_collide_8times" },
{ "tx_collide_9times" },
{ "tx_collide_10times" },
{ "tx_collide_11times" },
{ "tx_collide_12times" },
{ "tx_collide_13times" },
{ "tx_collide_14times" },
{ "tx_collide_15times" },
{ "tx_ucast_packets" },
{ "tx_mcast_packets" },
{ "tx_bcast_packets" },
{ "tx_carrier_sense_errors" },
{ "tx_discards" },
{ "tx_errors" },
{ "dma_writeq_full" },
{ "dma_write_prioq_full" },
{ "rxbds_empty" },
{ "rx_discards" },
{ "rx_errors" },
{ "rx_threshold_hit" },
{ "dma_readq_full" },
{ "dma_read_prioq_full" },
{ "tx_comp_queue_full" },
{ "ring_set_send_prod_index" },
{ "ring_status_update" },
{ "nic_irqs" },
{ "nic_avoided_irqs" },
{ "nic_tx_threshold_hit" }
};
static const struct {
const char string[ETH_GSTRING_LEN];
} ethtool_test_keys[TG3_NUM_TEST] = {
{ "nvram test (online) " },
{ "link test (online) " },
{ "register test (offline)" },
{ "memory test (offline)" },
{ "loopback test (offline)" },
{ "interrupt test (offline)" },
};
static void tg3_write32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off);
}
static u32 tg3_read32(struct tg3 *tp, u32 off)
{
return (readl(tp->regs + off));
}
static void tg3_ape_write32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->aperegs + off);
}
static u32 tg3_ape_read32(struct tg3 *tp, u32 off)
{
return (readl(tp->aperegs + off));
}
static void tg3_write_indirect_reg32(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_write_flush_reg32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off);
readl(tp->regs + off);
}
static u32 tg3_read_indirect_reg32(struct tg3 *tp, u32 off)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
return val;
}
static void tg3_write_indirect_mbox(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
if (off == (MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW)) {
pci_write_config_dword(tp->pdev, TG3PCI_RCV_RET_RING_CON_IDX +
TG3_64BIT_REG_LOW, val);
return;
}
if (off == (MAILBOX_RCV_STD_PROD_IDX + TG3_64BIT_REG_LOW)) {
pci_write_config_dword(tp->pdev, TG3PCI_STD_RING_PROD_IDX +
TG3_64BIT_REG_LOW, val);
return;
}
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
/* In indirect mode when disabling interrupts, we also need
* to clear the interrupt bit in the GRC local ctrl register.
*/
if ((off == (MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW)) &&
(val == 0x1)) {
pci_write_config_dword(tp->pdev, TG3PCI_MISC_LOCAL_CTRL,
tp->grc_local_ctrl|GRC_LCLCTRL_CLEARINT);
}
}
static u32 tg3_read_indirect_mbox(struct tg3 *tp, u32 off)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
return val;
}
/* usec_wait specifies the wait time in usec when writing to certain registers
* where it is unsafe to read back the register without some delay.
* GRC_LOCAL_CTRL is one example if the GPIOs are toggled to switch power.
* TG3PCI_CLOCK_CTRL is another example if the clock frequencies are changed.
*/
static void _tw32_flush(struct tg3 *tp, u32 off, u32 val, u32 usec_wait)
{
if ((tp->tg3_flags & TG3_FLAG_PCIX_TARGET_HWBUG) ||
(tp->tg3_flags2 & TG3_FLG2_ICH_WORKAROUND))
/* Non-posted methods */
tp->write32(tp, off, val);
else {
/* Posted method */
tg3_write32(tp, off, val);
if (usec_wait)
udelay(usec_wait);
tp->read32(tp, off);
}
/* Wait again after the read for the posted method to guarantee that
* the wait time is met.
*/
if (usec_wait)
udelay(usec_wait);
}
static inline void tw32_mailbox_flush(struct tg3 *tp, u32 off, u32 val)
{
tp->write32_mbox(tp, off, val);
if (!(tp->tg3_flags & TG3_FLAG_MBOX_WRITE_REORDER) &&
!(tp->tg3_flags2 & TG3_FLG2_ICH_WORKAROUND))
tp->read32_mbox(tp, off);
}
static void tg3_write32_tx_mbox(struct tg3 *tp, u32 off, u32 val)
{
void __iomem *mbox = tp->regs + off;
writel(val, mbox);
if (tp->tg3_flags & TG3_FLAG_TXD_MBOX_HWBUG)
writel(val, mbox);
if (tp->tg3_flags & TG3_FLAG_MBOX_WRITE_REORDER)
readl(mbox);
}
static u32 tg3_read32_mbox_5906(struct tg3 *tp, u32 off)
{
return (readl(tp->regs + off + GRCMBOX_BASE));
}
static void tg3_write32_mbox_5906(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off + GRCMBOX_BASE);
}
#define tw32_mailbox(reg, val) tp->write32_mbox(tp, reg, val)
#define tw32_mailbox_f(reg, val) tw32_mailbox_flush(tp, (reg), (val))
#define tw32_rx_mbox(reg, val) tp->write32_rx_mbox(tp, reg, val)
#define tw32_tx_mbox(reg, val) tp->write32_tx_mbox(tp, reg, val)
#define tr32_mailbox(reg) tp->read32_mbox(tp, reg)
#define tw32(reg,val) tp->write32(tp, reg, val)
#define tw32_f(reg,val) _tw32_flush(tp,(reg),(val), 0)
#define tw32_wait_f(reg,val,us) _tw32_flush(tp,(reg),(val), (us))
#define tr32(reg) tp->read32(tp, reg)
static void tg3_write_mem(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) &&
(off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC))
return;
spin_lock_irqsave(&tp->indirect_lock, flags);
if (tp->tg3_flags & TG3_FLAG_SRAM_USE_CONFIG) {
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
} else {
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
tw32_f(TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
}
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val)
{
unsigned long flags;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) &&
(off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) {
*val = 0;
return;
}
spin_lock_irqsave(&tp->indirect_lock, flags);
if (tp->tg3_flags & TG3_FLAG_SRAM_USE_CONFIG) {
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
} else {
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
*val = tr32(TG3PCI_MEM_WIN_DATA);
/* Always leave this as zero. */
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
}
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_ape_lock_init(struct tg3 *tp)
{
int i;
/* Make sure the driver hasn't any stale locks. */
for (i = 0; i < 8; i++)
tg3_ape_write32(tp, TG3_APE_LOCK_GRANT + 4 * i,
APE_LOCK_GRANT_DRIVER);
}
static int tg3_ape_lock(struct tg3 *tp, int locknum)
{
int i, off;
int ret = 0;
u32 status;
if (!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE))
return 0;
switch (locknum) {
case TG3_APE_LOCK_GRC:
case TG3_APE_LOCK_MEM:
break;
default:
return -EINVAL;
}
off = 4 * locknum;
tg3_ape_write32(tp, TG3_APE_LOCK_REQ + off, APE_LOCK_REQ_DRIVER);
/* Wait for up to 1 millisecond to acquire lock. */
for (i = 0; i < 100; i++) {
status = tg3_ape_read32(tp, TG3_APE_LOCK_GRANT + off);
if (status == APE_LOCK_GRANT_DRIVER)
break;
udelay(10);
}
if (status != APE_LOCK_GRANT_DRIVER) {
/* Revoke the lock request. */
tg3_ape_write32(tp, TG3_APE_LOCK_GRANT + off,
APE_LOCK_GRANT_DRIVER);
ret = -EBUSY;
}
return ret;
}
static void tg3_ape_unlock(struct tg3 *tp, int locknum)
{
int off;
if (!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE))
return;
switch (locknum) {
case TG3_APE_LOCK_GRC:
case TG3_APE_LOCK_MEM:
break;
default:
return;
}
off = 4 * locknum;
tg3_ape_write32(tp, TG3_APE_LOCK_GRANT + off, APE_LOCK_GRANT_DRIVER);
}
static void tg3_disable_ints(struct tg3 *tp)
{
int i;
tw32(TG3PCI_MISC_HOST_CTRL,
(tp->misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT));
for (i = 0; i < tp->irq_max; i++)
tw32_mailbox_f(tp->napi[i].int_mbox, 0x00000001);
}
static void tg3_enable_ints(struct tg3 *tp)
{
int i;
u32 coal_now = 0;
tp->irq_sync = 0;
wmb();
tw32(TG3PCI_MISC_HOST_CTRL,
(tp->misc_host_ctrl & ~MISC_HOST_CTRL_MASK_PCI_INT));
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
if (tp->tg3_flags2 & TG3_FLG2_1SHOT_MSI)
tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
coal_now |= tnapi->coal_now;
}
/* Force an initial interrupt */
if (!(tp->tg3_flags & TG3_FLAG_TAGGED_STATUS) &&
(tp->napi[0].hw_status->status & SD_STATUS_UPDATED))
tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
else
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE | coal_now);
}
static inline unsigned int tg3_has_work(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int work_exists = 0;
/* check for phy events */
if (!(tp->tg3_flags &
(TG3_FLAG_USE_LINKCHG_REG |
TG3_FLAG_POLL_SERDES))) {
if (sblk->status & SD_STATUS_LINK_CHG)
work_exists = 1;
}
/* check for RX/TX work to do */
if (sblk->idx[0].tx_consumer != tnapi->tx_cons ||
*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
work_exists = 1;
return work_exists;
}
/* tg3_int_reenable
* similar to tg3_enable_ints, but it accurately determines whether there
* is new work pending and can return without flushing the PIO write
* which reenables interrupts
*/
static void tg3_int_reenable(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24);
mmiowb();
/* When doing tagged status, this work check is unnecessary.
* The last_tag we write above tells the chip which piece of
* work we've completed.
*/
if (!(tp->tg3_flags & TG3_FLAG_TAGGED_STATUS) &&
tg3_has_work(tnapi))
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE | tnapi->coal_now);
}
static void tg3_napi_disable(struct tg3 *tp)
{
int i;
for (i = tp->irq_cnt - 1; i >= 0; i--)
napi_disable(&tp->napi[i].napi);
}
static void tg3_napi_enable(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_cnt; i++)
napi_enable(&tp->napi[i].napi);
}
static inline void tg3_netif_stop(struct tg3 *tp)
{
tp->dev->trans_start = jiffies; /* prevent tx timeout */
tg3_napi_disable(tp);
netif_tx_disable(tp->dev);
}
static inline void tg3_netif_start(struct tg3 *tp)
{
/* NOTE: unconditional netif_tx_wake_all_queues is only
* appropriate so long as all callers are assured to
* have free tx slots (such as after tg3_init_hw)
*/
netif_tx_wake_all_queues(tp->dev);
tg3_napi_enable(tp);
tp->napi[0].hw_status->status |= SD_STATUS_UPDATED;
tg3_enable_ints(tp);
}
static void tg3_switch_clocks(struct tg3 *tp)
{
u32 clock_ctrl;
u32 orig_clock_ctrl;
if ((tp->tg3_flags & TG3_FLAG_CPMU_PRESENT) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS))
return;
clock_ctrl = tr32(TG3PCI_CLOCK_CTRL);
orig_clock_ctrl = clock_ctrl;
clock_ctrl &= (CLOCK_CTRL_FORCE_CLKRUN |
CLOCK_CTRL_CLKRUN_OENABLE |
0x1f);
tp->pci_clock_ctrl = clock_ctrl;
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS) {
if (orig_clock_ctrl & CLOCK_CTRL_625_CORE) {
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl | CLOCK_CTRL_625_CORE, 40);
}
} else if ((orig_clock_ctrl & CLOCK_CTRL_44MHZ_CORE) != 0) {
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl |
(CLOCK_CTRL_44MHZ_CORE | CLOCK_CTRL_ALTCLK),
40);
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl | (CLOCK_CTRL_ALTCLK),
40);
}
tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl, 40);
}
#define PHY_BUSY_LOOPS 5000
static int tg3_readphy(struct tg3 *tp, int reg, u32 *val)
{
u32 frame_val;
unsigned int loops;
int ret;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
*val = 0x0;
frame_val = ((tp->phy_addr << MI_COM_PHY_ADDR_SHIFT) &
MI_COM_PHY_ADDR_MASK);
frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
MI_COM_REG_ADDR_MASK);
frame_val |= (MI_COM_CMD_READ | MI_COM_START);
tw32_f(MAC_MI_COM, frame_val);
loops = PHY_BUSY_LOOPS;
while (loops != 0) {
udelay(10);
frame_val = tr32(MAC_MI_COM);
if ((frame_val & MI_COM_BUSY) == 0) {
udelay(5);
frame_val = tr32(MAC_MI_COM);
break;
}
loops -= 1;
}
ret = -EBUSY;
if (loops != 0) {
*val = frame_val & MI_COM_DATA_MASK;
ret = 0;
}
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
return ret;
}
static int tg3_writephy(struct tg3 *tp, int reg, u32 val)
{
u32 frame_val;
unsigned int loops;
int ret;
if ((tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) &&
(reg == MII_TG3_CTRL || reg == MII_TG3_AUX_CTRL))
return 0;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
frame_val = ((tp->phy_addr << MI_COM_PHY_ADDR_SHIFT) &
MI_COM_PHY_ADDR_MASK);
frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
MI_COM_REG_ADDR_MASK);
frame_val |= (val & MI_COM_DATA_MASK);
frame_val |= (MI_COM_CMD_WRITE | MI_COM_START);
tw32_f(MAC_MI_COM, frame_val);
loops = PHY_BUSY_LOOPS;
while (loops != 0) {
udelay(10);
frame_val = tr32(MAC_MI_COM);
if ((frame_val & MI_COM_BUSY) == 0) {
udelay(5);
frame_val = tr32(MAC_MI_COM);
break;
}
loops -= 1;
}
ret = -EBUSY;
if (loops != 0)
ret = 0;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
return ret;
}
static int tg3_bmcr_reset(struct tg3 *tp)
{
u32 phy_control;
int limit, err;
/* OK, reset it, and poll the BMCR_RESET bit until it
* clears or we time out.
*/
phy_control = BMCR_RESET;
err = tg3_writephy(tp, MII_BMCR, phy_control);
if (err != 0)
return -EBUSY;
limit = 5000;
while (limit--) {
err = tg3_readphy(tp, MII_BMCR, &phy_control);
if (err != 0)
return -EBUSY;
if ((phy_control & BMCR_RESET) == 0) {
udelay(40);
break;
}
udelay(10);
}
if (limit < 0)
return -EBUSY;
return 0;
}
static int tg3_mdio_read(struct mii_bus *bp, int mii_id, int reg)
{
struct tg3 *tp = bp->priv;
u32 val;
spin_lock_bh(&tp->lock);
if (tg3_readphy(tp, reg, &val))
val = -EIO;
spin_unlock_bh(&tp->lock);
return val;
}
static int tg3_mdio_write(struct mii_bus *bp, int mii_id, int reg, u16 val)
{
struct tg3 *tp = bp->priv;
u32 ret = 0;
spin_lock_bh(&tp->lock);
if (tg3_writephy(tp, reg, val))
ret = -EIO;
spin_unlock_bh(&tp->lock);
return ret;
}
static int tg3_mdio_reset(struct mii_bus *bp)
{
return 0;
}
static void tg3_mdio_config_5785(struct tg3 *tp)
{
u32 val;
struct phy_device *phydev;
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
case TG3_PHY_ID_BCM50610:
val = MAC_PHYCFG2_50610_LED_MODES;
break;
case TG3_PHY_ID_BCMAC131:
val = MAC_PHYCFG2_AC131_LED_MODES;
break;
case TG3_PHY_ID_RTL8211C:
val = MAC_PHYCFG2_RTL8211C_LED_MODES;
break;
case TG3_PHY_ID_RTL8201E:
val = MAC_PHYCFG2_RTL8201E_LED_MODES;
break;
default:
return;
}
if (phydev->interface != PHY_INTERFACE_MODE_RGMII) {
tw32(MAC_PHYCFG2, val);
val = tr32(MAC_PHYCFG1);
val &= ~(MAC_PHYCFG1_RGMII_INT |
MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK);
val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT;
tw32(MAC_PHYCFG1, val);
return;
}
if (!(tp->tg3_flags3 & TG3_FLG3_RGMII_STD_IBND_DISABLE))
val |= MAC_PHYCFG2_EMODE_MASK_MASK |
MAC_PHYCFG2_FMODE_MASK_MASK |
MAC_PHYCFG2_GMODE_MASK_MASK |
MAC_PHYCFG2_ACT_MASK_MASK |
MAC_PHYCFG2_QUAL_MASK_MASK |
MAC_PHYCFG2_INBAND_ENABLE;
tw32(MAC_PHYCFG2, val);
val = tr32(MAC_PHYCFG1);
val &= ~(MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK |
MAC_PHYCFG1_RGMII_EXT_RX_DEC | MAC_PHYCFG1_RGMII_SND_STAT_EN);
if (!(tp->tg3_flags3 & TG3_FLG3_RGMII_STD_IBND_DISABLE)) {
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_RX_EN)
val |= MAC_PHYCFG1_RGMII_EXT_RX_DEC;
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_TX_EN)
val |= MAC_PHYCFG1_RGMII_SND_STAT_EN;
}
val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT |
MAC_PHYCFG1_RGMII_INT | MAC_PHYCFG1_TXC_DRV;
tw32(MAC_PHYCFG1, val);
val = tr32(MAC_EXT_RGMII_MODE);
val &= ~(MAC_RGMII_MODE_RX_INT_B |
MAC_RGMII_MODE_RX_QUALITY |
MAC_RGMII_MODE_RX_ACTIVITY |
MAC_RGMII_MODE_RX_ENG_DET |
MAC_RGMII_MODE_TX_ENABLE |
MAC_RGMII_MODE_TX_LOWPWR |
MAC_RGMII_MODE_TX_RESET);
if (!(tp->tg3_flags3 & TG3_FLG3_RGMII_STD_IBND_DISABLE)) {
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_RX_EN)
val |= MAC_RGMII_MODE_RX_INT_B |
MAC_RGMII_MODE_RX_QUALITY |
MAC_RGMII_MODE_RX_ACTIVITY |
MAC_RGMII_MODE_RX_ENG_DET;
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_TX_EN)
val |= MAC_RGMII_MODE_TX_ENABLE |
MAC_RGMII_MODE_TX_LOWPWR |
MAC_RGMII_MODE_TX_RESET;
}
tw32(MAC_EXT_RGMII_MODE, val);
}
static void tg3_mdio_start(struct tg3 *tp)
{
tp->mi_mode &= ~MAC_MI_MODE_AUTO_POLL;
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
u32 funcnum, is_serdes;
funcnum = tr32(TG3_CPMU_STATUS) & TG3_CPMU_STATUS_PCIE_FUNC;
if (funcnum)
tp->phy_addr = 2;
else
tp->phy_addr = 1;
is_serdes = tr32(SG_DIG_STATUS) & SG_DIG_IS_SERDES;
if (is_serdes)
tp->phy_addr += 7;
} else
tp->phy_addr = PHY_ADDR;
if ((tp->tg3_flags3 & TG3_FLG3_MDIOBUS_INITED) &&
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785)
tg3_mdio_config_5785(tp);
}
static int tg3_mdio_init(struct tg3 *tp)
{
int i;
u32 reg;
struct phy_device *phydev;
tg3_mdio_start(tp);
if (!(tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) ||
(tp->tg3_flags3 & TG3_FLG3_MDIOBUS_INITED))
return 0;
tp->mdio_bus = mdiobus_alloc();
if (tp->mdio_bus == NULL)
return -ENOMEM;
tp->mdio_bus->name = "tg3 mdio bus";
snprintf(tp->mdio_bus->id, MII_BUS_ID_SIZE, "%x",
(tp->pdev->bus->number << 8) | tp->pdev->devfn);
tp->mdio_bus->priv = tp;
tp->mdio_bus->parent = &tp->pdev->dev;
tp->mdio_bus->read = &tg3_mdio_read;
tp->mdio_bus->write = &tg3_mdio_write;
tp->mdio_bus->reset = &tg3_mdio_reset;
tp->mdio_bus->phy_mask = ~(1 << PHY_ADDR);
tp->mdio_bus->irq = &tp->mdio_irq[0];
for (i = 0; i < PHY_MAX_ADDR; i++)
tp->mdio_bus->irq[i] = PHY_POLL;
/* The bus registration will look for all the PHYs on the mdio bus.
* Unfortunately, it does not ensure the PHY is powered up before
* accessing the PHY ID registers. A chip reset is the
* quickest way to bring the device back to an operational state..
*/
if (tg3_readphy(tp, MII_BMCR, &reg) || (reg & BMCR_PDOWN))
tg3_bmcr_reset(tp);
i = mdiobus_register(tp->mdio_bus);
if (i) {
printk(KERN_WARNING "%s: mdiobus_reg failed (0x%x)\n",
tp->dev->name, i);
mdiobus_free(tp->mdio_bus);
return i;
}
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
if (!phydev || !phydev->drv) {
printk(KERN_WARNING "%s: No PHY devices\n", tp->dev->name);
mdiobus_unregister(tp->mdio_bus);
mdiobus_free(tp->mdio_bus);
return -ENODEV;
}
switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
case TG3_PHY_ID_BCM57780:
phydev->interface = PHY_INTERFACE_MODE_GMII;
break;
case TG3_PHY_ID_BCM50610:
if (tp->tg3_flags3 & TG3_FLG3_RGMII_STD_IBND_DISABLE)
phydev->dev_flags |= PHY_BRCM_STD_IBND_DISABLE;
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_RX_EN)
phydev->dev_flags |= PHY_BRCM_EXT_IBND_RX_ENABLE;
if (tp->tg3_flags3 & TG3_FLG3_RGMII_EXT_IBND_TX_EN)
phydev->dev_flags |= PHY_BRCM_EXT_IBND_TX_ENABLE;
/* fallthru */
case TG3_PHY_ID_RTL8211C:
phydev->interface = PHY_INTERFACE_MODE_RGMII;
break;
case TG3_PHY_ID_RTL8201E:
case TG3_PHY_ID_BCMAC131:
phydev->interface = PHY_INTERFACE_MODE_MII;
tp->tg3_flags3 |= TG3_FLG3_PHY_IS_FET;
break;
}
tp->tg3_flags3 |= TG3_FLG3_MDIOBUS_INITED;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785)
tg3_mdio_config_5785(tp);
return 0;
}
static void tg3_mdio_fini(struct tg3 *tp)
{
if (tp->tg3_flags3 & TG3_FLG3_MDIOBUS_INITED) {
tp->tg3_flags3 &= ~TG3_FLG3_MDIOBUS_INITED;
mdiobus_unregister(tp->mdio_bus);
mdiobus_free(tp->mdio_bus);
}
}
/* tp->lock is held. */
static inline void tg3_generate_fw_event(struct tg3 *tp)
{
u32 val;
val = tr32(GRC_RX_CPU_EVENT);
val |= GRC_RX_CPU_DRIVER_EVENT;
tw32_f(GRC_RX_CPU_EVENT, val);
tp->last_event_jiffies = jiffies;
}
#define TG3_FW_EVENT_TIMEOUT_USEC 2500
/* tp->lock is held. */
static void tg3_wait_for_event_ack(struct tg3 *tp)
{
int i;
unsigned int delay_cnt;
long time_remain;
/* If enough time has passed, no wait is necessary. */
time_remain = (long)(tp->last_event_jiffies + 1 +
usecs_to_jiffies(TG3_FW_EVENT_TIMEOUT_USEC)) -
(long)jiffies;
if (time_remain < 0)
return;
/* Check if we can shorten the wait time. */
delay_cnt = jiffies_to_usecs(time_remain);
if (delay_cnt > TG3_FW_EVENT_TIMEOUT_USEC)
delay_cnt = TG3_FW_EVENT_TIMEOUT_USEC;
delay_cnt = (delay_cnt >> 3) + 1;
for (i = 0; i < delay_cnt; i++) {
if (!(tr32(GRC_RX_CPU_EVENT) & GRC_RX_CPU_DRIVER_EVENT))
break;
udelay(8);
}
}
/* tp->lock is held. */
static void tg3_ump_link_report(struct tg3 *tp)
{
u32 reg;
u32 val;
if (!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS) ||
!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))
return;
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_LINK_UPDATE);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 14);
val = 0;
if (!tg3_readphy(tp, MII_BMCR, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_BMSR, &reg))
val |= (reg & 0xffff);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX, val);
val = 0;
if (!tg3_readphy(tp, MII_ADVERTISE, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_LPA, &reg))
val |= (reg & 0xffff);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 4, val);
val = 0;
if (!(tp->tg3_flags2 & TG3_FLG2_MII_SERDES)) {
if (!tg3_readphy(tp, MII_CTRL1000, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_STAT1000, &reg))
val |= (reg & 0xffff);
}
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 8, val);
if (!tg3_readphy(tp, MII_PHYADDR, &reg))
val = reg << 16;
else
val = 0;
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 12, val);
tg3_generate_fw_event(tp);
}
static void tg3_link_report(struct tg3 *tp)
{
if (!netif_carrier_ok(tp->dev)) {
if (netif_msg_link(tp))
printk(KERN_INFO PFX "%s: Link is down.\n",
tp->dev->name);
tg3_ump_link_report(tp);
} else if (netif_msg_link(tp)) {
printk(KERN_INFO PFX "%s: Link is up at %d Mbps, %s duplex.\n",
tp->dev->name,
(tp->link_config.active_speed == SPEED_1000 ?
1000 :
(tp->link_config.active_speed == SPEED_100 ?
100 : 10)),
(tp->link_config.active_duplex == DUPLEX_FULL ?
"full" : "half"));
printk(KERN_INFO PFX
"%s: Flow control is %s for TX and %s for RX.\n",
tp->dev->name,
(tp->link_config.active_flowctrl & FLOW_CTRL_TX) ?
"on" : "off",
(tp->link_config.active_flowctrl & FLOW_CTRL_RX) ?
"on" : "off");
tg3_ump_link_report(tp);
}
}
static u16 tg3_advert_flowctrl_1000T(u8 flow_ctrl)
{
u16 miireg;
if ((flow_ctrl & FLOW_CTRL_TX) && (flow_ctrl & FLOW_CTRL_RX))
miireg = ADVERTISE_PAUSE_CAP;
else if (flow_ctrl & FLOW_CTRL_TX)
miireg = ADVERTISE_PAUSE_ASYM;
else if (flow_ctrl & FLOW_CTRL_RX)
miireg = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
else
miireg = 0;
return miireg;
}
static u16 tg3_advert_flowctrl_1000X(u8 flow_ctrl)
{
u16 miireg;
if ((flow_ctrl & FLOW_CTRL_TX) && (flow_ctrl & FLOW_CTRL_RX))
miireg = ADVERTISE_1000XPAUSE;
else if (flow_ctrl & FLOW_CTRL_TX)
miireg = ADVERTISE_1000XPSE_ASYM;
else if (flow_ctrl & FLOW_CTRL_RX)
miireg = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
else
miireg = 0;
return miireg;
}
static u8 tg3_resolve_flowctrl_1000X(u16 lcladv, u16 rmtadv)
{
u8 cap = 0;
if (lcladv & ADVERTISE_1000XPAUSE) {
if (lcladv & ADVERTISE_1000XPSE_ASYM) {
if (rmtadv & LPA_1000XPAUSE)
cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
else if (rmtadv & LPA_1000XPAUSE_ASYM)
cap = FLOW_CTRL_RX;
} else {
if (rmtadv & LPA_1000XPAUSE)
cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
} else if (lcladv & ADVERTISE_1000XPSE_ASYM) {
if ((rmtadv & LPA_1000XPAUSE) && (rmtadv & LPA_1000XPAUSE_ASYM))
cap = FLOW_CTRL_TX;
}
return cap;
}
static void tg3_setup_flow_control(struct tg3 *tp, u32 lcladv, u32 rmtadv)
{
u8 autoneg;
u8 flowctrl = 0;
u32 old_rx_mode = tp->rx_mode;
u32 old_tx_mode = tp->tx_mode;
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB)
autoneg = tp->mdio_bus->phy_map[PHY_ADDR]->autoneg;
else
autoneg = tp->link_config.autoneg;
if (autoneg == AUTONEG_ENABLE &&
(tp->tg3_flags & TG3_FLAG_PAUSE_AUTONEG)) {
if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES)
flowctrl = tg3_resolve_flowctrl_1000X(lcladv, rmtadv);
else
flowctrl = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
} else
flowctrl = tp->link_config.flowctrl;
tp->link_config.active_flowctrl = flowctrl;
if (flowctrl & FLOW_CTRL_RX)
tp->rx_mode |= RX_MODE_FLOW_CTRL_ENABLE;
else
tp->rx_mode &= ~RX_MODE_FLOW_CTRL_ENABLE;
if (old_rx_mode != tp->rx_mode)
tw32_f(MAC_RX_MODE, tp->rx_mode);
if (flowctrl & FLOW_CTRL_TX)
tp->tx_mode |= TX_MODE_FLOW_CTRL_ENABLE;
else
tp->tx_mode &= ~TX_MODE_FLOW_CTRL_ENABLE;
if (old_tx_mode != tp->tx_mode)
tw32_f(MAC_TX_MODE, tp->tx_mode);
}
static void tg3_adjust_link(struct net_device *dev)
{
u8 oldflowctrl, linkmesg = 0;
u32 mac_mode, lcl_adv, rmt_adv;
struct tg3 *tp = netdev_priv(dev);
struct phy_device *phydev = tp->mdio_bus->phy_map[PHY_ADDR];
spin_lock_bh(&tp->lock);
mac_mode = tp->mac_mode & ~(MAC_MODE_PORT_MODE_MASK |
MAC_MODE_HALF_DUPLEX);
oldflowctrl = tp->link_config.active_flowctrl;
if (phydev->link) {
lcl_adv = 0;
rmt_adv = 0;
if (phydev->speed == SPEED_100 || phydev->speed == SPEED_10)
mac_mode |= MAC_MODE_PORT_MODE_MII;
else
mac_mode |= MAC_MODE_PORT_MODE_GMII;
if (phydev->duplex == DUPLEX_HALF)
mac_mode |= MAC_MODE_HALF_DUPLEX;
else {
lcl_adv = tg3_advert_flowctrl_1000T(
tp->link_config.flowctrl);
if (phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
}
tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
} else
mac_mode |= MAC_MODE_PORT_MODE_GMII;
if (mac_mode != tp->mac_mode) {
tp->mac_mode = mac_mode;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785) {
if (phydev->speed == SPEED_10)
tw32(MAC_MI_STAT,
MAC_MI_STAT_10MBPS_MODE |
MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
else
tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
}
if (phydev->speed == SPEED_1000 && phydev->duplex == DUPLEX_HALF)
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(0xff << TX_LENGTHS_SLOT_TIME_SHIFT)));
else
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT)));
if ((phydev->link && tp->link_config.active_speed == SPEED_INVALID) ||
(!phydev->link && tp->link_config.active_speed != SPEED_INVALID) ||
phydev->speed != tp->link_config.active_speed ||
phydev->duplex != tp->link_config.active_duplex ||
oldflowctrl != tp->link_config.active_flowctrl)
linkmesg = 1;
tp->link_config.active_speed = phydev->speed;
tp->link_config.active_duplex = phydev->duplex;
spin_unlock_bh(&tp->lock);
if (linkmesg)
tg3_link_report(tp);
}
static int tg3_phy_init(struct tg3 *tp)
{
struct phy_device *phydev;
if (tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED)
return 0;
/* Bring the PHY back to a known state. */
tg3_bmcr_reset(tp);
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
/* Attach the MAC to the PHY. */
phydev = phy_connect(tp->dev, dev_name(&phydev->dev), tg3_adjust_link,
phydev->dev_flags, phydev->interface);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", tp->dev->name);
return PTR_ERR(phydev);
}
/* Mask with MAC supported features. */
switch (phydev->interface) {
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY)) {
phydev->supported &= (PHY_GBIT_FEATURES |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
}
/* fallthru */
case PHY_INTERFACE_MODE_MII:
phydev->supported &= (PHY_BASIC_FEATURES |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
default:
phy_disconnect(tp->mdio_bus->phy_map[PHY_ADDR]);
return -EINVAL;
}
tp->tg3_flags3 |= TG3_FLG3_PHY_CONNECTED;
phydev->advertising = phydev->supported;
return 0;
}
static void tg3_phy_start(struct tg3 *tp)
{
struct phy_device *phydev;
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return;
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
if (tp->link_config.phy_is_low_power) {
tp->link_config.phy_is_low_power = 0;
phydev->speed = tp->link_config.orig_speed;
phydev->duplex = tp->link_config.orig_duplex;
phydev->autoneg = tp->link_config.orig_autoneg;
phydev->advertising = tp->link_config.orig_advertising;
}
phy_start(phydev);
phy_start_aneg(phydev);
}
static void tg3_phy_stop(struct tg3 *tp)
{
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return;
phy_stop(tp->mdio_bus->phy_map[PHY_ADDR]);
}
static void tg3_phy_fini(struct tg3 *tp)
{
if (tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED) {
phy_disconnect(tp->mdio_bus->phy_map[PHY_ADDR]);
tp->tg3_flags3 &= ~TG3_FLG3_PHY_CONNECTED;
}
}
static void tg3_phydsp_write(struct tg3 *tp, u32 reg, u32 val)
{
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, val);
}
static void tg3_phy_fet_toggle_apd(struct tg3 *tp, bool enable)
{
u32 phytest;
if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) {
u32 phy;
tg3_writephy(tp, MII_TG3_FET_TEST,
phytest | MII_TG3_FET_SHADOW_EN);
if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXSTAT2, &phy)) {
if (enable)
phy |= MII_TG3_FET_SHDW_AUXSTAT2_APD;
else
phy &= ~MII_TG3_FET_SHDW_AUXSTAT2_APD;
tg3_writephy(tp, MII_TG3_FET_SHDW_AUXSTAT2, phy);
}
tg3_writephy(tp, MII_TG3_FET_TEST, phytest);
}
}
static void tg3_phy_toggle_apd(struct tg3 *tp, bool enable)
{
u32 reg;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
return;
if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) {
tg3_phy_fet_toggle_apd(tp, enable);
return;
}
reg = MII_TG3_MISC_SHDW_WREN |
MII_TG3_MISC_SHDW_SCR5_SEL |
MII_TG3_MISC_SHDW_SCR5_LPED |
MII_TG3_MISC_SHDW_SCR5_DLPTLM |
MII_TG3_MISC_SHDW_SCR5_SDTL |
MII_TG3_MISC_SHDW_SCR5_C125OE;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5784 || !enable)
reg |= MII_TG3_MISC_SHDW_SCR5_DLLAPD;
tg3_writephy(tp, MII_TG3_MISC_SHDW, reg);
reg = MII_TG3_MISC_SHDW_WREN |
MII_TG3_MISC_SHDW_APD_SEL |
MII_TG3_MISC_SHDW_APD_WKTM_84MS;
if (enable)
reg |= MII_TG3_MISC_SHDW_APD_ENABLE;
tg3_writephy(tp, MII_TG3_MISC_SHDW, reg);
}
static void tg3_phy_toggle_automdix(struct tg3 *tp, int enable)
{
u32 phy;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS) ||
(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES))
return;
if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) {
u32 ephy;
if (!tg3_readphy(tp, MII_TG3_FET_TEST, &ephy)) {
u32 reg = MII_TG3_FET_SHDW_MISCCTRL;
tg3_writephy(tp, MII_TG3_FET_TEST,
ephy | MII_TG3_FET_SHADOW_EN);
if (!tg3_readphy(tp, reg, &phy)) {
if (enable)
phy |= MII_TG3_FET_SHDW_MISCCTRL_MDIX;
else
phy &= ~MII_TG3_FET_SHDW_MISCCTRL_MDIX;
tg3_writephy(tp, reg, phy);
}
tg3_writephy(tp, MII_TG3_FET_TEST, ephy);
}
} else {
phy = MII_TG3_AUXCTL_MISC_RDSEL_MISC |
MII_TG3_AUXCTL_SHDWSEL_MISC;
if (!tg3_writephy(tp, MII_TG3_AUX_CTRL, phy) &&
!tg3_readphy(tp, MII_TG3_AUX_CTRL, &phy)) {
if (enable)
phy |= MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
else
phy &= ~MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
phy |= MII_TG3_AUXCTL_MISC_WREN;
tg3_writephy(tp, MII_TG3_AUX_CTRL, phy);
}
}
}
static void tg3_phy_set_wirespeed(struct tg3 *tp)
{
u32 val;
if (tp->tg3_flags2 & TG3_FLG2_NO_ETH_WIRE_SPEED)
return;
if (!tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x7007) &&
!tg3_readphy(tp, MII_TG3_AUX_CTRL, &val))
tg3_writephy(tp, MII_TG3_AUX_CTRL,
(val | (1 << 15) | (1 << 4)));
}
static void tg3_phy_apply_otp(struct tg3 *tp)
{
u32 otp, phy;
if (!tp->phy_otp)
return;
otp = tp->phy_otp;
/* Enable SM_DSP clock and tx 6dB coding. */
phy = MII_TG3_AUXCTL_SHDWSEL_AUXCTL |
MII_TG3_AUXCTL_ACTL_SMDSP_ENA |
MII_TG3_AUXCTL_ACTL_TX_6DB;
tg3_writephy(tp, MII_TG3_AUX_CTRL, phy);
phy = ((otp & TG3_OTP_AGCTGT_MASK) >> TG3_OTP_AGCTGT_SHIFT);
phy |= MII_TG3_DSP_TAP1_AGCTGT_DFLT;
tg3_phydsp_write(tp, MII_TG3_DSP_TAP1, phy);
phy = ((otp & TG3_OTP_HPFFLTR_MASK) >> TG3_OTP_HPFFLTR_SHIFT) |
((otp & TG3_OTP_HPFOVER_MASK) >> TG3_OTP_HPFOVER_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH0, phy);
phy = ((otp & TG3_OTP_LPFDIS_MASK) >> TG3_OTP_LPFDIS_SHIFT);
phy |= MII_TG3_DSP_AADJ1CH3_ADCCKADJ;
tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH3, phy);
phy = ((otp & TG3_OTP_VDAC_MASK) >> TG3_OTP_VDAC_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP75, phy);
phy = ((otp & TG3_OTP_10BTAMP_MASK) >> TG3_OTP_10BTAMP_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP96, phy);
phy = ((otp & TG3_OTP_ROFF_MASK) >> TG3_OTP_ROFF_SHIFT) |
((otp & TG3_OTP_RCOFF_MASK) >> TG3_OTP_RCOFF_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP97, phy);
/* Turn off SM_DSP clock. */
phy = MII_TG3_AUXCTL_SHDWSEL_AUXCTL |
MII_TG3_AUXCTL_ACTL_TX_6DB;
tg3_writephy(tp, MII_TG3_AUX_CTRL, phy);
}
static int tg3_wait_macro_done(struct tg3 *tp)
{
int limit = 100;
while (limit--) {
u32 tmp32;
if (!tg3_readphy(tp, 0x16, &tmp32)) {
if ((tmp32 & 0x1000) == 0)
break;
}
}
if (limit < 0)
return -EBUSY;
return 0;
}
static int tg3_phy_write_and_check_testpat(struct tg3 *tp, int *resetp)
{
static const u32 test_pat[4][6] = {
{ 0x00005555, 0x00000005, 0x00002aaa, 0x0000000a, 0x00003456, 0x00000003 },
{ 0x00002aaa, 0x0000000a, 0x00003333, 0x00000003, 0x0000789a, 0x00000005 },
{ 0x00005a5a, 0x00000005, 0x00002a6a, 0x0000000a, 0x00001bcd, 0x00000003 },
{ 0x00002a5a, 0x0000000a, 0x000033c3, 0x00000003, 0x00002ef1, 0x00000005 }
};
int chan;
for (chan = 0; chan < 4; chan++) {
int i;
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, 0x16, 0x0002);
for (i = 0; i < 6; i++)
tg3_writephy(tp, MII_TG3_DSP_RW_PORT,
test_pat[chan][i]);
tg3_writephy(tp, 0x16, 0x0202);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, 0x16, 0x0082);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
tg3_writephy(tp, 0x16, 0x0802);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
for (i = 0; i < 6; i += 2) {
u32 low, high;
if (tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &low) ||
tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &high) ||
tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
low &= 0x7fff;
high &= 0x000f;
if (low != test_pat[chan][i] ||
high != test_pat[chan][i+1]) {
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000b);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4001);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4005);
return -EBUSY;
}
}
}
return 0;
}
static int tg3_phy_reset_chanpat(struct tg3 *tp)
{
int chan;
for (chan = 0; chan < 4; chan++) {
int i;
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, 0x16, 0x0002);
for (i = 0; i < 6; i++)
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x000);
tg3_writephy(tp, 0x16, 0x0202);
if (tg3_wait_macro_done(tp))
return -EBUSY;
}
return 0;
}
static int tg3_phy_reset_5703_4_5(struct tg3 *tp)
{
u32 reg32, phy9_orig;
int retries, do_phy_reset, err;
retries = 10;
do_phy_reset = 1;
do {
if (do_phy_reset) {
err = tg3_bmcr_reset(tp);
if (err)
return err;
do_phy_reset = 0;
}
/* Disable transmitter and interrupt. */
if (tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32))
continue;
reg32 |= 0x3000;
tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
/* Set full-duplex, 1000 mbps. */
tg3_writephy(tp, MII_BMCR,
BMCR_FULLDPLX | TG3_BMCR_SPEED1000);
/* Set to master mode. */
if (tg3_readphy(tp, MII_TG3_CTRL, &phy9_orig))
continue;
tg3_writephy(tp, MII_TG3_CTRL,
(MII_TG3_CTRL_AS_MASTER |
MII_TG3_CTRL_ENABLE_AS_MASTER));
/* Enable SM_DSP_CLOCK and 6dB. */
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0c00);
/* Block the PHY control access. */
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8005);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0800);
err = tg3_phy_write_and_check_testpat(tp, &do_phy_reset);
if (!err)
break;
} while (--retries);
err = tg3_phy_reset_chanpat(tp);
if (err)
return err;
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8005);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0000);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8200);
tg3_writephy(tp, 0x16, 0x0000);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) {
/* Set Extended packet length bit for jumbo frames */
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x4400);
}
else {
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0400);
}
tg3_writephy(tp, MII_TG3_CTRL, phy9_orig);
if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32)) {
reg32 &= ~0x3000;
tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
} else if (!err)
err = -EBUSY;
return err;
}
/* This will reset the tigon3 PHY if there is no valid
* link unless the FORCE argument is non-zero.
*/
static int tg3_phy_reset(struct tg3 *tp)
{
u32 cpmuctrl;
u32 phy_status;
int err;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
u32 val;
val = tr32(GRC_MISC_CFG);
tw32_f(GRC_MISC_CFG, val & ~GRC_MISC_CFG_EPHY_IDDQ);
udelay(40);
}
err = tg3_readphy(tp, MII_BMSR, &phy_status);
err |= tg3_readphy(tp, MII_BMSR, &phy_status);
if (err != 0)
return -EBUSY;
if (netif_running(tp->dev) && netif_carrier_ok(tp->dev)) {
netif_carrier_off(tp->dev);
tg3_link_report(tp);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) {
err = tg3_phy_reset_5703_4_5(tp);
if (err)
return err;
goto out;
}
cpmuctrl = 0;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5784_AX) {
cpmuctrl = tr32(TG3_CPMU_CTRL);
if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY)
tw32(TG3_CPMU_CTRL,
cpmuctrl & ~CPMU_CTRL_GPHY_10MB_RXONLY);
}
err = tg3_bmcr_reset(tp);
if (err)
return err;
if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY) {
u32 phy;
phy = MII_TG3_DSP_EXP8_AEDW | MII_TG3_DSP_EXP8_REJ2MHz;
tg3_phydsp_write(tp, MII_TG3_DSP_EXP8, phy);
tw32(TG3_CPMU_CTRL, cpmuctrl);
}
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5784_AX ||
GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5761_AX) {
u32 val;
val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
if ((val & CPMU_LSPD_1000MB_MACCLK_MASK) ==
CPMU_LSPD_1000MB_MACCLK_12_5) {
val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
udelay(40);
tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
}
}
tg3_phy_apply_otp(tp);
if (tp->tg3_flags3 & TG3_FLG3_PHY_ENABLE_APD)
tg3_phy_toggle_apd(tp, true);
else
tg3_phy_toggle_apd(tp, false);
out:
if (tp->tg3_flags2 & TG3_FLG2_PHY_ADC_BUG) {
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0c00);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x201f);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x2aaa);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0323);
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0400);
}
if (tp->tg3_flags2 & TG3_FLG2_PHY_5704_A0_BUG) {
tg3_writephy(tp, 0x1c, 0x8d68);
tg3_writephy(tp, 0x1c, 0x8d68);
}
if (tp->tg3_flags2 & TG3_FLG2_PHY_BER_BUG) {
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0c00);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x310b);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x201f);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x9506);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x401f);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x14e2);
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0400);
}
else if (tp->tg3_flags2 & TG3_FLG2_PHY_JITTER_BUG) {
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0c00);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a);
if (tp->tg3_flags2 & TG3_FLG2_PHY_ADJUST_TRIM) {
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x110b);
tg3_writephy(tp, MII_TG3_TEST1,
MII_TG3_TEST1_TRIM_EN | 0x4);
} else
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x010b);
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0400);
}
/* Set Extended packet length bit (bit 14) on all chips that */
/* support jumbo frames */
if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401) {
/* Cannot do read-modify-write on 5401 */
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x4c20);
} else if (tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) {
u32 phy_reg;
/* Set bit 14 with read-modify-write to preserve other bits */
if (!tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x0007) &&
!tg3_readphy(tp, MII_TG3_AUX_CTRL, &phy_reg))
tg3_writephy(tp, MII_TG3_AUX_CTRL, phy_reg | 0x4000);
}
/* Set phy register 0x10 bit 0 to high fifo elasticity to support
* jumbo frames transmission.
*/
if (tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) {
u32 phy_reg;
if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &phy_reg))
tg3_writephy(tp, MII_TG3_EXT_CTRL,
phy_reg | MII_TG3_EXT_CTRL_FIFO_ELASTIC);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
/* adjust output voltage */
tg3_writephy(tp, MII_TG3_FET_PTEST, 0x12);
}
tg3_phy_toggle_automdix(tp, 1);
tg3_phy_set_wirespeed(tp);
return 0;
}
static void tg3_frob_aux_power(struct tg3 *tp)
{
struct tg3 *tp_peer = tp;
if ((tp->tg3_flags2 & TG3_FLG2_IS_NIC) == 0)
return;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
struct net_device *dev_peer;
dev_peer = pci_get_drvdata(tp->pdev_peer);
/* remove_one() may have been run on the peer. */
if (!dev_peer)
tp_peer = tp;
else
tp_peer = netdev_priv(dev_peer);
}
if ((tp->tg3_flags & TG3_FLAG_WOL_ENABLE) != 0 ||
(tp->tg3_flags & TG3_FLAG_ENABLE_ASF) != 0 ||
(tp_peer->tg3_flags & TG3_FLAG_WOL_ENABLE) != 0 ||
(tp_peer->tg3_flags & TG3_FLAG_ENABLE_ASF) != 0) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) {
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
(GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1),
100);
} else if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
/* The 5761 non-e device swaps GPIO 0 and GPIO 2. */
u32 grc_local_ctrl = GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1 |
tp->grc_local_ctrl;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, 100);
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT2;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, 100);
grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT0;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, 100);
} else {
u32 no_gpio2;
u32 grc_local_ctrl = 0;
if (tp_peer != tp &&
(tp_peer->tg3_flags & TG3_FLAG_INIT_COMPLETE) != 0)
return;
/* Workaround to prevent overdrawing Amps. */
if (GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5714) {
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
grc_local_ctrl, 100);
}
/* On 5753 and variants, GPIO2 cannot be used. */
no_gpio2 = tp->nic_sram_data_cfg &
NIC_SRAM_DATA_CFG_NO_GPIO2;
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT1 |
GRC_LCLCTRL_GPIO_OUTPUT2;
if (no_gpio2) {
grc_local_ctrl &= ~(GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT2);
}
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
grc_local_ctrl, 100);
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT0;
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
grc_local_ctrl, 100);
if (!no_gpio2) {
grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT2;
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
grc_local_ctrl, 100);
}
}
} else {
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701) {
if (tp_peer != tp &&
(tp_peer->tg3_flags & TG3_FLAG_INIT_COMPLETE) != 0)
return;
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
(GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1), 100);
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
GRC_LCLCTRL_GPIO_OE1, 100);
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
(GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1), 100);
}
}
}
static int tg3_5700_link_polarity(struct tg3 *tp, u32 speed)
{
if (tp->led_ctrl == LED_CTRL_MODE_PHY_2)
return 1;
else if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5411) {
if (speed != SPEED_10)
return 1;
} else if (speed == SPEED_10)
return 1;
return 0;
}
static int tg3_setup_phy(struct tg3 *, int);
#define RESET_KIND_SHUTDOWN 0
#define RESET_KIND_INIT 1
#define RESET_KIND_SUSPEND 2
static void tg3_write_sig_post_reset(struct tg3 *, int);
static int tg3_halt_cpu(struct tg3 *, u32);
static void tg3_power_down_phy(struct tg3 *tp, bool do_low_power)
{
u32 val;
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) {
u32 sg_dig_ctrl = tr32(SG_DIG_CTRL);
u32 serdes_cfg = tr32(MAC_SERDES_CFG);
sg_dig_ctrl |=
SG_DIG_USING_HW_AUTONEG | SG_DIG_SOFT_RESET;
tw32(SG_DIG_CTRL, sg_dig_ctrl);
tw32(MAC_SERDES_CFG, serdes_cfg | (1 << 15));
}
return;
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
tg3_bmcr_reset(tp);
val = tr32(GRC_MISC_CFG);
tw32_f(GRC_MISC_CFG, val | GRC_MISC_CFG_EPHY_IDDQ);
udelay(40);
return;
} else if (do_low_power) {
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_FORCE_LED_OFF);
tg3_writephy(tp, MII_TG3_AUX_CTRL,
MII_TG3_AUXCTL_SHDWSEL_PWRCTL |
MII_TG3_AUXCTL_PCTL_100TX_LPWR |
MII_TG3_AUXCTL_PCTL_SPR_ISOLATE |
MII_TG3_AUXCTL_PCTL_VREG_11V);
}
/* The PHY should not be powered down on some chips because
* of bugs.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5780 &&
(tp->tg3_flags2 & TG3_FLG2_MII_SERDES)))
return;
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5784_AX ||
GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5761_AX) {
val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
val |= CPMU_LSPD_1000MB_MACCLK_12_5;
tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
}
tg3_writephy(tp, MII_BMCR, BMCR_PDOWN);
}
/* tp->lock is held. */
static int tg3_nvram_lock(struct tg3 *tp)
{
if (tp->tg3_flags & TG3_FLAG_NVRAM) {
int i;
if (tp->nvram_lock_cnt == 0) {
tw32(NVRAM_SWARB, SWARB_REQ_SET1);
for (i = 0; i < 8000; i++) {
if (tr32(NVRAM_SWARB) & SWARB_GNT1)
break;
udelay(20);
}
if (i == 8000) {
tw32(NVRAM_SWARB, SWARB_REQ_CLR1);
return -ENODEV;
}
}
tp->nvram_lock_cnt++;
}
return 0;
}
/* tp->lock is held. */
static void tg3_nvram_unlock(struct tg3 *tp)
{
if (tp->tg3_flags & TG3_FLAG_NVRAM) {
if (tp->nvram_lock_cnt > 0)
tp->nvram_lock_cnt--;
if (tp->nvram_lock_cnt == 0)
tw32_f(NVRAM_SWARB, SWARB_REQ_CLR1);
}
}
/* tp->lock is held. */
static void tg3_enable_nvram_access(struct tg3 *tp)
{
if ((tp->tg3_flags2 & TG3_FLG2_5750_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_PROTECTED_NVRAM)) {
u32 nvaccess = tr32(NVRAM_ACCESS);
tw32(NVRAM_ACCESS, nvaccess | ACCESS_ENABLE);
}
}
/* tp->lock is held. */
static void tg3_disable_nvram_access(struct tg3 *tp)
{
if ((tp->tg3_flags2 & TG3_FLG2_5750_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_PROTECTED_NVRAM)) {
u32 nvaccess = tr32(NVRAM_ACCESS);
tw32(NVRAM_ACCESS, nvaccess & ~ACCESS_ENABLE);
}
}
static int tg3_nvram_read_using_eeprom(struct tg3 *tp,
u32 offset, u32 *val)
{
u32 tmp;
int i;
if (offset > EEPROM_ADDR_ADDR_MASK || (offset % 4) != 0)
return -EINVAL;
tmp = tr32(GRC_EEPROM_ADDR) & ~(EEPROM_ADDR_ADDR_MASK |
EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR,
tmp |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
((offset << EEPROM_ADDR_ADDR_SHIFT) &
EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_READ | EEPROM_ADDR_START);
for (i = 0; i < 1000; i++) {
tmp = tr32(GRC_EEPROM_ADDR);
if (tmp & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(tmp & EEPROM_ADDR_COMPLETE))
return -EBUSY;
tmp = tr32(GRC_EEPROM_DATA);
/*
* The data will always be opposite the native endian
* format. Perform a blind byteswap to compensate.
*/
*val = swab32(tmp);
return 0;
}
#define NVRAM_CMD_TIMEOUT 10000
static int tg3_nvram_exec_cmd(struct tg3 *tp, u32 nvram_cmd)
{
int i;
tw32(NVRAM_CMD, nvram_cmd);
for (i = 0; i < NVRAM_CMD_TIMEOUT; i++) {
udelay(10);
if (tr32(NVRAM_CMD) & NVRAM_CMD_DONE) {
udelay(10);
break;
}
}
if (i == NVRAM_CMD_TIMEOUT)
return -EBUSY;
return 0;
}
static u32 tg3_nvram_phys_addr(struct tg3 *tp, u32 addr)
{
if ((tp->tg3_flags & TG3_FLAG_NVRAM) &&
(tp->tg3_flags & TG3_FLAG_NVRAM_BUFFERED) &&
(tp->tg3_flags2 & TG3_FLG2_FLASH) &&
!(tp->tg3_flags3 & TG3_FLG3_NO_NVRAM_ADDR_TRANS) &&
(tp->nvram_jedecnum == JEDEC_ATMEL))
addr = ((addr / tp->nvram_pagesize) <<
ATMEL_AT45DB0X1B_PAGE_POS) +
(addr % tp->nvram_pagesize);
return addr;
}
static u32 tg3_nvram_logical_addr(struct tg3 *tp, u32 addr)
{
if ((tp->tg3_flags & TG3_FLAG_NVRAM) &&
(tp->tg3_flags & TG3_FLAG_NVRAM_BUFFERED) &&
(tp->tg3_flags2 & TG3_FLG2_FLASH) &&
!(tp->tg3_flags3 & TG3_FLG3_NO_NVRAM_ADDR_TRANS) &&
(tp->nvram_jedecnum == JEDEC_ATMEL))
addr = ((addr >> ATMEL_AT45DB0X1B_PAGE_POS) *
tp->nvram_pagesize) +
(addr & ((1 << ATMEL_AT45DB0X1B_PAGE_POS) - 1));
return addr;
}
/* NOTE: Data read in from NVRAM is byteswapped according to
* the byteswapping settings for all other register accesses.
* tg3 devices are BE devices, so on a BE machine, the data
* returned will be exactly as it is seen in NVRAM. On a LE
* machine, the 32-bit value will be byteswapped.
*/
static int tg3_nvram_read(struct tg3 *tp, u32 offset, u32 *val)
{
int ret;
if (!(tp->tg3_flags & TG3_FLAG_NVRAM))
return tg3_nvram_read_using_eeprom(tp, offset, val);
offset = tg3_nvram_phys_addr(tp, offset);
if (offset > NVRAM_ADDR_MSK)
return -EINVAL;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
tw32(NVRAM_ADDR, offset);
ret = tg3_nvram_exec_cmd(tp, NVRAM_CMD_RD | NVRAM_CMD_GO |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
if (ret == 0)
*val = tr32(NVRAM_RDDATA);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
return ret;
}
/* Ensures NVRAM data is in bytestream format. */
static int tg3_nvram_read_be32(struct tg3 *tp, u32 offset, __be32 *val)
{
u32 v;
int res = tg3_nvram_read(tp, offset, &v);
if (!res)
*val = cpu_to_be32(v);
return res;
}
/* tp->lock is held. */
static void __tg3_set_mac_addr(struct tg3 *tp, int skip_mac_1)
{
u32 addr_high, addr_low;
int i;
addr_high = ((tp->dev->dev_addr[0] << 8) |
tp->dev->dev_addr[1]);
addr_low = ((tp->dev->dev_addr[2] << 24) |
(tp->dev->dev_addr[3] << 16) |
(tp->dev->dev_addr[4] << 8) |
(tp->dev->dev_addr[5] << 0));
for (i = 0; i < 4; i++) {
if (i == 1 && skip_mac_1)
continue;
tw32(MAC_ADDR_0_HIGH + (i * 8), addr_high);
tw32(MAC_ADDR_0_LOW + (i * 8), addr_low);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) {
for (i = 0; i < 12; i++) {
tw32(MAC_EXTADDR_0_HIGH + (i * 8), addr_high);
tw32(MAC_EXTADDR_0_LOW + (i * 8), addr_low);
}
}
addr_high = (tp->dev->dev_addr[0] +
tp->dev->dev_addr[1] +
tp->dev->dev_addr[2] +
tp->dev->dev_addr[3] +
tp->dev->dev_addr[4] +
tp->dev->dev_addr[5]) &
TX_BACKOFF_SEED_MASK;
tw32(MAC_TX_BACKOFF_SEED, addr_high);
}
static int tg3_set_power_state(struct tg3 *tp, pci_power_t state)
{
u32 misc_host_ctrl;
bool device_should_wake, do_low_power;
/* Make sure register accesses (indirect or otherwise)
* will function correctly.
*/
pci_write_config_dword(tp->pdev,
TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
switch (state) {
case PCI_D0:
pci_enable_wake(tp->pdev, state, false);
pci_set_power_state(tp->pdev, PCI_D0);
/* Switch out of Vaux if it is a NIC */
if (tp->tg3_flags2 & TG3_FLG2_IS_NIC)
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl, 100);
return 0;
case PCI_D1:
case PCI_D2:
case PCI_D3hot:
break;
default:
printk(KERN_ERR PFX "%s: Invalid power state (D%d) requested\n",
tp->dev->name, state);
return -EINVAL;
}
/* Restore the CLKREQ setting. */
if (tp->tg3_flags3 & TG3_FLG3_CLKREQ_BUG) {
u16 lnkctl;
pci_read_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_LNKCTL,
&lnkctl);
lnkctl |= PCI_EXP_LNKCTL_CLKREQ_EN;
pci_write_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_LNKCTL,
lnkctl);
}
misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
tw32(TG3PCI_MISC_HOST_CTRL,
misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT);
device_should_wake = pci_pme_capable(tp->pdev, state) &&
device_may_wakeup(&tp->pdev->dev) &&
(tp->tg3_flags & TG3_FLAG_WOL_ENABLE);
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
do_low_power = false;
if ((tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED) &&
!tp->link_config.phy_is_low_power) {
struct phy_device *phydev;
u32 phyid, advertising;
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
tp->link_config.phy_is_low_power = 1;
tp->link_config.orig_speed = phydev->speed;
tp->link_config.orig_duplex = phydev->duplex;
tp->link_config.orig_autoneg = phydev->autoneg;
tp->link_config.orig_advertising = phydev->advertising;
advertising = ADVERTISED_TP |
ADVERTISED_Pause |
ADVERTISED_Autoneg |
ADVERTISED_10baseT_Half;
if ((tp->tg3_flags & TG3_FLAG_ENABLE_ASF) ||
device_should_wake) {
if (tp->tg3_flags & TG3_FLAG_WOL_SPEED_100MB)
advertising |=
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Full;
else
advertising |= ADVERTISED_10baseT_Full;
}
phydev->advertising = advertising;
phy_start_aneg(phydev);
phyid = phydev->drv->phy_id & phydev->drv->phy_id_mask;
if (phyid != TG3_PHY_ID_BCMAC131) {
phyid &= TG3_PHY_OUI_MASK;
if (phyid == TG3_PHY_OUI_1 ||
phyid == TG3_PHY_OUI_2 ||
phyid == TG3_PHY_OUI_3)
do_low_power = true;
}
}
} else {
do_low_power = true;
if (tp->link_config.phy_is_low_power == 0) {
tp->link_config.phy_is_low_power = 1;
tp->link_config.orig_speed = tp->link_config.speed;
tp->link_config.orig_duplex = tp->link_config.duplex;
tp->link_config.orig_autoneg = tp->link_config.autoneg;
}
if (!(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES)) {
tp->link_config.speed = SPEED_10;
tp->link_config.duplex = DUPLEX_HALF;
tp->link_config.autoneg = AUTONEG_ENABLE;
tg3_setup_phy(tp, 0);
}
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
u32 val;
val = tr32(GRC_VCPU_EXT_CTRL);
tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_DISABLE_WOL);
} else if (!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF)) {
int i;
u32 val;
for (i = 0; i < 200; i++) {
tg3_read_mem(tp, NIC_SRAM_FW_ASF_STATUS_MBOX, &val);
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
break;
msleep(1);
}
}
if (tp->tg3_flags & TG3_FLAG_WOL_CAP)
tg3_write_mem(tp, NIC_SRAM_WOL_MBOX, WOL_SIGNATURE |
WOL_DRV_STATE_SHUTDOWN |
WOL_DRV_WOL |
WOL_SET_MAGIC_PKT);
if (device_should_wake) {
u32 mac_mode;
if (!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)) {
if (do_low_power) {
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x5a);
udelay(40);
}
if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES)
mac_mode = MAC_MODE_PORT_MODE_GMII;
else
mac_mode = MAC_MODE_PORT_MODE_MII;
mac_mode |= tp->mac_mode & MAC_MODE_LINK_POLARITY;
if (GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5700) {
u32 speed = (tp->tg3_flags &
TG3_FLAG_WOL_SPEED_100MB) ?
SPEED_100 : SPEED_10;
if (tg3_5700_link_polarity(tp, speed))
mac_mode |= MAC_MODE_LINK_POLARITY;
else
mac_mode &= ~MAC_MODE_LINK_POLARITY;
}
} else {
mac_mode = MAC_MODE_PORT_MODE_TBI;
}
if (!(tp->tg3_flags2 & TG3_FLG2_5750_PLUS))
tw32(MAC_LED_CTRL, tp->led_ctrl);
mac_mode |= MAC_MODE_MAGIC_PKT_ENABLE;
if (((tp->tg3_flags2 & TG3_FLG2_5705_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) &&
((tp->tg3_flags & TG3_FLAG_ENABLE_ASF) ||
(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)))
mac_mode |= MAC_MODE_KEEP_FRAME_IN_WOL;
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) {
mac_mode |= tp->mac_mode &
(MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN);
if (mac_mode & MAC_MODE_APE_TX_EN)
mac_mode |= MAC_MODE_TDE_ENABLE;
}
tw32_f(MAC_MODE, mac_mode);
udelay(100);
tw32_f(MAC_RX_MODE, RX_MODE_ENABLE);
udelay(10);
}
if (!(tp->tg3_flags & TG3_FLAG_WOL_SPEED_100MB) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)) {
u32 base_val;
base_val = tp->pci_clock_ctrl;
base_val |= (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE);
tw32_wait_f(TG3PCI_CLOCK_CTRL, base_val | CLOCK_CTRL_ALTCLK |
CLOCK_CTRL_PWRDOWN_PLL133, 40);
} else if ((tp->tg3_flags2 & TG3_FLG2_5780_CLASS) ||
(tp->tg3_flags & TG3_FLAG_CPMU_PRESENT) ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)) {
/* do nothing */
} else if (!((tp->tg3_flags2 & TG3_FLG2_5750_PLUS) &&
(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))) {
u32 newbits1, newbits2;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) {
newbits1 = (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE |
CLOCK_CTRL_ALTCLK);
newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
} else if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS) {
newbits1 = CLOCK_CTRL_625_CORE;
newbits2 = newbits1 | CLOCK_CTRL_ALTCLK;
} else {
newbits1 = CLOCK_CTRL_ALTCLK;
newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
}
tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits1,
40);
tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits2,
40);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
u32 newbits3;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) {
newbits3 = (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE |
CLOCK_CTRL_44MHZ_CORE);
} else {
newbits3 = CLOCK_CTRL_44MHZ_CORE;
}
tw32_wait_f(TG3PCI_CLOCK_CTRL,
tp->pci_clock_ctrl | newbits3, 40);
}
}
if (!(device_should_wake) &&
!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))
tg3_power_down_phy(tp, do_low_power);
tg3_frob_aux_power(tp);
/* Workaround for unstable PLL clock */
if ((GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5750_AX) ||
(GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5750_BX)) {
u32 val = tr32(0x7d00);
val &= ~((1 << 16) | (1 << 4) | (1 << 2) | (1 << 1) | 1);
tw32(0x7d00, val);
if (!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF)) {
int err;
err = tg3_nvram_lock(tp);
tg3_halt_cpu(tp, RX_CPU_BASE);
if (!err)
tg3_nvram_unlock(tp);
}
}
tg3_write_sig_post_reset(tp, RESET_KIND_SHUTDOWN);
if (device_should_wake)
pci_enable_wake(tp->pdev, state, true);
/* Finally, set the new power state. */
pci_set_power_state(tp->pdev, state);
return 0;
}
static void tg3_aux_stat_to_speed_duplex(struct tg3 *tp, u32 val, u16 *speed, u8 *duplex)
{
switch (val & MII_TG3_AUX_STAT_SPDMASK) {
case MII_TG3_AUX_STAT_10HALF:
*speed = SPEED_10;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_10FULL:
*speed = SPEED_10;
*duplex = DUPLEX_FULL;
break;
case MII_TG3_AUX_STAT_100HALF:
*speed = SPEED_100;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_100FULL:
*speed = SPEED_100;
*duplex = DUPLEX_FULL;
break;
case MII_TG3_AUX_STAT_1000HALF:
*speed = SPEED_1000;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_1000FULL:
*speed = SPEED_1000;
*duplex = DUPLEX_FULL;
break;
default:
if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) {
*speed = (val & MII_TG3_AUX_STAT_100) ? SPEED_100 :
SPEED_10;
*duplex = (val & MII_TG3_AUX_STAT_FULL) ? DUPLEX_FULL :
DUPLEX_HALF;
break;
}
*speed = SPEED_INVALID;
*duplex = DUPLEX_INVALID;
break;
}
}
static void tg3_phy_copper_begin(struct tg3 *tp)
{
u32 new_adv;
int i;
if (tp->link_config.phy_is_low_power) {
/* Entering low power mode. Disable gigabit and
* 100baseT advertisements.
*/
tg3_writephy(tp, MII_TG3_CTRL, 0);
new_adv = (ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
if (tp->tg3_flags & TG3_FLAG_WOL_SPEED_100MB)
new_adv |= (ADVERTISE_100HALF | ADVERTISE_100FULL);
tg3_writephy(tp, MII_ADVERTISE, new_adv);
} else if (tp->link_config.speed == SPEED_INVALID) {
if (tp->tg3_flags & TG3_FLAG_10_100_ONLY)
tp->link_config.advertising &=
~(ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full);
new_adv = ADVERTISE_CSMA;
if (tp->link_config.advertising & ADVERTISED_10baseT_Half)
new_adv |= ADVERTISE_10HALF;
if (tp->link_config.advertising & ADVERTISED_10baseT_Full)
new_adv |= ADVERTISE_10FULL;
if (tp->link_config.advertising & ADVERTISED_100baseT_Half)
new_adv |= ADVERTISE_100HALF;
if (tp->link_config.advertising & ADVERTISED_100baseT_Full)
new_adv |= ADVERTISE_100FULL;
new_adv |= tg3_advert_flowctrl_1000T(tp->link_config.flowctrl);
tg3_writephy(tp, MII_ADVERTISE, new_adv);
if (tp->link_config.advertising &
(ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) {
new_adv = 0;
if (tp->link_config.advertising & ADVERTISED_1000baseT_Half)
new_adv |= MII_TG3_CTRL_ADV_1000_HALF;
if (tp->link_config.advertising & ADVERTISED_1000baseT_Full)
new_adv |= MII_TG3_CTRL_ADV_1000_FULL;
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY) &&
(tp->pci_chip_rev_id == CHIPREV_ID_5701_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B0))
new_adv |= (MII_TG3_CTRL_AS_MASTER |
MII_TG3_CTRL_ENABLE_AS_MASTER);
tg3_writephy(tp, MII_TG3_CTRL, new_adv);
} else {
tg3_writephy(tp, MII_TG3_CTRL, 0);
}
} else {
new_adv = tg3_advert_flowctrl_1000T(tp->link_config.flowctrl);
new_adv |= ADVERTISE_CSMA;
/* Asking for a specific link mode. */
if (tp->link_config.speed == SPEED_1000) {
tg3_writephy(tp, MII_ADVERTISE, new_adv);
if (tp->link_config.duplex == DUPLEX_FULL)
new_adv = MII_TG3_CTRL_ADV_1000_FULL;
else
new_adv = MII_TG3_CTRL_ADV_1000_HALF;
if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B0)
new_adv |= (MII_TG3_CTRL_AS_MASTER |
MII_TG3_CTRL_ENABLE_AS_MASTER);
} else {
if (tp->link_config.speed == SPEED_100) {
if (tp->link_config.duplex == DUPLEX_FULL)
new_adv |= ADVERTISE_100FULL;
else
new_adv |= ADVERTISE_100HALF;
} else {
if (tp->link_config.duplex == DUPLEX_FULL)
new_adv |= ADVERTISE_10FULL;
else
new_adv |= ADVERTISE_10HALF;
}
tg3_writephy(tp, MII_ADVERTISE, new_adv);
new_adv = 0;
}
tg3_writephy(tp, MII_TG3_CTRL, new_adv);
}
if (tp->link_config.autoneg == AUTONEG_DISABLE &&
tp->link_config.speed != SPEED_INVALID) {
u32 bmcr, orig_bmcr;
tp->link_config.active_speed = tp->link_config.speed;
tp->link_config.active_duplex = tp->link_config.duplex;
bmcr = 0;
switch (tp->link_config.speed) {
default:
case SPEED_10:
break;
case SPEED_100:
bmcr |= BMCR_SPEED100;
break;
case SPEED_1000:
bmcr |= TG3_BMCR_SPEED1000;
break;
}
if (tp->link_config.duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
if (!tg3_readphy(tp, MII_BMCR, &orig_bmcr) &&
(bmcr != orig_bmcr)) {
tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK);
for (i = 0; i < 1500; i++) {
u32 tmp;
udelay(10);
if (tg3_readphy(tp, MII_BMSR, &tmp) ||
tg3_readphy(tp, MII_BMSR, &tmp))
continue;
if (!(tmp & BMSR_LSTATUS)) {
udelay(40);
break;
}
}
tg3_writephy(tp, MII_BMCR, bmcr);
udelay(40);
}
} else {
tg3_writephy(tp, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
}
}
static int tg3_init_5401phy_dsp(struct tg3 *tp)
{
int err;
/* Turn off tap power management. */
/* Set Extended packet length bit */
err = tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x4c20);
err |= tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x0012);
err |= tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x1804);
err |= tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x0013);
err |= tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x1204);
err |= tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8006);
err |= tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0132);
err |= tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8006);
err |= tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0232);
err |= tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x201f);
err |= tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x0a20);
udelay(40);
return err;
}
static int tg3_copper_is_advertising_all(struct tg3 *tp, u32 mask)
{
u32 adv_reg, all_mask = 0;
if (mask & ADVERTISED_10baseT_Half)
all_mask |= ADVERTISE_10HALF;
if (mask & ADVERTISED_10baseT_Full)
all_mask |= ADVERTISE_10FULL;
if (mask & ADVERTISED_100baseT_Half)
all_mask |= ADVERTISE_100HALF;
if (mask & ADVERTISED_100baseT_Full)
all_mask |= ADVERTISE_100FULL;
if (tg3_readphy(tp, MII_ADVERTISE, &adv_reg))
return 0;
if ((adv_reg & all_mask) != all_mask)
return 0;
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY)) {
u32 tg3_ctrl;
all_mask = 0;
if (mask & ADVERTISED_1000baseT_Half)
all_mask |= ADVERTISE_1000HALF;
if (mask & ADVERTISED_1000baseT_Full)
all_mask |= ADVERTISE_1000FULL;
if (tg3_readphy(tp, MII_TG3_CTRL, &tg3_ctrl))
return 0;
if ((tg3_ctrl & all_mask) != all_mask)
return 0;
}
return 1;
}
static int tg3_adv_1000T_flowctrl_ok(struct tg3 *tp, u32 *lcladv, u32 *rmtadv)
{
u32 curadv, reqadv;
if (tg3_readphy(tp, MII_ADVERTISE, lcladv))
return 1;
curadv = *lcladv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
reqadv = tg3_advert_flowctrl_1000T(tp->link_config.flowctrl);
if (tp->link_config.active_duplex == DUPLEX_FULL) {
if (curadv != reqadv)
return 0;
if (tp->tg3_flags & TG3_FLAG_PAUSE_AUTONEG)
tg3_readphy(tp, MII_LPA, rmtadv);
} else {
/* Reprogram the advertisement register, even if it
* does not affect the current link. If the link
* gets renegotiated in the future, we can save an
* additional renegotiation cycle by advertising
* it correctly in the first place.
*/
if (curadv != reqadv) {
*lcladv &= ~(ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
tg3_writephy(tp, MII_ADVERTISE, *lcladv | reqadv);
}
}
return 1;
}
static int tg3_setup_copper_phy(struct tg3 *tp, int force_reset)
{
int current_link_up;
u32 bmsr, dummy;
u32 lcl_adv, rmt_adv;
u16 current_speed;
u8 current_duplex;
int i, err;
tw32(MAC_EVENT, 0);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LNKSTATE_CHANGED));
udelay(40);
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x02);
/* Some third-party PHYs need to be reset on link going
* down.
*/
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) &&
netif_carrier_ok(tp->dev)) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
!(bmsr & BMSR_LSTATUS))
force_reset = 1;
}
if (force_reset)
tg3_phy_reset(tp);
if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (tg3_readphy(tp, MII_BMSR, &bmsr) ||
!(tp->tg3_flags & TG3_FLAG_INIT_COMPLETE))
bmsr = 0;
if (!(bmsr & BMSR_LSTATUS)) {
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
tg3_readphy(tp, MII_BMSR, &bmsr);
for (i = 0; i < 1000; i++) {
udelay(10);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS)) {
udelay(40);
break;
}
}
if ((tp->phy_id & PHY_ID_REV_MASK) == PHY_REV_BCM5401_B0 &&
!(bmsr & BMSR_LSTATUS) &&
tp->link_config.active_speed == SPEED_1000) {
err = tg3_phy_reset(tp);
if (!err)
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
}
}
} else if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B0) {
/* 5701 {A0,B0} CRC bug workaround */
tg3_writephy(tp, 0x15, 0x0a75);
tg3_writephy(tp, 0x1c, 0x8c68);
tg3_writephy(tp, 0x1c, 0x8d68);
tg3_writephy(tp, 0x1c, 0x8c68);
}
/* Clear pending interrupts... */
tg3_readphy(tp, MII_TG3_ISTAT, &dummy);
tg3_readphy(tp, MII_TG3_ISTAT, &dummy);
if (tp->tg3_flags & TG3_FLAG_USE_MI_INTERRUPT)
tg3_writephy(tp, MII_TG3_IMASK, ~MII_TG3_INT_LINKCHG);
else if (!(tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET))
tg3_writephy(tp, MII_TG3_IMASK, ~0);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) {
if (tp->led_ctrl == LED_CTRL_MODE_PHY_1)
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_LNK3_LED_MODE);
else
tg3_writephy(tp, MII_TG3_EXT_CTRL, 0);
}
current_link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
if (tp->tg3_flags2 & TG3_FLG2_CAPACITIVE_COUPLING) {
u32 val;
tg3_writephy(tp, MII_TG3_AUX_CTRL, 0x4007);
tg3_readphy(tp, MII_TG3_AUX_CTRL, &val);
if (!(val & (1 << 10))) {
val |= (1 << 10);
tg3_writephy(tp, MII_TG3_AUX_CTRL, val);
goto relink;
}
}
bmsr = 0;
for (i = 0; i < 100; i++) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS))
break;
udelay(40);
}
if (bmsr & BMSR_LSTATUS) {
u32 aux_stat, bmcr;
tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat);
for (i = 0; i < 2000; i++) {
udelay(10);
if (!tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat) &&
aux_stat)
break;
}
tg3_aux_stat_to_speed_duplex(tp, aux_stat,
&current_speed,
&current_duplex);
bmcr = 0;
for (i = 0; i < 200; i++) {
tg3_readphy(tp, MII_BMCR, &bmcr);
if (tg3_readphy(tp, MII_BMCR, &bmcr))
continue;
if (bmcr && bmcr != 0x7fff)
break;
udelay(10);
}
lcl_adv = 0;
rmt_adv = 0;
tp->link_config.active_speed = current_speed;
tp->link_config.active_duplex = current_duplex;
if (tp->link_config.autoneg == AUTONEG_ENABLE) {
if ((bmcr & BMCR_ANENABLE) &&
tg3_copper_is_advertising_all(tp,
tp->link_config.advertising)) {
if (tg3_adv_1000T_flowctrl_ok(tp, &lcl_adv,
&rmt_adv))
current_link_up = 1;
}
} else {
if (!(bmcr & BMCR_ANENABLE) &&
tp->link_config.speed == current_speed &&
tp->link_config.duplex == current_duplex &&
tp->link_config.flowctrl ==
tp->link_config.active_flowctrl) {
current_link_up = 1;
}
}
if (current_link_up == 1 &&
tp->link_config.active_duplex == DUPLEX_FULL)
tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
}
relink:
if (current_link_up == 0 || tp->link_config.phy_is_low_power) {
u32 tmp;
tg3_phy_copper_begin(tp);
tg3_readphy(tp, MII_BMSR, &tmp);
if (!tg3_readphy(tp, MII_BMSR, &tmp) &&
(tmp & BMSR_LSTATUS))
current_link_up = 1;
}
tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK;
if (current_link_up == 1) {
if (tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_10)
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
else
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
} else if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET)
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
else
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
if (tp->link_config.active_duplex == DUPLEX_HALF)
tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700) {
if (current_link_up == 1 &&
tg3_5700_link_polarity(tp, tp->link_config.active_speed))
tp->mac_mode |= MAC_MODE_LINK_POLARITY;
else
tp->mac_mode &= ~MAC_MODE_LINK_POLARITY;
}
/* ??? Without this setting Netgear GA302T PHY does not
* ??? send/receive packets...
*/
if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5411 &&
tp->pci_chip_rev_id == CHIPREV_ID_5700_ALTIMA) {
tp->mi_mode |= MAC_MI_MODE_AUTO_POLL;
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
if (tp->tg3_flags & TG3_FLAG_USE_LINKCHG_REG) {
/* Polled via timer. */
tw32_f(MAC_EVENT, 0);
} else {
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
}
udelay(40);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 &&
current_link_up == 1 &&
tp->link_config.active_speed == SPEED_1000 &&
((tp->tg3_flags & TG3_FLAG_PCIX_MODE) ||
(tp->tg3_flags & TG3_FLAG_PCI_HIGH_SPEED))) {
udelay(120);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(40);
tg3_write_mem(tp,
NIC_SRAM_FIRMWARE_MBOX,
NIC_SRAM_FIRMWARE_MBOX_MAGIC2);
}
/* Prevent send BD corruption. */
if (tp->tg3_flags3 & TG3_FLG3_CLKREQ_BUG) {
u16 oldlnkctl, newlnkctl;
pci_read_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_LNKCTL,
&oldlnkctl);
if (tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_10)
newlnkctl = oldlnkctl & ~PCI_EXP_LNKCTL_CLKREQ_EN;
else
newlnkctl = oldlnkctl | PCI_EXP_LNKCTL_CLKREQ_EN;
if (newlnkctl != oldlnkctl)
pci_write_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_LNKCTL,
newlnkctl);
} else if (tp->tg3_flags3 & TG3_FLG3_TOGGLE_10_100_L1PLLPD) {
u32 newreg, oldreg = tr32(TG3_PCIE_LNKCTL);
if (tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_10)
newreg = oldreg & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
else
newreg = oldreg | TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
if (newreg != oldreg)
tw32(TG3_PCIE_LNKCTL, newreg);
}
if (current_link_up != netif_carrier_ok(tp->dev)) {
if (current_link_up)
netif_carrier_on(tp->dev);
else
netif_carrier_off(tp->dev);
tg3_link_report(tp);
}
return 0;
}
struct tg3_fiber_aneginfo {
int state;
#define ANEG_STATE_UNKNOWN 0
#define ANEG_STATE_AN_ENABLE 1
#define ANEG_STATE_RESTART_INIT 2
#define ANEG_STATE_RESTART 3
#define ANEG_STATE_DISABLE_LINK_OK 4
#define ANEG_STATE_ABILITY_DETECT_INIT 5
#define ANEG_STATE_ABILITY_DETECT 6
#define ANEG_STATE_ACK_DETECT_INIT 7
#define ANEG_STATE_ACK_DETECT 8
#define ANEG_STATE_COMPLETE_ACK_INIT 9
#define ANEG_STATE_COMPLETE_ACK 10
#define ANEG_STATE_IDLE_DETECT_INIT 11
#define ANEG_STATE_IDLE_DETECT 12
#define ANEG_STATE_LINK_OK 13
#define ANEG_STATE_NEXT_PAGE_WAIT_INIT 14
#define ANEG_STATE_NEXT_PAGE_WAIT 15
u32 flags;
#define MR_AN_ENABLE 0x00000001
#define MR_RESTART_AN 0x00000002
#define MR_AN_COMPLETE 0x00000004
#define MR_PAGE_RX 0x00000008
#define MR_NP_LOADED 0x00000010
#define MR_TOGGLE_TX 0x00000020
#define MR_LP_ADV_FULL_DUPLEX 0x00000040
#define MR_LP_ADV_HALF_DUPLEX 0x00000080
#define MR_LP_ADV_SYM_PAUSE 0x00000100
#define MR_LP_ADV_ASYM_PAUSE 0x00000200
#define MR_LP_ADV_REMOTE_FAULT1 0x00000400
#define MR_LP_ADV_REMOTE_FAULT2 0x00000800
#define MR_LP_ADV_NEXT_PAGE 0x00001000
#define MR_TOGGLE_RX 0x00002000
#define MR_NP_RX 0x00004000
#define MR_LINK_OK 0x80000000
unsigned long link_time, cur_time;
u32 ability_match_cfg;
int ability_match_count;
char ability_match, idle_match, ack_match;
u32 txconfig, rxconfig;
#define ANEG_CFG_NP 0x00000080
#define ANEG_CFG_ACK 0x00000040
#define ANEG_CFG_RF2 0x00000020
#define ANEG_CFG_RF1 0x00000010
#define ANEG_CFG_PS2 0x00000001
#define ANEG_CFG_PS1 0x00008000
#define ANEG_CFG_HD 0x00004000
#define ANEG_CFG_FD 0x00002000
#define ANEG_CFG_INVAL 0x00001f06
};
#define ANEG_OK 0
#define ANEG_DONE 1
#define ANEG_TIMER_ENAB 2
#define ANEG_FAILED -1
#define ANEG_STATE_SETTLE_TIME 10000
static int tg3_fiber_aneg_smachine(struct tg3 *tp,
struct tg3_fiber_aneginfo *ap)
{
u16 flowctrl;
unsigned long delta;
u32 rx_cfg_reg;
int ret;
if (ap->state == ANEG_STATE_UNKNOWN) {
ap->rxconfig = 0;
ap->link_time = 0;
ap->cur_time = 0;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->idle_match = 0;
ap->ack_match = 0;
}
ap->cur_time++;
if (tr32(MAC_STATUS) & MAC_STATUS_RCVD_CFG) {
rx_cfg_reg = tr32(MAC_RX_AUTO_NEG);
if (rx_cfg_reg != ap->ability_match_cfg) {
ap->ability_match_cfg = rx_cfg_reg;
ap->ability_match = 0;
ap->ability_match_count = 0;
} else {
if (++ap->ability_match_count > 1) {
ap->ability_match = 1;
ap->ability_match_cfg = rx_cfg_reg;
}
}
if (rx_cfg_reg & ANEG_CFG_ACK)
ap->ack_match = 1;
else
ap->ack_match = 0;
ap->idle_match = 0;
} else {
ap->idle_match = 1;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->ack_match = 0;
rx_cfg_reg = 0;
}
ap->rxconfig = rx_cfg_reg;
ret = ANEG_OK;
switch(ap->state) {
case ANEG_STATE_UNKNOWN:
if (ap->flags & (MR_AN_ENABLE | MR_RESTART_AN))
ap->state = ANEG_STATE_AN_ENABLE;
/* fallthru */
case ANEG_STATE_AN_ENABLE:
ap->flags &= ~(MR_AN_COMPLETE | MR_PAGE_RX);
if (ap->flags & MR_AN_ENABLE) {
ap->link_time = 0;
ap->cur_time = 0;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->idle_match = 0;
ap->ack_match = 0;
ap->state = ANEG_STATE_RESTART_INIT;
} else {
ap->state = ANEG_STATE_DISABLE_LINK_OK;
}
break;
case ANEG_STATE_RESTART_INIT:
ap->link_time = ap->cur_time;
ap->flags &= ~(MR_NP_LOADED);
ap->txconfig = 0;
tw32(MAC_TX_AUTO_NEG, 0);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ret = ANEG_TIMER_ENAB;
ap->state = ANEG_STATE_RESTART;
/* fallthru */
case ANEG_STATE_RESTART:
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME) {
ap->state = ANEG_STATE_ABILITY_DETECT_INIT;
} else {
ret = ANEG_TIMER_ENAB;
}
break;
case ANEG_STATE_DISABLE_LINK_OK:
ret = ANEG_DONE;
break;
case ANEG_STATE_ABILITY_DETECT_INIT:
ap->flags &= ~(MR_TOGGLE_TX);
ap->txconfig = ANEG_CFG_FD;
flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
if (flowctrl & ADVERTISE_1000XPAUSE)
ap->txconfig |= ANEG_CFG_PS1;
if (flowctrl & ADVERTISE_1000XPSE_ASYM)
ap->txconfig |= ANEG_CFG_PS2;
tw32(MAC_TX_AUTO_NEG, ap->txconfig);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_ABILITY_DETECT;
break;
case ANEG_STATE_ABILITY_DETECT:
if (ap->ability_match != 0 && ap->rxconfig != 0) {
ap->state = ANEG_STATE_ACK_DETECT_INIT;
}
break;
case ANEG_STATE_ACK_DETECT_INIT:
ap->txconfig |= ANEG_CFG_ACK;
tw32(MAC_TX_AUTO_NEG, ap->txconfig);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_ACK_DETECT;
/* fallthru */
case ANEG_STATE_ACK_DETECT:
if (ap->ack_match != 0) {
if ((ap->rxconfig & ~ANEG_CFG_ACK) ==
(ap->ability_match_cfg & ~ANEG_CFG_ACK)) {
ap->state = ANEG_STATE_COMPLETE_ACK_INIT;
} else {
ap->state = ANEG_STATE_AN_ENABLE;
}
} else if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
}
break;
case ANEG_STATE_COMPLETE_ACK_INIT:
if (ap->rxconfig & ANEG_CFG_INVAL) {
ret = ANEG_FAILED;
break;
}
ap->flags &= ~(MR_LP_ADV_FULL_DUPLEX |
MR_LP_ADV_HALF_DUPLEX |
MR_LP_ADV_SYM_PAUSE |
MR_LP_ADV_ASYM_PAUSE |
MR_LP_ADV_REMOTE_FAULT1 |
MR_LP_ADV_REMOTE_FAULT2 |
MR_LP_ADV_NEXT_PAGE |
MR_TOGGLE_RX |
MR_NP_RX);
if (ap->rxconfig & ANEG_CFG_FD)
ap->flags |= MR_LP_ADV_FULL_DUPLEX;
if (ap->rxconfig & ANEG_CFG_HD)
ap->flags |= MR_LP_ADV_HALF_DUPLEX;
if (ap->rxconfig & ANEG_CFG_PS1)
ap->flags |= MR_LP_ADV_SYM_PAUSE;
if (ap->rxconfig & ANEG_CFG_PS2)
ap->flags |= MR_LP_ADV_ASYM_PAUSE;
if (ap->rxconfig & ANEG_CFG_RF1)
ap->flags |= MR_LP_ADV_REMOTE_FAULT1;
if (ap->rxconfig & ANEG_CFG_RF2)
ap->flags |= MR_LP_ADV_REMOTE_FAULT2;
if (ap->rxconfig & ANEG_CFG_NP)
ap->flags |= MR_LP_ADV_NEXT_PAGE;
ap->link_time = ap->cur_time;
ap->flags ^= (MR_TOGGLE_TX);
if (ap->rxconfig & 0x0008)
ap->flags |= MR_TOGGLE_RX;
if (ap->rxconfig & ANEG_CFG_NP)
ap->flags |= MR_NP_RX;
ap->flags |= MR_PAGE_RX;
ap->state = ANEG_STATE_COMPLETE_ACK;
ret = ANEG_TIMER_ENAB;
break;
case ANEG_STATE_COMPLETE_ACK:
if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
break;
}
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME) {
if (!(ap->flags & (MR_LP_ADV_NEXT_PAGE))) {
ap->state = ANEG_STATE_IDLE_DETECT_INIT;
} else {
if ((ap->txconfig & ANEG_CFG_NP) == 0 &&
!(ap->flags & MR_NP_RX)) {
ap->state = ANEG_STATE_IDLE_DETECT_INIT;
} else {
ret = ANEG_FAILED;
}
}
}
break;
case ANEG_STATE_IDLE_DETECT_INIT:
ap->link_time = ap->cur_time;
tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_IDLE_DETECT;
ret = ANEG_TIMER_ENAB;
break;
case ANEG_STATE_IDLE_DETECT:
if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
break;
}
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME) {
/* XXX another gem from the Broadcom driver :( */
ap->state = ANEG_STATE_LINK_OK;
}
break;
case ANEG_STATE_LINK_OK:
ap->flags |= (MR_AN_COMPLETE | MR_LINK_OK);
ret = ANEG_DONE;
break;
case ANEG_STATE_NEXT_PAGE_WAIT_INIT:
/* ??? unimplemented */
break;
case ANEG_STATE_NEXT_PAGE_WAIT:
/* ??? unimplemented */
break;
default:
ret = ANEG_FAILED;
break;
}
return ret;
}
static int fiber_autoneg(struct tg3 *tp, u32 *txflags, u32 *rxflags)
{
int res = 0;
struct tg3_fiber_aneginfo aninfo;
int status = ANEG_FAILED;
unsigned int tick;
u32 tmp;
tw32_f(MAC_TX_AUTO_NEG, 0);
tmp = tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK;
tw32_f(MAC_MODE, tmp | MAC_MODE_PORT_MODE_GMII);
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_SEND_CONFIGS);
udelay(40);
memset(&aninfo, 0, sizeof(aninfo));
aninfo.flags |= MR_AN_ENABLE;
aninfo.state = ANEG_STATE_UNKNOWN;
aninfo.cur_time = 0;
tick = 0;
while (++tick < 195000) {
status = tg3_fiber_aneg_smachine(tp, &aninfo);
if (status == ANEG_DONE || status == ANEG_FAILED)
break;
udelay(1);
}
tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
*txflags = aninfo.txconfig;
*rxflags = aninfo.flags;
if (status == ANEG_DONE &&
(aninfo.flags & (MR_AN_COMPLETE | MR_LINK_OK |
MR_LP_ADV_FULL_DUPLEX)))
res = 1;
return res;
}
static void tg3_init_bcm8002(struct tg3 *tp)
{
u32 mac_status = tr32(MAC_STATUS);
int i;
/* Reset when initting first time or we have a link. */
if ((tp->tg3_flags & TG3_FLAG_INIT_COMPLETE) &&
!(mac_status & MAC_STATUS_PCS_SYNCED))
return;
/* Set PLL lock range. */
tg3_writephy(tp, 0x16, 0x8007);
/* SW reset */
tg3_writephy(tp, MII_BMCR, BMCR_RESET);
/* Wait for reset to complete. */
/* XXX schedule_timeout() ... */
for (i = 0; i < 500; i++)
udelay(10);
/* Config mode; select PMA/Ch 1 regs. */
tg3_writephy(tp, 0x10, 0x8411);
/* Enable auto-lock and comdet, select txclk for tx. */
tg3_writephy(tp, 0x11, 0x0a10);
tg3_writephy(tp, 0x18, 0x00a0);
tg3_writephy(tp, 0x16, 0x41ff);
/* Assert and deassert POR. */
tg3_writephy(tp, 0x13, 0x0400);
udelay(40);
tg3_writephy(tp, 0x13, 0x0000);
tg3_writephy(tp, 0x11, 0x0a50);
udelay(40);
tg3_writephy(tp, 0x11, 0x0a10);
/* Wait for signal to stabilize */
/* XXX schedule_timeout() ... */
for (i = 0; i < 15000; i++)
udelay(10);
/* Deselect the channel register so we can read the PHYID
* later.
*/
tg3_writephy(tp, 0x10, 0x8011);
}
static int tg3_setup_fiber_hw_autoneg(struct tg3 *tp, u32 mac_status)
{
u16 flowctrl;
u32 sg_dig_ctrl, sg_dig_status;
u32 serdes_cfg, expected_sg_dig_ctrl;
int workaround, port_a;
int current_link_up;
serdes_cfg = 0;
expected_sg_dig_ctrl = 0;
workaround = 0;
port_a = 1;
current_link_up = 0;
if (tp->pci_chip_rev_id != CHIPREV_ID_5704_A0 &&
tp->pci_chip_rev_id != CHIPREV_ID_5704_A1) {
workaround = 1;
if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
port_a = 0;
/* preserve bits 0-11,13,14 for signal pre-emphasis */
/* preserve bits 20-23 for voltage regulator */
serdes_cfg = tr32(MAC_SERDES_CFG) & 0x00f06fff;
}
sg_dig_ctrl = tr32(SG_DIG_CTRL);
if (tp->link_config.autoneg != AUTONEG_ENABLE) {
if (sg_dig_ctrl & SG_DIG_USING_HW_AUTONEG) {
if (workaround) {
u32 val = serdes_cfg;
if (port_a)
val |= 0xc010000;
else
val |= 0x4010000;
tw32_f(MAC_SERDES_CFG, val);
}
tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
}
if (mac_status & MAC_STATUS_PCS_SYNCED) {
tg3_setup_flow_control(tp, 0, 0);
current_link_up = 1;
}
goto out;
}
/* Want auto-negotiation. */
expected_sg_dig_ctrl = SG_DIG_USING_HW_AUTONEG | SG_DIG_COMMON_SETUP;
flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
if (flowctrl & ADVERTISE_1000XPAUSE)
expected_sg_dig_ctrl |= SG_DIG_PAUSE_CAP;
if (flowctrl & ADVERTISE_1000XPSE_ASYM)
expected_sg_dig_ctrl |= SG_DIG_ASYM_PAUSE;
if (sg_dig_ctrl != expected_sg_dig_ctrl) {
if ((tp->tg3_flags2 & TG3_FLG2_PARALLEL_DETECT) &&
tp->serdes_counter &&
((mac_status & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_RCVD_CFG)) ==
MAC_STATUS_PCS_SYNCED)) {
tp->serdes_counter--;
current_link_up = 1;
goto out;
}
restart_autoneg:
if (workaround)
tw32_f(MAC_SERDES_CFG, serdes_cfg | 0xc011000);
tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl | SG_DIG_SOFT_RESET);
udelay(5);
tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl);
tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
} else if (mac_status & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET)) {
sg_dig_status = tr32(SG_DIG_STATUS);
mac_status = tr32(MAC_STATUS);
if ((sg_dig_status & SG_DIG_AUTONEG_COMPLETE) &&
(mac_status & MAC_STATUS_PCS_SYNCED)) {
u32 local_adv = 0, remote_adv = 0;
if (sg_dig_ctrl & SG_DIG_PAUSE_CAP)
local_adv |= ADVERTISE_1000XPAUSE;
if (sg_dig_ctrl & SG_DIG_ASYM_PAUSE)
local_adv |= ADVERTISE_1000XPSE_ASYM;
if (sg_dig_status & SG_DIG_PARTNER_PAUSE_CAPABLE)
remote_adv |= LPA_1000XPAUSE;
if (sg_dig_status & SG_DIG_PARTNER_ASYM_PAUSE)
remote_adv |= LPA_1000XPAUSE_ASYM;
tg3_setup_flow_control(tp, local_adv, remote_adv);
current_link_up = 1;
tp->serdes_counter = 0;
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
} else if (!(sg_dig_status & SG_DIG_AUTONEG_COMPLETE)) {
if (tp->serdes_counter)
tp->serdes_counter--;
else {
if (workaround) {
u32 val = serdes_cfg;
if (port_a)
val |= 0xc010000;
else
val |= 0x4010000;
tw32_f(MAC_SERDES_CFG, val);
}
tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
udelay(40);
/* Link parallel detection - link is up */
/* only if we have PCS_SYNC and not */
/* receiving config code words */
mac_status = tr32(MAC_STATUS);
if ((mac_status & MAC_STATUS_PCS_SYNCED) &&
!(mac_status & MAC_STATUS_RCVD_CFG)) {
tg3_setup_flow_control(tp, 0, 0);
current_link_up = 1;
tp->tg3_flags2 |=
TG3_FLG2_PARALLEL_DETECT;
tp->serdes_counter =
SERDES_PARALLEL_DET_TIMEOUT;
} else
goto restart_autoneg;
}
}
} else {
tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
}
out:
return current_link_up;
}
static int tg3_setup_fiber_by_hand(struct tg3 *tp, u32 mac_status)
{
int current_link_up = 0;
if (!(mac_status & MAC_STATUS_PCS_SYNCED))
goto out;
if (tp->link_config.autoneg == AUTONEG_ENABLE) {
u32 txflags, rxflags;
int i;
if (fiber_autoneg(tp, &txflags, &rxflags)) {
u32 local_adv = 0, remote_adv = 0;
if (txflags & ANEG_CFG_PS1)
local_adv |= ADVERTISE_1000XPAUSE;
if (txflags & ANEG_CFG_PS2)
local_adv |= ADVERTISE_1000XPSE_ASYM;
if (rxflags & MR_LP_ADV_SYM_PAUSE)
remote_adv |= LPA_1000XPAUSE;
if (rxflags & MR_LP_ADV_ASYM_PAUSE)
remote_adv |= LPA_1000XPAUSE_ASYM;
tg3_setup_flow_control(tp, local_adv, remote_adv);
current_link_up = 1;
}
for (i = 0; i < 30; i++) {
udelay(20);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(40);
if ((tr32(MAC_STATUS) &
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
mac_status = tr32(MAC_STATUS);
if (current_link_up == 0 &&
(mac_status & MAC_STATUS_PCS_SYNCED) &&
!(mac_status & MAC_STATUS_RCVD_CFG))
current_link_up = 1;
} else {
tg3_setup_flow_control(tp, 0, 0);
/* Forcing 1000FD link up. */
current_link_up = 1;
tw32_f(MAC_MODE, (tp->mac_mode | MAC_MODE_SEND_CONFIGS));
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
out:
return current_link_up;
}
static int tg3_setup_fiber_phy(struct tg3 *tp, int force_reset)
{
u32 orig_pause_cfg;
u16 orig_active_speed;
u8 orig_active_duplex;
u32 mac_status;
int current_link_up;
int i;
orig_pause_cfg = tp->link_config.active_flowctrl;
orig_active_speed = tp->link_config.active_speed;
orig_active_duplex = tp->link_config.active_duplex;
if (!(tp->tg3_flags2 & TG3_FLG2_HW_AUTONEG) &&
netif_carrier_ok(tp->dev) &&
(tp->tg3_flags & TG3_FLAG_INIT_COMPLETE)) {
mac_status = tr32(MAC_STATUS);
mac_status &= (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_RCVD_CFG);
if (mac_status == (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET)) {
tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
return 0;
}
}
tw32_f(MAC_TX_AUTO_NEG, 0);
tp->mac_mode &= ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX);
tp->mac_mode |= MAC_MODE_PORT_MODE_TBI;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
if (tp->phy_id == PHY_ID_BCM8002)
tg3_init_bcm8002(tp);
/* Enable link change event even when serdes polling. */
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
udelay(40);
current_link_up = 0;
mac_status = tr32(MAC_STATUS);
if (tp->tg3_flags2 & TG3_FLG2_HW_AUTONEG)
current_link_up = tg3_setup_fiber_hw_autoneg(tp, mac_status);
else
current_link_up = tg3_setup_fiber_by_hand(tp, mac_status);
tp->napi[0].hw_status->status =
(SD_STATUS_UPDATED |
(tp->napi[0].hw_status->status & ~SD_STATUS_LINK_CHG));
for (i = 0; i < 100; i++) {
tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(5);
if ((tr32(MAC_STATUS) & (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_LNKSTATE_CHANGED)) == 0)
break;
}
mac_status = tr32(MAC_STATUS);
if ((mac_status & MAC_STATUS_PCS_SYNCED) == 0) {
current_link_up = 0;
if (tp->link_config.autoneg == AUTONEG_ENABLE &&
tp->serdes_counter == 0) {
tw32_f(MAC_MODE, (tp->mac_mode |
MAC_MODE_SEND_CONFIGS));
udelay(1);
tw32_f(MAC_MODE, tp->mac_mode);
}
}
if (current_link_up == 1) {
tp->link_config.active_speed = SPEED_1000;
tp->link_config.active_duplex = DUPLEX_FULL;
tw32(MAC_LED_CTRL, (tp->led_ctrl |
LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_1000MBPS_ON));
} else {
tp->link_config.active_speed = SPEED_INVALID;
tp->link_config.active_duplex = DUPLEX_INVALID;
tw32(MAC_LED_CTRL, (tp->led_ctrl |
LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_TRAFFIC_OVERRIDE));
}
if (current_link_up != netif_carrier_ok(tp->dev)) {
if (current_link_up)
netif_carrier_on(tp->dev);
else
netif_carrier_off(tp->dev);
tg3_link_report(tp);
} else {
u32 now_pause_cfg = tp->link_config.active_flowctrl;
if (orig_pause_cfg != now_pause_cfg ||
orig_active_speed != tp->link_config.active_speed ||
orig_active_duplex != tp->link_config.active_duplex)
tg3_link_report(tp);
}
return 0;
}
static int tg3_setup_fiber_mii_phy(struct tg3 *tp, int force_reset)
{
int current_link_up, err = 0;
u32 bmsr, bmcr;
u16 current_speed;
u8 current_duplex;
u32 local_adv, remote_adv;
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tw32(MAC_EVENT, 0);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LNKSTATE_CHANGED));
udelay(40);
if (force_reset)
tg3_phy_reset(tp);
current_link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714) {
if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
err |= tg3_readphy(tp, MII_BMCR, &bmcr);
if ((tp->link_config.autoneg == AUTONEG_ENABLE) && !force_reset &&
(tp->tg3_flags2 & TG3_FLG2_PARALLEL_DETECT)) {
/* do nothing, just check for link up at the end */
} else if (tp->link_config.autoneg == AUTONEG_ENABLE) {
u32 adv, new_adv;
err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
new_adv = adv & ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF |
ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM |
ADVERTISE_SLCT);
new_adv |= tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
if (tp->link_config.advertising & ADVERTISED_1000baseT_Half)
new_adv |= ADVERTISE_1000XHALF;
if (tp->link_config.advertising & ADVERTISED_1000baseT_Full)
new_adv |= ADVERTISE_1000XFULL;
if ((new_adv != adv) || !(bmcr & BMCR_ANENABLE)) {
tg3_writephy(tp, MII_ADVERTISE, new_adv);
bmcr |= BMCR_ANENABLE | BMCR_ANRESTART;
tg3_writephy(tp, MII_BMCR, bmcr);
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
tp->serdes_counter = SERDES_AN_TIMEOUT_5714S;
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
return err;
}
} else {
u32 new_bmcr;
bmcr &= ~BMCR_SPEED1000;
new_bmcr = bmcr & ~(BMCR_ANENABLE | BMCR_FULLDPLX);
if (tp->link_config.duplex == DUPLEX_FULL)
new_bmcr |= BMCR_FULLDPLX;
if (new_bmcr != bmcr) {
/* BMCR_SPEED1000 is a reserved bit that needs
* to be set on write.
*/
new_bmcr |= BMCR_SPEED1000;
/* Force a linkdown */
if (netif_carrier_ok(tp->dev)) {
u32 adv;
err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
adv &= ~(ADVERTISE_1000XFULL |
ADVERTISE_1000XHALF |
ADVERTISE_SLCT);
tg3_writephy(tp, MII_ADVERTISE, adv);
tg3_writephy(tp, MII_BMCR, bmcr |
BMCR_ANRESTART |
BMCR_ANENABLE);
udelay(10);
netif_carrier_off(tp->dev);
}
tg3_writephy(tp, MII_BMCR, new_bmcr);
bmcr = new_bmcr;
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
if (GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5714) {
if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
}
}
if (bmsr & BMSR_LSTATUS) {
current_speed = SPEED_1000;
current_link_up = 1;
if (bmcr & BMCR_FULLDPLX)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
local_adv = 0;
remote_adv = 0;
if (bmcr & BMCR_ANENABLE) {
u32 common;
err |= tg3_readphy(tp, MII_ADVERTISE, &local_adv);
err |= tg3_readphy(tp, MII_LPA, &remote_adv);
common = local_adv & remote_adv;
if (common & (ADVERTISE_1000XHALF |
ADVERTISE_1000XFULL)) {
if (common & ADVERTISE_1000XFULL)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
}
else
current_link_up = 0;
}
}
if (current_link_up == 1 && current_duplex == DUPLEX_FULL)
tg3_setup_flow_control(tp, local_adv, remote_adv);
tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
if (tp->link_config.active_duplex == DUPLEX_HALF)
tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
tp->link_config.active_speed = current_speed;
tp->link_config.active_duplex = current_duplex;
if (current_link_up != netif_carrier_ok(tp->dev)) {
if (current_link_up)
netif_carrier_on(tp->dev);
else {
netif_carrier_off(tp->dev);
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
}
tg3_link_report(tp);
}
return err;
}
static void tg3_serdes_parallel_detect(struct tg3 *tp)
{
if (tp->serdes_counter) {
/* Give autoneg time to complete. */
tp->serdes_counter--;
return;
}
if (!netif_carrier_ok(tp->dev) &&
(tp->link_config.autoneg == AUTONEG_ENABLE)) {
u32 bmcr;
tg3_readphy(tp, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 phy1, phy2;
/* Select shadow register 0x1f */
tg3_writephy(tp, 0x1c, 0x7c00);
tg3_readphy(tp, 0x1c, &phy1);
/* Select expansion interrupt status register */
tg3_writephy(tp, 0x17, 0x0f01);
tg3_readphy(tp, 0x15, &phy2);
tg3_readphy(tp, 0x15, &phy2);
if ((phy1 & 0x10) && !(phy2 & 0x20)) {
/* We have signal detect and not receiving
* config code words, link is up by parallel
* detection.
*/
bmcr &= ~BMCR_ANENABLE;
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
tg3_writephy(tp, MII_BMCR, bmcr);
tp->tg3_flags2 |= TG3_FLG2_PARALLEL_DETECT;
}
}
}
else if (netif_carrier_ok(tp->dev) &&
(tp->link_config.autoneg == AUTONEG_ENABLE) &&
(tp->tg3_flags2 & TG3_FLG2_PARALLEL_DETECT)) {
u32 phy2;
/* Select expansion interrupt status register */
tg3_writephy(tp, 0x17, 0x0f01);
tg3_readphy(tp, 0x15, &phy2);
if (phy2 & 0x20) {
u32 bmcr;
/* Config code words received, turn on autoneg. */
tg3_readphy(tp, MII_BMCR, &bmcr);
tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANENABLE);
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
}
}
}
static int tg3_setup_phy(struct tg3 *tp, int force_reset)
{
int err;
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
err = tg3_setup_fiber_phy(tp, force_reset);
} else if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
err = tg3_setup_fiber_mii_phy(tp, force_reset);
} else {
err = tg3_setup_copper_phy(tp, force_reset);
}
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5784_AX) {
u32 val, scale;
val = tr32(TG3_CPMU_CLCK_STAT) & CPMU_CLCK_STAT_MAC_CLCK_MASK;
if (val == CPMU_CLCK_STAT_MAC_CLCK_62_5)
scale = 65;
else if (val == CPMU_CLCK_STAT_MAC_CLCK_6_25)
scale = 6;
else
scale = 12;
val = tr32(GRC_MISC_CFG) & ~GRC_MISC_CFG_PRESCALAR_MASK;
val |= (scale << GRC_MISC_CFG_PRESCALAR_SHIFT);
tw32(GRC_MISC_CFG, val);
}
if (tp->link_config.active_speed == SPEED_1000 &&
tp->link_config.active_duplex == DUPLEX_HALF)
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(0xff << TX_LENGTHS_SLOT_TIME_SHIFT)));
else
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT)));
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
if (netif_carrier_ok(tp->dev)) {
tw32(HOSTCC_STAT_COAL_TICKS,
tp->coal.stats_block_coalesce_usecs);
} else {
tw32(HOSTCC_STAT_COAL_TICKS, 0);
}
}
if (tp->tg3_flags & TG3_FLAG_ASPM_WORKAROUND) {
u32 val = tr32(PCIE_PWR_MGMT_THRESH);
if (!netif_carrier_ok(tp->dev))
val = (val & ~PCIE_PWR_MGMT_L1_THRESH_MSK) |
tp->pwrmgmt_thresh;
else
val |= PCIE_PWR_MGMT_L1_THRESH_MSK;
tw32(PCIE_PWR_MGMT_THRESH, val);
}
return err;
}
/* This is called whenever we suspect that the system chipset is re-
* ordering the sequence of MMIO to the tx send mailbox. The symptom
* is bogus tx completions. We try to recover by setting the
* TG3_FLAG_MBOX_WRITE_REORDER flag and resetting the chip later
* in the workqueue.
*/
static void tg3_tx_recover(struct tg3 *tp)
{
BUG_ON((tp->tg3_flags & TG3_FLAG_MBOX_WRITE_REORDER) ||
tp->write32_tx_mbox == tg3_write_indirect_mbox);
printk(KERN_WARNING PFX "%s: The system may be re-ordering memory-"
"mapped I/O cycles to the network device, attempting to "
"recover. Please report the problem to the driver maintainer "
"and include system chipset information.\n", tp->dev->name);
spin_lock(&tp->lock);
tp->tg3_flags |= TG3_FLAG_TX_RECOVERY_PENDING;
spin_unlock(&tp->lock);
}
static inline u32 tg3_tx_avail(struct tg3_napi *tnapi)
{
smp_mb();
return tnapi->tx_pending -
((tnapi->tx_prod - tnapi->tx_cons) & (TG3_TX_RING_SIZE - 1));
}
/* Tigon3 never reports partial packet sends. So we do not
* need special logic to handle SKBs that have not had all
* of their frags sent yet, like SunGEM does.
*/
static void tg3_tx(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
u32 hw_idx = tnapi->hw_status->idx[0].tx_consumer;
u32 sw_idx = tnapi->tx_cons;
struct netdev_queue *txq;
int index = tnapi - tp->napi;
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX)
index--;
txq = netdev_get_tx_queue(tp->dev, index);
while (sw_idx != hw_idx) {
struct tx_ring_info *ri = &tnapi->tx_buffers[sw_idx];
struct sk_buff *skb = ri->skb;
int i, tx_bug = 0;
if (unlikely(skb == NULL)) {
tg3_tx_recover(tp);
return;
}
skb_dma_unmap(&tp->pdev->dev, skb, DMA_TO_DEVICE);
ri->skb = NULL;
sw_idx = NEXT_TX(sw_idx);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ri = &tnapi->tx_buffers[sw_idx];
if (unlikely(ri->skb != NULL || sw_idx == hw_idx))
tx_bug = 1;
sw_idx = NEXT_TX(sw_idx);
}
dev_kfree_skb(skb);
if (unlikely(tx_bug)) {
tg3_tx_recover(tp);
return;
}
}
tnapi->tx_cons = sw_idx;
/* Need to make the tx_cons update visible to tg3_start_xmit()
* before checking for netif_queue_stopped(). Without the
* memory barrier, there is a small possibility that tg3_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(txq) &&
(tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))) {
__netif_tx_lock(txq, smp_processor_id());
if (netif_tx_queue_stopped(txq) &&
(tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))
netif_tx_wake_queue(txq);
__netif_tx_unlock(txq);
}
}
/* Returns size of skb allocated or < 0 on error.
*
* We only need to fill in the address because the other members
* of the RX descriptor are invariant, see tg3_init_rings.
*
* Note the purposeful assymetry of cpu vs. chip accesses. For
* posting buffers we only dirty the first cache line of the RX
* descriptor (containing the address). Whereas for the RX status
* buffers the cpu only reads the last cacheline of the RX descriptor
* (to fetch the error flags, vlan tag, checksum, and opaque cookie).
*/
static int tg3_alloc_rx_skb(struct tg3_napi *tnapi, u32 opaque_key,
int src_idx, u32 dest_idx_unmasked)
{
struct tg3 *tp = tnapi->tp;
struct tg3_rx_buffer_desc *desc;
struct ring_info *map, *src_map;
struct sk_buff *skb;
dma_addr_t mapping;
int skb_size, dest_idx;
struct tg3_rx_prodring_set *tpr = &tp->prodring[0];
src_map = NULL;
switch (opaque_key) {
case RXD_OPAQUE_RING_STD:
dest_idx = dest_idx_unmasked % TG3_RX_RING_SIZE;
desc = &tpr->rx_std[dest_idx];
map = &tpr->rx_std_buffers[dest_idx];
if (src_idx >= 0)
src_map = &tpr->rx_std_buffers[src_idx];
skb_size = tp->rx_pkt_map_sz;
break;
case RXD_OPAQUE_RING_JUMBO:
dest_idx = dest_idx_unmasked % TG3_RX_JUMBO_RING_SIZE;
desc = &tpr->rx_jmb[dest_idx].std;
map = &tpr->rx_jmb_buffers[dest_idx];
if (src_idx >= 0)
src_map = &tpr->rx_jmb_buffers[src_idx];
skb_size = TG3_RX_JMB_MAP_SZ;
break;
default:
return -EINVAL;
}
/* Do not overwrite any of the map or rp information
* until we are sure we can commit to a new buffer.
*
* Callers depend upon this behavior and assume that
* we leave everything unchanged if we fail.
*/
skb = netdev_alloc_skb(tp->dev, skb_size + tp->rx_offset);
if (skb == NULL)
return -ENOMEM;
skb_reserve(skb, tp->rx_offset);
mapping = pci_map_single(tp->pdev, skb->data, skb_size,
PCI_DMA_FROMDEVICE);
map->skb = skb;
pci_unmap_addr_set(map, mapping, mapping);
if (src_map != NULL)
src_map->skb = NULL;
desc->addr_hi = ((u64)mapping >> 32);
desc->addr_lo = ((u64)mapping & 0xffffffff);
return skb_size;
}
/* We only need to move over in the address because the other
* members of the RX descriptor are invariant. See notes above
* tg3_alloc_rx_skb for full details.
*/
static void tg3_recycle_rx(struct tg3_napi *tnapi, u32 opaque_key,
int src_idx, u32 dest_idx_unmasked)
{
struct tg3 *tp = tnapi->tp;
struct tg3_rx_buffer_desc *src_desc, *dest_desc;
struct ring_info *src_map, *dest_map;
int dest_idx;
struct tg3_rx_prodring_set *tpr = &tp->prodring[0];
switch (opaque_key) {
case RXD_OPAQUE_RING_STD:
dest_idx = dest_idx_unmasked % TG3_RX_RING_SIZE;
dest_desc = &tpr->rx_std[dest_idx];
dest_map = &tpr->rx_std_buffers[dest_idx];
src_desc = &tpr->rx_std[src_idx];
src_map = &tpr->rx_std_buffers[src_idx];
break;
case RXD_OPAQUE_RING_JUMBO:
dest_idx = dest_idx_unmasked % TG3_RX_JUMBO_RING_SIZE;
dest_desc = &tpr->rx_jmb[dest_idx].std;
dest_map = &tpr->rx_jmb_buffers[dest_idx];
src_desc = &tpr->rx_jmb[src_idx].std;
src_map = &tpr->rx_jmb_buffers[src_idx];
break;
default:
return;
}
dest_map->skb = src_map->skb;
pci_unmap_addr_set(dest_map, mapping,
pci_unmap_addr(src_map, mapping));
dest_desc->addr_hi = src_desc->addr_hi;
dest_desc->addr_lo = src_desc->addr_lo;
src_map->skb = NULL;
}
/* The RX ring scheme is composed of multiple rings which post fresh
* buffers to the chip, and one special ring the chip uses to report
* status back to the host.
*
* The special ring reports the status of received packets to the
* host. The chip does not write into the original descriptor the
* RX buffer was obtained from. The chip simply takes the original
* descriptor as provided by the host, updates the status and length
* field, then writes this into the next status ring entry.
*
* Each ring the host uses to post buffers to the chip is described
* by a TG3_BDINFO entry in the chips SRAM area. When a packet arrives,
* it is first placed into the on-chip ram. When the packet's length
* is known, it walks down the TG3_BDINFO entries to select the ring.
* Each TG3_BDINFO specifies a MAXLEN field and the first TG3_BDINFO
* which is within the range of the new packet's length is chosen.
*
* The "separate ring for rx status" scheme may sound queer, but it makes
* sense from a cache coherency perspective. If only the host writes
* to the buffer post rings, and only the chip writes to the rx status
* rings, then cache lines never move beyond shared-modified state.
* If both the host and chip were to write into the same ring, cache line
* eviction could occur since both entities want it in an exclusive state.
*/
static int tg3_rx(struct tg3_napi *tnapi, int budget)
{
struct tg3 *tp = tnapi->tp;
u32 work_mask, rx_std_posted = 0;
u32 sw_idx = tnapi->rx_rcb_ptr;
u16 hw_idx;
int received;
struct tg3_rx_prodring_set *tpr = &tp->prodring[0];
hw_idx = *(tnapi->rx_rcb_prod_idx);
/*
* We need to order the read of hw_idx and the read of
* the opaque cookie.
*/
rmb();
work_mask = 0;
received = 0;
while (sw_idx != hw_idx && budget > 0) {
struct tg3_rx_buffer_desc *desc = &tnapi->rx_rcb[sw_idx];
unsigned int len;
struct sk_buff *skb;
dma_addr_t dma_addr;
u32 opaque_key, desc_idx, *post_ptr;
desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
if (opaque_key == RXD_OPAQUE_RING_STD) {
struct ring_info *ri = &tpr->rx_std_buffers[desc_idx];
dma_addr = pci_unmap_addr(ri, mapping);
skb = ri->skb;
post_ptr = &tpr->rx_std_ptr;
rx_std_posted++;
} else if (opaque_key == RXD_OPAQUE_RING_JUMBO) {
struct ring_info *ri = &tpr->rx_jmb_buffers[desc_idx];
dma_addr = pci_unmap_addr(ri, mapping);
skb = ri->skb;
post_ptr = &tpr->rx_jmb_ptr;
} else
goto next_pkt_nopost;
work_mask |= opaque_key;
if ((desc->err_vlan & RXD_ERR_MASK) != 0 &&
(desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII)) {
drop_it:
tg3_recycle_rx(tnapi, opaque_key,
desc_idx, *post_ptr);
drop_it_no_recycle:
/* Other statistics kept track of by card. */
tp->net_stats.rx_dropped++;
goto next_pkt;
}
len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) -
ETH_FCS_LEN;
if (len > RX_COPY_THRESHOLD
&& tp->rx_offset == NET_IP_ALIGN
/* rx_offset will likely not equal NET_IP_ALIGN
* if this is a 5701 card running in PCI-X mode
* [see tg3_get_invariants()]
*/
) {
int skb_size;
skb_size = tg3_alloc_rx_skb(tnapi, opaque_key,
desc_idx, *post_ptr);
if (skb_size < 0)
goto drop_it;
pci_unmap_single(tp->pdev, dma_addr, skb_size,
PCI_DMA_FROMDEVICE);
skb_put(skb, len);
} else {
struct sk_buff *copy_skb;
tg3_recycle_rx(tnapi, opaque_key,
desc_idx, *post_ptr);
copy_skb = netdev_alloc_skb(tp->dev,
len + TG3_RAW_IP_ALIGN);
if (copy_skb == NULL)
goto drop_it_no_recycle;
skb_reserve(copy_skb, TG3_RAW_IP_ALIGN);
skb_put(copy_skb, len);
pci_dma_sync_single_for_cpu(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(skb, copy_skb->data, len);
pci_dma_sync_single_for_device(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
/* We'll reuse the original ring buffer. */
skb = copy_skb;
}
if ((tp->tg3_flags & TG3_FLAG_RX_CHECKSUMS) &&
(desc->type_flags & RXD_FLAG_TCPUDP_CSUM) &&
(((desc->ip_tcp_csum & RXD_TCPCSUM_MASK)
>> RXD_TCPCSUM_SHIFT) == 0xffff))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
skb->protocol = eth_type_trans(skb, tp->dev);
if (len > (tp->dev->mtu + ETH_HLEN) &&
skb->protocol != htons(ETH_P_8021Q)) {
dev_kfree_skb(skb);
goto next_pkt;
}
#if TG3_VLAN_TAG_USED
if (tp->vlgrp != NULL &&
desc->type_flags & RXD_FLAG_VLAN) {
vlan_gro_receive(&tnapi->napi, tp->vlgrp,
desc->err_vlan & RXD_VLAN_MASK, skb);
} else
#endif
napi_gro_receive(&tnapi->napi, skb);
received++;
budget--;
next_pkt:
(*post_ptr)++;
if (unlikely(rx_std_posted >= tp->rx_std_max_post)) {
u32 idx = *post_ptr % TG3_RX_RING_SIZE;
tw32_rx_mbox(MAILBOX_RCV_STD_PROD_IDX +
TG3_64BIT_REG_LOW, idx);
work_mask &= ~RXD_OPAQUE_RING_STD;
rx_std_posted = 0;
}
next_pkt_nopost:
sw_idx++;
sw_idx &= (TG3_RX_RCB_RING_SIZE(tp) - 1);
/* Refresh hw_idx to see if there is new work */
if (sw_idx == hw_idx) {
hw_idx = *(tnapi->rx_rcb_prod_idx);
rmb();
}
}
/* ACK the status ring. */
tnapi->rx_rcb_ptr = sw_idx;
tw32_rx_mbox(tnapi->consmbox, sw_idx);
/* Refill RX ring(s). */
if (work_mask & RXD_OPAQUE_RING_STD) {
sw_idx = tpr->rx_std_ptr % TG3_RX_RING_SIZE;
tw32_rx_mbox(MAILBOX_RCV_STD_PROD_IDX + TG3_64BIT_REG_LOW,
sw_idx);
}
if (work_mask & RXD_OPAQUE_RING_JUMBO) {
sw_idx = tpr->rx_jmb_ptr % TG3_RX_JUMBO_RING_SIZE;
tw32_rx_mbox(MAILBOX_RCV_JUMBO_PROD_IDX + TG3_64BIT_REG_LOW,
sw_idx);
}
mmiowb();
return received;
}
static int tg3_poll_work(struct tg3_napi *tnapi, int work_done, int budget)
{
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
/* handle link change and other phy events */
if (!(tp->tg3_flags &
(TG3_FLAG_USE_LINKCHG_REG |
TG3_FLAG_POLL_SERDES))) {
if (sblk->status & SD_STATUS_LINK_CHG) {
sblk->status = SD_STATUS_UPDATED |
(sblk->status & ~SD_STATUS_LINK_CHG);
spin_lock(&tp->lock);
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LNKSTATE_CHANGED));
udelay(40);
} else
tg3_setup_phy(tp, 0);
spin_unlock(&tp->lock);
}
}
/* run TX completion thread */
if (tnapi->hw_status->idx[0].tx_consumer != tnapi->tx_cons) {
tg3_tx(tnapi);
if (unlikely(tp->tg3_flags & TG3_FLAG_TX_RECOVERY_PENDING))
return work_done;
}
/* run RX thread, within the bounds set by NAPI.
* All RX "locking" is done by ensuring outside
* code synchronizes with tg3->napi.poll()
*/
if (*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
work_done += tg3_rx(tnapi, budget - work_done);
return work_done;
}
static int tg3_poll(struct napi_struct *napi, int budget)
{
struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi);
struct tg3 *tp = tnapi->tp;
int work_done = 0;
struct tg3_hw_status *sblk = tnapi->hw_status;
while (1) {
work_done = tg3_poll_work(tnapi, work_done, budget);
if (unlikely(tp->tg3_flags & TG3_FLAG_TX_RECOVERY_PENDING))
goto tx_recovery;
if (unlikely(work_done >= budget))
break;
if (tp->tg3_flags & TG3_FLAG_TAGGED_STATUS) {
/* tp->last_tag is used in tg3_int_reenable() below
* to tell the hw how much work has been processed,
* so we must read it before checking for more work.
*/
tnapi->last_tag = sblk->status_tag;
tnapi->last_irq_tag = tnapi->last_tag;
rmb();
} else
sblk->status &= ~SD_STATUS_UPDATED;
if (likely(!tg3_has_work(tnapi))) {
napi_complete(napi);
tg3_int_reenable(tnapi);
break;
}
}
return work_done;
tx_recovery:
/* work_done is guaranteed to be less than budget. */
napi_complete(napi);
schedule_work(&tp->reset_task);
return work_done;
}
static void tg3_irq_quiesce(struct tg3 *tp)
{
int i;
BUG_ON(tp->irq_sync);
tp->irq_sync = 1;
smp_mb();
for (i = 0; i < tp->irq_cnt; i++)
synchronize_irq(tp->napi[i].irq_vec);
}
static inline int tg3_irq_sync(struct tg3 *tp)
{
return tp->irq_sync;
}
/* Fully shutdown all tg3 driver activity elsewhere in the system.
* If irq_sync is non-zero, then the IRQ handler must be synchronized
* with as well. Most of the time, this is not necessary except when
* shutting down the device.
*/
static inline void tg3_full_lock(struct tg3 *tp, int irq_sync)
{
spin_lock_bh(&tp->lock);
if (irq_sync)
tg3_irq_quiesce(tp);
}
static inline void tg3_full_unlock(struct tg3 *tp)
{
spin_unlock_bh(&tp->lock);
}
/* One-shot MSI handler - Chip automatically disables interrupt
* after sending MSI so driver doesn't have to do it.
*/
static irqreturn_t tg3_msi_1shot(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
prefetch(tnapi->hw_status);
if (tnapi->rx_rcb)
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
if (likely(!tg3_irq_sync(tp)))
napi_schedule(&tnapi->napi);
return IRQ_HANDLED;
}
/* MSI ISR - No need to check for interrupt sharing and no need to
* flush status block and interrupt mailbox. PCI ordering rules
* guarantee that MSI will arrive after the status block.
*/
static irqreturn_t tg3_msi(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
prefetch(tnapi->hw_status);
if (tnapi->rx_rcb)
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
/*
* Writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* Writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*/
tw32_mailbox(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
if (likely(!tg3_irq_sync(tp)))
napi_schedule(&tnapi->napi);
return IRQ_RETVAL(1);
}
static irqreturn_t tg3_interrupt(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int handled = 1;
/* In INTx mode, it is possible for the interrupt to arrive at
* the CPU before the status block posted prior to the interrupt.
* Reading the PCI State register will confirm whether the
* interrupt is ours and will flush the status block.
*/
if (unlikely(!(sblk->status & SD_STATUS_UPDATED))) {
if ((tp->tg3_flags & TG3_FLAG_CHIP_RESETTING) ||
(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
handled = 0;
goto out;
}
}
/*
* Writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* Writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*
* Flush the mailbox to de-assert the IRQ immediately to prevent
* spurious interrupts. The flush impacts performance but
* excessive spurious interrupts can be worse in some cases.
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
if (tg3_irq_sync(tp))
goto out;
sblk->status &= ~SD_STATUS_UPDATED;
if (likely(tg3_has_work(tnapi))) {
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
napi_schedule(&tnapi->napi);
} else {
/* No work, shared interrupt perhaps? re-enable
* interrupts, and flush that PCI write
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW,
0x00000000);
}
out:
return IRQ_RETVAL(handled);
}
static irqreturn_t tg3_interrupt_tagged(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int handled = 1;
/* In INTx mode, it is possible for the interrupt to arrive at
* the CPU before the status block posted prior to the interrupt.
* Reading the PCI State register will confirm whether the
* interrupt is ours and will flush the status block.
*/
if (unlikely(sblk->status_tag == tnapi->last_irq_tag)) {
if ((tp->tg3_flags & TG3_FLAG_CHIP_RESETTING) ||
(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
handled = 0;
goto out;
}
}
/*
* writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*
* Flush the mailbox to de-assert the IRQ immediately to prevent
* spurious interrupts. The flush impacts performance but
* excessive spurious interrupts can be worse in some cases.
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
/*
* In a shared interrupt configuration, sometimes other devices'
* interrupts will scream. We record the current status tag here
* so that the above check can report that the screaming interrupts
* are unhandled. Eventually they will be silenced.
*/
tnapi->last_irq_tag = sblk->status_tag;
if (tg3_irq_sync(tp))
goto out;
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
napi_schedule(&tnapi->napi);
out:
return IRQ_RETVAL(handled);
}
/* ISR for interrupt test */
static irqreturn_t tg3_test_isr(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
if ((sblk->status & SD_STATUS_UPDATED) ||
!(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
tg3_disable_ints(tp);
return IRQ_RETVAL(1);
}
return IRQ_RETVAL(0);
}
static int tg3_init_hw(struct tg3 *, int);
static int tg3_halt(struct tg3 *, int, int);
/* Restart hardware after configuration changes, self-test, etc.
* Invoked with tp->lock held.
*/
static int tg3_restart_hw(struct tg3 *tp, int reset_phy)
__releases(tp->lock)
__acquires(tp->lock)
{
int err;
err = tg3_init_hw(tp, reset_phy);
if (err) {
printk(KERN_ERR PFX "%s: Failed to re-initialize device, "
"aborting.\n", tp->dev->name);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_full_unlock(tp);
del_timer_sync(&tp->timer);
tp->irq_sync = 0;
tg3_napi_enable(tp);
dev_close(tp->dev);
tg3_full_lock(tp, 0);
}
return err;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tg3_poll_controller(struct net_device *dev)
{
int i;
struct tg3 *tp = netdev_priv(dev);
for (i = 0; i < tp->irq_cnt; i++)
tg3_interrupt(tp->napi[i].irq_vec, dev);
}
#endif
static void tg3_reset_task(struct work_struct *work)
{
struct tg3 *tp = container_of(work, struct tg3, reset_task);
int err;
unsigned int restart_timer;
tg3_full_lock(tp, 0);
if (!netif_running(tp->dev)) {
tg3_full_unlock(tp);
return;
}
tg3_full_unlock(tp);
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_full_lock(tp, 1);
restart_timer = tp->tg3_flags2 & TG3_FLG2_RESTART_TIMER;
tp->tg3_flags2 &= ~TG3_FLG2_RESTART_TIMER;
if (tp->tg3_flags & TG3_FLAG_TX_RECOVERY_PENDING) {
tp->write32_tx_mbox = tg3_write32_tx_mbox;
tp->write32_rx_mbox = tg3_write_flush_reg32;
tp->tg3_flags |= TG3_FLAG_MBOX_WRITE_REORDER;
tp->tg3_flags &= ~TG3_FLAG_TX_RECOVERY_PENDING;
}
tg3_halt(tp, RESET_KIND_SHUTDOWN, 0);
err = tg3_init_hw(tp, 1);
if (err)
goto out;
tg3_netif_start(tp);
if (restart_timer)
mod_timer(&tp->timer, jiffies + 1);
out:
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
}
static void tg3_dump_short_state(struct tg3 *tp)
{
printk(KERN_ERR PFX "DEBUG: MAC_TX_STATUS[%08x] MAC_RX_STATUS[%08x]\n",
tr32(MAC_TX_STATUS), tr32(MAC_RX_STATUS));
printk(KERN_ERR PFX "DEBUG: RDMAC_STATUS[%08x] WDMAC_STATUS[%08x]\n",
tr32(RDMAC_STATUS), tr32(WDMAC_STATUS));
}
static void tg3_tx_timeout(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
if (netif_msg_tx_err(tp)) {
printk(KERN_ERR PFX "%s: transmit timed out, resetting\n",
dev->name);
tg3_dump_short_state(tp);
}
schedule_work(&tp->reset_task);
}
/* Test for DMA buffers crossing any 4GB boundaries: 4G, 8G, etc */
static inline int tg3_4g_overflow_test(dma_addr_t mapping, int len)
{
u32 base = (u32) mapping & 0xffffffff;
return ((base > 0xffffdcc0) &&
(base + len + 8 < base));
}
/* Test for DMA addresses > 40-bit */
static inline int tg3_40bit_overflow_test(struct tg3 *tp, dma_addr_t mapping,
int len)
{
#if defined(CONFIG_HIGHMEM) && (BITS_PER_LONG == 64)
if (tp->tg3_flags & TG3_FLAG_40BIT_DMA_BUG)
return (((u64) mapping + len) > DMA_BIT_MASK(40));
return 0;
#else
return 0;
#endif
}
static void tg3_set_txd(struct tg3_napi *, int, dma_addr_t, int, u32, u32);
/* Workaround 4GB and 40-bit hardware DMA bugs. */
static int tigon3_dma_hwbug_workaround(struct tg3 *tp, struct sk_buff *skb,
u32 last_plus_one, u32 *start,
u32 base_flags, u32 mss)
{
struct tg3_napi *tnapi = &tp->napi[0];
struct sk_buff *new_skb;
dma_addr_t new_addr = 0;
u32 entry = *start;
int i, ret = 0;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701)
new_skb = skb_copy(skb, GFP_ATOMIC);
else {
int more_headroom = 4 - ((unsigned long)skb->data & 3);
new_skb = skb_copy_expand(skb,
skb_headroom(skb) + more_headroom,
skb_tailroom(skb), GFP_ATOMIC);
}
if (!new_skb) {
ret = -1;
} else {
/* New SKB is guaranteed to be linear. */
entry = *start;
ret = skb_dma_map(&tp->pdev->dev, new_skb, DMA_TO_DEVICE);
new_addr = skb_shinfo(new_skb)->dma_head;
/* Make sure new skb does not cross any 4G boundaries.
* Drop the packet if it does.
*/
if (ret || tg3_4g_overflow_test(new_addr, new_skb->len)) {
if (!ret)
skb_dma_unmap(&tp->pdev->dev, new_skb,
DMA_TO_DEVICE);
ret = -1;
dev_kfree_skb(new_skb);
new_skb = NULL;
} else {
tg3_set_txd(tnapi, entry, new_addr, new_skb->len,
base_flags, 1 | (mss << 1));
*start = NEXT_TX(entry);
}
}
/* Now clean up the sw ring entries. */
i = 0;
while (entry != last_plus_one) {
if (i == 0)
tnapi->tx_buffers[entry].skb = new_skb;
else
tnapi->tx_buffers[entry].skb = NULL;
entry = NEXT_TX(entry);
i++;
}
skb_dma_unmap(&tp->pdev->dev, skb, DMA_TO_DEVICE);
dev_kfree_skb(skb);
return ret;
}
static void tg3_set_txd(struct tg3_napi *tnapi, int entry,
dma_addr_t mapping, int len, u32 flags,
u32 mss_and_is_end)
{
struct tg3_tx_buffer_desc *txd = &tnapi->tx_ring[entry];
int is_end = (mss_and_is_end & 0x1);
u32 mss = (mss_and_is_end >> 1);
u32 vlan_tag = 0;
if (is_end)
flags |= TXD_FLAG_END;
if (flags & TXD_FLAG_VLAN) {
vlan_tag = flags >> 16;
flags &= 0xffff;
}
vlan_tag |= (mss << TXD_MSS_SHIFT);
txd->addr_hi = ((u64) mapping >> 32);
txd->addr_lo = ((u64) mapping & 0xffffffff);
txd->len_flags = (len << TXD_LEN_SHIFT) | flags;
txd->vlan_tag = vlan_tag << TXD_VLAN_TAG_SHIFT;
}
/* hard_start_xmit for devices that don't have any bugs and
* support TG3_FLG2_HW_TSO_2 only.
*/
static netdev_tx_t tg3_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
u32 len, entry, base_flags, mss;
struct skb_shared_info *sp;
dma_addr_t mapping;
struct tg3_napi *tnapi;
struct netdev_queue *txq;
txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
tnapi = &tp->napi[skb_get_queue_mapping(skb)];
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX)
tnapi++;
/* We are running in BH disabled context with netif_tx_lock
* and TX reclaim runs via tp->napi.poll inside of a software
* interrupt. Furthermore, IRQ processing runs lockless so we have
* no IRQ context deadlocks to worry about either. Rejoice!
*/
if (unlikely(tg3_tx_avail(tnapi) <= (skb_shinfo(skb)->nr_frags + 1))) {
if (!netif_tx_queue_stopped(txq)) {
netif_tx_stop_queue(txq);
/* This is a hard error, log it. */
printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
"queue awake!\n", dev->name);
}
return NETDEV_TX_BUSY;
}
entry = tnapi->tx_prod;
base_flags = 0;
mss = 0;
if ((mss = skb_shinfo(skb)->gso_size) != 0) {
int tcp_opt_len, ip_tcp_len;
u32 hdrlen;
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
goto out_unlock;
}
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
hdrlen = skb_headlen(skb) - ETH_HLEN;
else {
struct iphdr *iph = ip_hdr(skb);
tcp_opt_len = tcp_optlen(skb);
ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
iph->check = 0;
iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
hdrlen = ip_tcp_len + tcp_opt_len;
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
mss |= (hdrlen & 0xc) << 12;
if (hdrlen & 0x10)
base_flags |= 0x00000010;
base_flags |= (hdrlen & 0x3e0) << 5;
} else
mss |= hdrlen << 9;
base_flags |= (TXD_FLAG_CPU_PRE_DMA |
TXD_FLAG_CPU_POST_DMA);
tcp_hdr(skb)->check = 0;
}
else if (skb->ip_summed == CHECKSUM_PARTIAL)
base_flags |= TXD_FLAG_TCPUDP_CSUM;
#if TG3_VLAN_TAG_USED
if (tp->vlgrp != NULL && vlan_tx_tag_present(skb))
base_flags |= (TXD_FLAG_VLAN |
(vlan_tx_tag_get(skb) << 16));
#endif
if (skb_dma_map(&tp->pdev->dev, skb, DMA_TO_DEVICE)) {
dev_kfree_skb(skb);
goto out_unlock;
}
sp = skb_shinfo(skb);
mapping = sp->dma_head;
tnapi->tx_buffers[entry].skb = skb;
len = skb_headlen(skb);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717 &&
!mss && skb->len > ETH_DATA_LEN)
base_flags |= TXD_FLAG_JMB_PKT;
tg3_set_txd(tnapi, entry, mapping, len, base_flags,
(skb_shinfo(skb)->nr_frags == 0) | (mss << 1));
entry = NEXT_TX(entry);
/* Now loop through additional data fragments, and queue them. */
if (skb_shinfo(skb)->nr_frags > 0) {
unsigned int i, last;
last = skb_shinfo(skb)->nr_frags - 1;
for (i = 0; i <= last; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
mapping = sp->dma_maps[i];
tnapi->tx_buffers[entry].skb = NULL;
tg3_set_txd(tnapi, entry, mapping, len,
base_flags, (i == last) | (mss << 1));
entry = NEXT_TX(entry);
}
}
/* Packets are ready, update Tx producer idx local and on card. */
tw32_tx_mbox(tnapi->prodmbox, entry);
tnapi->tx_prod = entry;
if (unlikely(tg3_tx_avail(tnapi) <= (MAX_SKB_FRAGS + 1))) {
netif_tx_stop_queue(txq);
if (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi))
netif_tx_wake_queue(txq);
}
out_unlock:
mmiowb();
return NETDEV_TX_OK;
}
static netdev_tx_t tg3_start_xmit_dma_bug(struct sk_buff *,
struct net_device *);
/* Use GSO to workaround a rare TSO bug that may be triggered when the
* TSO header is greater than 80 bytes.
*/
static int tg3_tso_bug(struct tg3 *tp, struct sk_buff *skb)
{
struct sk_buff *segs, *nskb;
u32 frag_cnt_est = skb_shinfo(skb)->gso_segs * 3;
/* Estimate the number of fragments in the worst case */
if (unlikely(tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est)) {
netif_stop_queue(tp->dev);
if (tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est)
return NETDEV_TX_BUSY;
netif_wake_queue(tp->dev);
}
segs = skb_gso_segment(skb, tp->dev->features & ~NETIF_F_TSO);
if (IS_ERR(segs))
goto tg3_tso_bug_end;
do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
tg3_start_xmit_dma_bug(nskb, tp->dev);
} while (segs);
tg3_tso_bug_end:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* hard_start_xmit for devices that have the 4G bug and/or 40-bit bug and
* support TG3_FLG2_HW_TSO_1 or firmware TSO only.
*/
static netdev_tx_t tg3_start_xmit_dma_bug(struct sk_buff *skb,
struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
u32 len, entry, base_flags, mss;
struct skb_shared_info *sp;
int would_hit_hwbug;
dma_addr_t mapping;
struct tg3_napi *tnapi = &tp->napi[0];
len = skb_headlen(skb);
/* We are running in BH disabled context with netif_tx_lock
* and TX reclaim runs via tp->napi.poll inside of a software
* interrupt. Furthermore, IRQ processing runs lockless so we have
* no IRQ context deadlocks to worry about either. Rejoice!
*/
if (unlikely(tg3_tx_avail(tnapi) <= (skb_shinfo(skb)->nr_frags + 1))) {
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
/* This is a hard error, log it. */
printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
"queue awake!\n", dev->name);
}
return NETDEV_TX_BUSY;
}
entry = tnapi->tx_prod;
base_flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL)
base_flags |= TXD_FLAG_TCPUDP_CSUM;
mss = 0;
if ((mss = skb_shinfo(skb)->gso_size) != 0) {
struct iphdr *iph;
int tcp_opt_len, ip_tcp_len, hdr_len;
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
goto out_unlock;
}
tcp_opt_len = tcp_optlen(skb);
ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
hdr_len = ip_tcp_len + tcp_opt_len;
if (unlikely((ETH_HLEN + hdr_len) > 80) &&
(tp->tg3_flags2 & TG3_FLG2_TSO_BUG))
return (tg3_tso_bug(tp, skb));
base_flags |= (TXD_FLAG_CPU_PRE_DMA |
TXD_FLAG_CPU_POST_DMA);
iph = ip_hdr(skb);
iph->check = 0;
iph->tot_len = htons(mss + hdr_len);
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO) {
tcp_hdr(skb)->check = 0;
base_flags &= ~TXD_FLAG_TCPUDP_CSUM;
} else
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
if ((tp->tg3_flags2 & TG3_FLG2_HW_TSO) ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705)) {
if (tcp_opt_len || iph->ihl > 5) {
int tsflags;
tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
mss |= (tsflags << 11);
}
} else {
if (tcp_opt_len || iph->ihl > 5) {
int tsflags;
tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
base_flags |= tsflags << 12;
}
}
}
#if TG3_VLAN_TAG_USED
if (tp->vlgrp != NULL && vlan_tx_tag_present(skb))
base_flags |= (TXD_FLAG_VLAN |
(vlan_tx_tag_get(skb) << 16));
#endif
if (skb_dma_map(&tp->pdev->dev, skb, DMA_TO_DEVICE)) {
dev_kfree_skb(skb);
goto out_unlock;
}
sp = skb_shinfo(skb);
mapping = sp->dma_head;
tnapi->tx_buffers[entry].skb = skb;
would_hit_hwbug = 0;
if (tp->tg3_flags3 & TG3_FLG3_5701_DMA_BUG)
would_hit_hwbug = 1;
else if (tg3_4g_overflow_test(mapping, len))
would_hit_hwbug = 1;
tg3_set_txd(tnapi, entry, mapping, len, base_flags,
(skb_shinfo(skb)->nr_frags == 0) | (mss << 1));
entry = NEXT_TX(entry);
/* Now loop through additional data fragments, and queue them. */
if (skb_shinfo(skb)->nr_frags > 0) {
unsigned int i, last;
last = skb_shinfo(skb)->nr_frags - 1;
for (i = 0; i <= last; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
mapping = sp->dma_maps[i];
tnapi->tx_buffers[entry].skb = NULL;
if (tg3_4g_overflow_test(mapping, len))
would_hit_hwbug = 1;
if (tg3_40bit_overflow_test(tp, mapping, len))
would_hit_hwbug = 1;
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO)
tg3_set_txd(tnapi, entry, mapping, len,
base_flags, (i == last)|(mss << 1));
else
tg3_set_txd(tnapi, entry, mapping, len,
base_flags, (i == last));
entry = NEXT_TX(entry);
}
}
if (would_hit_hwbug) {
u32 last_plus_one = entry;
u32 start;
start = entry - 1 - skb_shinfo(skb)->nr_frags;
start &= (TG3_TX_RING_SIZE - 1);
/* If the workaround fails due to memory/mapping
* failure, silently drop this packet.
*/
if (tigon3_dma_hwbug_workaround(tp, skb, last_plus_one,
&start, base_flags, mss))
goto out_unlock;
entry = start;
}
/* Packets are ready, update Tx producer idx local and on card. */
tw32_tx_mbox(MAILBOX_SNDHOST_PROD_IDX_0 + TG3_64BIT_REG_LOW, entry);
tnapi->tx_prod = entry;
if (unlikely(tg3_tx_avail(tnapi) <= (MAX_SKB_FRAGS + 1))) {
netif_stop_queue(dev);
if (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi))
netif_wake_queue(tp->dev);
}
out_unlock:
mmiowb();
return NETDEV_TX_OK;
}
static inline void tg3_set_mtu(struct net_device *dev, struct tg3 *tp,
int new_mtu)
{
dev->mtu = new_mtu;
if (new_mtu > ETH_DATA_LEN) {
if (tp->tg3_flags2 & TG3_FLG2_5780_CLASS) {
tp->tg3_flags2 &= ~TG3_FLG2_TSO_CAPABLE;
ethtool_op_set_tso(dev, 0);
}
else
tp->tg3_flags |= TG3_FLAG_JUMBO_RING_ENABLE;
} else {
if (tp->tg3_flags2 & TG3_FLG2_5780_CLASS)
tp->tg3_flags2 |= TG3_FLG2_TSO_CAPABLE;
tp->tg3_flags &= ~TG3_FLAG_JUMBO_RING_ENABLE;
}
}
static int tg3_change_mtu(struct net_device *dev, int new_mtu)
{
struct tg3 *tp = netdev_priv(dev);
int err;
if (new_mtu < TG3_MIN_MTU || new_mtu > TG3_MAX_MTU(tp))
return -EINVAL;
if (!netif_running(dev)) {
/* We'll just catch it later when the
* device is up'd.
*/
tg3_set_mtu(dev, tp, new_mtu);
return 0;
}
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_full_lock(tp, 1);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_set_mtu(dev, tp, new_mtu);
err = tg3_restart_hw(tp, 0);
if (!err)
tg3_netif_start(tp);
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
return err;
}
static void tg3_rx_prodring_free(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
int i;
struct ring_info *rxp;
for (i = 0; i < TG3_RX_RING_SIZE; i++) {
rxp = &tpr->rx_std_buffers[i];
if (rxp->skb == NULL)
continue;
pci_unmap_single(tp->pdev,
pci_unmap_addr(rxp, mapping),
tp->rx_pkt_map_sz,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(rxp->skb);
rxp->skb = NULL;
}
if (tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) {
for (i = 0; i < TG3_RX_JUMBO_RING_SIZE; i++) {
rxp = &tpr->rx_jmb_buffers[i];
if (rxp->skb == NULL)
continue;
pci_unmap_single(tp->pdev,
pci_unmap_addr(rxp, mapping),
TG3_RX_JMB_MAP_SZ,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(rxp->skb);
rxp->skb = NULL;
}
}
}
/* Initialize tx/rx rings for packet processing.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock are held and thus
* we may not sleep.
*/
static int tg3_rx_prodring_alloc(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
u32 i, rx_pkt_dma_sz;
struct tg3_napi *tnapi = &tp->napi[0];
/* Zero out all descriptors. */
memset(tpr->rx_std, 0, TG3_RX_RING_BYTES);
rx_pkt_dma_sz = TG3_RX_STD_DMA_SZ;
if ((tp->tg3_flags2 & TG3_FLG2_5780_CLASS) &&
tp->dev->mtu > ETH_DATA_LEN)
rx_pkt_dma_sz = TG3_RX_JMB_DMA_SZ;
tp->rx_pkt_map_sz = TG3_RX_DMA_TO_MAP_SZ(rx_pkt_dma_sz);
/* Initialize invariants of the rings, we only set this
* stuff once. This works because the card does not
* write into the rx buffer posting rings.
*/
for (i = 0; i < TG3_RX_RING_SIZE; i++) {
struct tg3_rx_buffer_desc *rxd;
rxd = &tpr->rx_std[i];
rxd->idx_len = rx_pkt_dma_sz << RXD_LEN_SHIFT;
rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT);
rxd->opaque = (RXD_OPAQUE_RING_STD |
(i << RXD_OPAQUE_INDEX_SHIFT));
}
/* Now allocate fresh SKBs for each rx ring. */
for (i = 0; i < tp->rx_pending; i++) {
if (tg3_alloc_rx_skb(tnapi, RXD_OPAQUE_RING_STD, -1, i) < 0) {
printk(KERN_WARNING PFX
"%s: Using a smaller RX standard ring, "
"only %d out of %d buffers were allocated "
"successfully.\n",
tp->dev->name, i, tp->rx_pending);
if (i == 0)
goto initfail;
tp->rx_pending = i;
break;
}
}
if (!(tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE))
goto done;
memset(tpr->rx_jmb, 0, TG3_RX_JUMBO_RING_BYTES);
if (tp->tg3_flags & TG3_FLAG_JUMBO_RING_ENABLE) {
for (i = 0; i < TG3_RX_JUMBO_RING_SIZE; i++) {
struct tg3_rx_buffer_desc *rxd;
rxd = &tpr->rx_jmb[i].std;
rxd->idx_len = TG3_RX_JMB_DMA_SZ << RXD_LEN_SHIFT;
rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT) |
RXD_FLAG_JUMBO;
rxd->opaque = (RXD_OPAQUE_RING_JUMBO |
(i << RXD_OPAQUE_INDEX_SHIFT));
}
for (i = 0; i < tp->rx_jumbo_pending; i++) {
if (tg3_alloc_rx_skb(tnapi, RXD_OPAQUE_RING_JUMBO,
-1, i) < 0) {
printk(KERN_WARNING PFX
"%s: Using a smaller RX jumbo ring, "
"only %d out of %d buffers were "
"allocated successfully.\n",
tp->dev->name, i, tp->rx_jumbo_pending);
if (i == 0)
goto initfail;
tp->rx_jumbo_pending = i;
break;
}
}
}
done:
return 0;
initfail:
tg3_rx_prodring_free(tp, tpr);
return -ENOMEM;
}
static void tg3_rx_prodring_fini(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
kfree(tpr->rx_std_buffers);
tpr->rx_std_buffers = NULL;
kfree(tpr->rx_jmb_buffers);
tpr->rx_jmb_buffers = NULL;
if (tpr->rx_std) {
pci_free_consistent(tp->pdev, TG3_RX_RING_BYTES,
tpr->rx_std, tpr->rx_std_mapping);
tpr->rx_std = NULL;
}
if (tpr->rx_jmb) {
pci_free_consistent(tp->pdev, TG3_RX_JUMBO_RING_BYTES,
tpr->rx_jmb, tpr->rx_jmb_mapping);
tpr->rx_jmb = NULL;
}
}
static int tg3_rx_prodring_init(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
tpr->rx_std_buffers = kzalloc(sizeof(struct ring_info) *
TG3_RX_RING_SIZE, GFP_KERNEL);
if (!tpr->rx_std_buffers)
return -ENOMEM;
tpr->rx_std = pci_alloc_consistent(tp->pdev, TG3_RX_RING_BYTES,
&tpr->rx_std_mapping);
if (!tpr->rx_std)
goto err_out;
if (tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) {
tpr->rx_jmb_buffers = kzalloc(sizeof(struct ring_info) *
TG3_RX_JUMBO_RING_SIZE,
GFP_KERNEL);
if (!tpr->rx_jmb_buffers)
goto err_out;
tpr->rx_jmb = pci_alloc_consistent(tp->pdev,
TG3_RX_JUMBO_RING_BYTES,
&tpr->rx_jmb_mapping);
if (!tpr->rx_jmb)
goto err_out;
}
return 0;
err_out:
tg3_rx_prodring_fini(tp, tpr);
return -ENOMEM;
}
/* Free up pending packets in all rx/tx rings.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock is not held and we are not
* in an interrupt context and thus may sleep.
*/
static void tg3_free_rings(struct tg3 *tp)
{
int i, j;
for (j = 0; j < tp->irq_cnt; j++) {
struct tg3_napi *tnapi = &tp->napi[j];
if (!tnapi->tx_buffers)
continue;
for (i = 0; i < TG3_TX_RING_SIZE; ) {
struct tx_ring_info *txp;
struct sk_buff *skb;
txp = &tnapi->tx_buffers[i];
skb = txp->skb;
if (skb == NULL) {
i++;
continue;
}
skb_dma_unmap(&tp->pdev->dev, skb, DMA_TO_DEVICE);
txp->skb = NULL;
i += skb_shinfo(skb)->nr_frags + 1;
dev_kfree_skb_any(skb);
}
}
tg3_rx_prodring_free(tp, &tp->prodring[0]);
}
/* Initialize tx/rx rings for packet processing.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock are held and thus
* we may not sleep.
*/
static int tg3_init_rings(struct tg3 *tp)
{
int i;
/* Free up all the SKBs. */
tg3_free_rings(tp);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tnapi->last_tag = 0;
tnapi->last_irq_tag = 0;
tnapi->hw_status->status = 0;
tnapi->hw_status->status_tag = 0;
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
tnapi->tx_prod = 0;
tnapi->tx_cons = 0;
if (tnapi->tx_ring)
memset(tnapi->tx_ring, 0, TG3_TX_RING_BYTES);
tnapi->rx_rcb_ptr = 0;
if (tnapi->rx_rcb)
memset(tnapi->rx_rcb, 0, TG3_RX_RCB_RING_BYTES(tp));
}
return tg3_rx_prodring_alloc(tp, &tp->prodring[0]);
}
/*
* Must not be invoked with interrupt sources disabled and
* the hardware shutdown down.
*/
static void tg3_free_consistent(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->tx_ring) {
pci_free_consistent(tp->pdev, TG3_TX_RING_BYTES,
tnapi->tx_ring, tnapi->tx_desc_mapping);
tnapi->tx_ring = NULL;
}
kfree(tnapi->tx_buffers);
tnapi->tx_buffers = NULL;
if (tnapi->rx_rcb) {
pci_free_consistent(tp->pdev, TG3_RX_RCB_RING_BYTES(tp),
tnapi->rx_rcb,
tnapi->rx_rcb_mapping);
tnapi->rx_rcb = NULL;
}
if (tnapi->hw_status) {
pci_free_consistent(tp->pdev, TG3_HW_STATUS_SIZE,
tnapi->hw_status,
tnapi->status_mapping);
tnapi->hw_status = NULL;
}
}
if (tp->hw_stats) {
pci_free_consistent(tp->pdev, sizeof(struct tg3_hw_stats),
tp->hw_stats, tp->stats_mapping);
tp->hw_stats = NULL;
}
tg3_rx_prodring_fini(tp, &tp->prodring[0]);
}
/*
* Must not be invoked with interrupt sources disabled and
* the hardware shutdown down. Can sleep.
*/
static int tg3_alloc_consistent(struct tg3 *tp)
{
int i;
if (tg3_rx_prodring_init(tp, &tp->prodring[0]))
return -ENOMEM;
tp->hw_stats = pci_alloc_consistent(tp->pdev,
sizeof(struct tg3_hw_stats),
&tp->stats_mapping);
if (!tp->hw_stats)
goto err_out;
memset(tp->hw_stats, 0, sizeof(struct tg3_hw_stats));
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
struct tg3_hw_status *sblk;
tnapi->hw_status = pci_alloc_consistent(tp->pdev,
TG3_HW_STATUS_SIZE,
&tnapi->status_mapping);
if (!tnapi->hw_status)
goto err_out;
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
sblk = tnapi->hw_status;
/*
* When RSS is enabled, the status block format changes
* slightly. The "rx_jumbo_consumer", "reserved",
* and "rx_mini_consumer" members get mapped to the
* other three rx return ring producer indexes.
*/
switch (i) {
default:
tnapi->rx_rcb_prod_idx = &sblk->idx[0].rx_producer;
break;
case 2:
tnapi->rx_rcb_prod_idx = &sblk->rx_jumbo_consumer;
break;
case 3:
tnapi->rx_rcb_prod_idx = &sblk->reserved;
break;
case 4:
tnapi->rx_rcb_prod_idx = &sblk->rx_mini_consumer;
break;
}
/*
* If multivector RSS is enabled, vector 0 does not handle
* rx or tx interrupts. Don't allocate any resources for it.
*/
if (!i && (tp->tg3_flags3 & TG3_FLG3_ENABLE_RSS))
continue;
tnapi->rx_rcb = pci_alloc_consistent(tp->pdev,
TG3_RX_RCB_RING_BYTES(tp),
&tnapi->rx_rcb_mapping);
if (!tnapi->rx_rcb)
goto err_out;
memset(tnapi->rx_rcb, 0, TG3_RX_RCB_RING_BYTES(tp));
tnapi->tx_buffers = kzalloc(sizeof(struct tx_ring_info) *
TG3_TX_RING_SIZE, GFP_KERNEL);
if (!tnapi->tx_buffers)
goto err_out;
tnapi->tx_ring = pci_alloc_consistent(tp->pdev,
TG3_TX_RING_BYTES,
&tnapi->tx_desc_mapping);
if (!tnapi->tx_ring)
goto err_out;
}
return 0;
err_out:
tg3_free_consistent(tp);
return -ENOMEM;
}
#define MAX_WAIT_CNT 1000
/* To stop a block, clear the enable bit and poll till it
* clears. tp->lock is held.
*/
static int tg3_stop_block(struct tg3 *tp, unsigned long ofs, u32 enable_bit, int silent)
{
unsigned int i;
u32 val;
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS) {
switch (ofs) {
case RCVLSC_MODE:
case DMAC_MODE:
case MBFREE_MODE:
case BUFMGR_MODE:
case MEMARB_MODE:
/* We can't enable/disable these bits of the
* 5705/5750, just say success.
*/
return 0;
default:
break;
}
}
val = tr32(ofs);
val &= ~enable_bit;
tw32_f(ofs, val);
for (i = 0; i < MAX_WAIT_CNT; i++) {
udelay(100);
val = tr32(ofs);
if ((val & enable_bit) == 0)
break;
}
if (i == MAX_WAIT_CNT && !silent) {
printk(KERN_ERR PFX "tg3_stop_block timed out, "
"ofs=%lx enable_bit=%x\n",
ofs, enable_bit);
return -ENODEV;
}
return 0;
}
/* tp->lock is held. */
static int tg3_abort_hw(struct tg3 *tp, int silent)
{
int i, err;
tg3_disable_ints(tp);
tp->rx_mode &= ~RX_MODE_ENABLE;
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
err = tg3_stop_block(tp, RCVBDI_MODE, RCVBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVLPC_MODE, RCVLPC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVLSC_MODE, RCVLSC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVDBDI_MODE, RCVDBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVDCC_MODE, RCVDCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVCC_MODE, RCVCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDS_MODE, SNDBDS_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDI_MODE, SNDBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDDATAI_MODE, SNDDATAI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RDMAC_MODE, RDMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDDATAC_MODE, SNDDATAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, DMAC_MODE, DMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDC_MODE, SNDBDC_MODE_ENABLE, silent);
tp->mac_mode &= ~MAC_MODE_TDE_ENABLE;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tp->tx_mode &= ~TX_MODE_ENABLE;
tw32_f(MAC_TX_MODE, tp->tx_mode);
for (i = 0; i < MAX_WAIT_CNT; i++) {
udelay(100);
if (!(tr32(MAC_TX_MODE) & TX_MODE_ENABLE))
break;
}
if (i >= MAX_WAIT_CNT) {
printk(KERN_ERR PFX "tg3_abort_hw timed out for %s, "
"TX_MODE_ENABLE will not clear MAC_TX_MODE=%08x\n",
tp->dev->name, tr32(MAC_TX_MODE));
err |= -ENODEV;
}
err |= tg3_stop_block(tp, HOSTCC_MODE, HOSTCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, WDMAC_MODE, WDMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, MBFREE_MODE, MBFREE_MODE_ENABLE, silent);
tw32(FTQ_RESET, 0xffffffff);
tw32(FTQ_RESET, 0x00000000);
err |= tg3_stop_block(tp, BUFMGR_MODE, BUFMGR_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, MEMARB_MODE, MEMARB_MODE_ENABLE, silent);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->hw_status)
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
}
if (tp->hw_stats)
memset(tp->hw_stats, 0, sizeof(struct tg3_hw_stats));
return err;
}
static void tg3_ape_send_event(struct tg3 *tp, u32 event)
{
int i;
u32 apedata;
apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
if (apedata != APE_SEG_SIG_MAGIC)
return;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return;
/* Wait for up to 1 millisecond for APE to service previous event. */
for (i = 0; i < 10; i++) {
if (tg3_ape_lock(tp, TG3_APE_LOCK_MEM))
return;
apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS);
if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
tg3_ape_write32(tp, TG3_APE_EVENT_STATUS,
event | APE_EVENT_STATUS_EVENT_PENDING);
tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
break;
udelay(100);
}
if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1);
}
static void tg3_ape_driver_state_change(struct tg3 *tp, int kind)
{
u32 event;
u32 apedata;
if (!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE))
return;
switch (kind) {
case RESET_KIND_INIT:
tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG,
APE_HOST_SEG_SIG_MAGIC);
tg3_ape_write32(tp, TG3_APE_HOST_SEG_LEN,
APE_HOST_SEG_LEN_MAGIC);
apedata = tg3_ape_read32(tp, TG3_APE_HOST_INIT_COUNT);
tg3_ape_write32(tp, TG3_APE_HOST_INIT_COUNT, ++apedata);
tg3_ape_write32(tp, TG3_APE_HOST_DRIVER_ID,
APE_HOST_DRIVER_ID_MAGIC);
tg3_ape_write32(tp, TG3_APE_HOST_BEHAVIOR,
APE_HOST_BEHAV_NO_PHYLOCK);
event = APE_EVENT_STATUS_STATE_START;
break;
case RESET_KIND_SHUTDOWN:
/* With the interface we are currently using,
* APE does not track driver state. Wiping
* out the HOST SEGMENT SIGNATURE forces
* the APE to assume OS absent status.
*/
tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG, 0x0);
event = APE_EVENT_STATUS_STATE_UNLOAD;
break;
case RESET_KIND_SUSPEND:
event = APE_EVENT_STATUS_STATE_SUSPEND;
break;
default:
return;
}
event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
tg3_ape_send_event(tp, event);
}
/* tp->lock is held. */
static void tg3_write_sig_pre_reset(struct tg3 *tp, int kind)
{
tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX,
NIC_SRAM_FIRMWARE_MBOX_MAGIC1);
if (tp->tg3_flags2 & TG3_FLG2_ASF_NEW_HANDSHAKE) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD);
break;
case RESET_KIND_SUSPEND:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_SUSPEND);
break;
default:
break;
}
}
if (kind == RESET_KIND_INIT ||
kind == RESET_KIND_SUSPEND)
tg3_ape_driver_state_change(tp, kind);
}
/* tp->lock is held. */
static void tg3_write_sig_post_reset(struct tg3 *tp, int kind)
{
if (tp->tg3_flags2 & TG3_FLG2_ASF_NEW_HANDSHAKE) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START_DONE);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD_DONE);
break;
default:
break;
}
}
if (kind == RESET_KIND_SHUTDOWN)
tg3_ape_driver_state_change(tp, kind);
}
/* tp->lock is held. */
static void tg3_write_sig_legacy(struct tg3 *tp, int kind)
{
if (tp->tg3_flags & TG3_FLAG_ENABLE_ASF) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD);
break;
case RESET_KIND_SUSPEND:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_SUSPEND);
break;
default:
break;
}
}
}
static int tg3_poll_fw(struct tg3 *tp)
{
int i;
u32 val;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
/* Wait up to 20ms for init done. */
for (i = 0; i < 200; i++) {
if (tr32(VCPU_STATUS) & VCPU_STATUS_INIT_DONE)
return 0;
udelay(100);
}
return -ENODEV;
}
/* Wait for firmware initialization to complete. */
for (i = 0; i < 100000; i++) {
tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val);
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
break;
udelay(10);
}
/* Chip might not be fitted with firmware. Some Sun onboard
* parts are configured like that. So don't signal the timeout
* of the above loop as an error, but do report the lack of
* running firmware once.
*/
if (i >= 100000 &&
!(tp->tg3_flags2 & TG3_FLG2_NO_FWARE_REPORTED)) {
tp->tg3_flags2 |= TG3_FLG2_NO_FWARE_REPORTED;
printk(KERN_INFO PFX "%s: No firmware running.\n",
tp->dev->name);
}
return 0;
}
/* Save PCI command register before chip reset */
static void tg3_save_pci_state(struct tg3 *tp)
{
pci_read_config_word(tp->pdev, PCI_COMMAND, &tp->pci_cmd);
}
/* Restore PCI state after chip reset */
static void tg3_restore_pci_state(struct tg3 *tp)
{
u32 val;
/* Re-enable indirect register accesses. */
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
/* Set MAX PCI retry to zero. */
val = (PCISTATE_ROM_ENABLE | PCISTATE_ROM_RETRY_ENABLE);
if (tp->pci_chip_rev_id == CHIPREV_ID_5704_A0 &&
(tp->tg3_flags & TG3_FLAG_PCIX_MODE))
val |= PCISTATE_RETRY_SAME_DMA;
/* Allow reads and writes to the APE register and memory space. */
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)
val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, val);
pci_write_config_word(tp->pdev, PCI_COMMAND, tp->pci_cmd);
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5785) {
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS)
pcie_set_readrq(tp->pdev, 4096);
else {
pci_write_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
tp->pci_cacheline_sz);
pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
tp->pci_lat_timer);
}
}
/* Make sure PCI-X relaxed ordering bit is clear. */
if (tp->tg3_flags & TG3_FLAG_PCIX_MODE) {
u16 pcix_cmd;
pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
&pcix_cmd);
pcix_cmd &= ~PCI_X_CMD_ERO;
pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
pcix_cmd);
}
if (tp->tg3_flags2 & TG3_FLG2_5780_CLASS) {
/* Chip reset on 5780 will reset MSI enable bit,
* so need to restore it.
*/
if (tp->tg3_flags2 & TG3_FLG2_USING_MSI) {
u16 ctrl;
pci_read_config_word(tp->pdev,
tp->msi_cap + PCI_MSI_FLAGS,
&ctrl);
pci_write_config_word(tp->pdev,
tp->msi_cap + PCI_MSI_FLAGS,
ctrl | PCI_MSI_FLAGS_ENABLE);
val = tr32(MSGINT_MODE);
tw32(MSGINT_MODE, val | MSGINT_MODE_ENABLE);
}
}
}
static void tg3_stop_fw(struct tg3 *);
/* tp->lock is held. */
static int tg3_chip_reset(struct tg3 *tp)
{
u32 val;
void (*write_op)(struct tg3 *, u32, u32);
int i, err;
tg3_nvram_lock(tp);
tg3_ape_lock(tp, TG3_APE_LOCK_GRC);
/* No matching tg3_nvram_unlock() after this because
* chip reset below will undo the nvram lock.
*/
tp->nvram_lock_cnt = 0;
/* GRC_MISC_CFG core clock reset will clear the memory
* enable bit in PCI register 4 and the MSI enable bit
* on some chips, so we save relevant registers here.
*/
tg3_save_pci_state(tp);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752 ||
(tp->tg3_flags3 & TG3_FLG3_5755_PLUS))
tw32(GRC_FASTBOOT_PC, 0);
/*
* We must avoid the readl() that normally takes place.
* It locks machines, causes machine checks, and other
* fun things. So, temporarily disable the 5701
* hardware workaround, while we do the reset.
*/
write_op = tp->write32;
if (write_op == tg3_write_flush_reg32)
tp->write32 = tg3_write32;
/* Prevent the irq handler from reading or writing PCI registers
* during chip reset when the memory enable bit in the PCI command
* register may be cleared. The chip does not generate interrupt
* at this time, but the irq handler may still be called due to irq
* sharing or irqpoll.
*/
tp->tg3_flags |= TG3_FLAG_CHIP_RESETTING;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->hw_status) {
tnapi->hw_status->status = 0;
tnapi->hw_status->status_tag = 0;
}
tnapi->last_tag = 0;
tnapi->last_irq_tag = 0;
}
smp_mb();
for (i = 0; i < tp->irq_cnt; i++)
synchronize_irq(tp->napi[i].irq_vec);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780) {
val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS);
}
/* do the reset */
val = GRC_MISC_CFG_CORECLK_RESET;
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
if (tr32(0x7e2c) == 0x60) {
tw32(0x7e2c, 0x20);
}
if (tp->pci_chip_rev_id != CHIPREV_ID_5750_A0) {
tw32(GRC_MISC_CFG, (1 << 29));
val |= (1 << 29);
}
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
tw32(VCPU_STATUS, tr32(VCPU_STATUS) | VCPU_STATUS_DRV_RESET);
tw32(GRC_VCPU_EXT_CTRL,
tr32(GRC_VCPU_EXT_CTRL) & ~GRC_VCPU_EXT_CTRL_HALT_CPU);
}
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS)
val |= GRC_MISC_CFG_KEEP_GPHY_POWER;
tw32(GRC_MISC_CFG, val);
/* restore 5701 hardware bug workaround write method */
tp->write32 = write_op;
/* Unfortunately, we have to delay before the PCI read back.
* Some 575X chips even will not respond to a PCI cfg access
* when the reset command is given to the chip.
*
* How do these hardware designers expect things to work
* properly if the PCI write is posted for a long period
* of time? It is always necessary to have some method by
* which a register read back can occur to push the write
* out which does the reset.
*
* For most tg3 variants the trick below was working.
* Ho hum...
*/
udelay(120);
/* Flush PCI posted writes. The normal MMIO registers
* are inaccessible at this time so this is the only
* way to make this reliably (actually, this is no longer
* the case, see above). I tried to use indirect
* register read/write but this upset some 5701 variants.
*/
pci_read_config_dword(tp->pdev, PCI_COMMAND, &val);
udelay(120);
if ((tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) && tp->pcie_cap) {
u16 val16;
if (tp->pci_chip_rev_id == CHIPREV_ID_5750_A0) {
int i;
u32 cfg_val;
/* Wait for link training to complete. */
for (i = 0; i < 5000; i++)
udelay(100);
pci_read_config_dword(tp->pdev, 0xc4, &cfg_val);
pci_write_config_dword(tp->pdev, 0xc4,
cfg_val | (1 << 15));
}
/* Clear the "no snoop" and "relaxed ordering" bits. */
pci_read_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_DEVCTL,
&val16);
val16 &= ~(PCI_EXP_DEVCTL_RELAX_EN |
PCI_EXP_DEVCTL_NOSNOOP_EN);
/*
* Older PCIe devices only support the 128 byte
* MPS setting. Enforce the restriction.
*/
if (!(tp->tg3_flags & TG3_FLAG_CPMU_PRESENT) ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784))
val16 &= ~PCI_EXP_DEVCTL_PAYLOAD;
pci_write_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_DEVCTL,
val16);
pcie_set_readrq(tp->pdev, 4096);
/* Clear error status */
pci_write_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_DEVSTA,
PCI_EXP_DEVSTA_CED |
PCI_EXP_DEVSTA_NFED |
PCI_EXP_DEVSTA_FED |
PCI_EXP_DEVSTA_URD);
}
tg3_restore_pci_state(tp);
tp->tg3_flags &= ~TG3_FLAG_CHIP_RESETTING;
val = 0;
if (tp->tg3_flags2 & TG3_FLG2_5780_CLASS)
val = tr32(MEMARB_MODE);
tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
if (tp->pci_chip_rev_id == CHIPREV_ID_5750_A3) {
tg3_stop_fw(tp);
tw32(0x5000, 0x400);
}
tw32(GRC_MODE, tp->grc_mode);
if (tp->pci_chip_rev_id == CHIPREV_ID_5705_A0) {
val = tr32(0xc4);
tw32(0xc4, val | (1 << 15));
}
if ((tp->nic_sram_data_cfg & NIC_SRAM_DATA_CFG_MINI_PCI) != 0 &&
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) {
tp->pci_clock_ctrl |= CLOCK_CTRL_CLKRUN_OENABLE;
if (tp->pci_chip_rev_id == CHIPREV_ID_5705_A0)
tp->pci_clock_ctrl |= CLOCK_CTRL_FORCE_CLKRUN;
tw32(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
}
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
tp->mac_mode = MAC_MODE_PORT_MODE_TBI;
tw32_f(MAC_MODE, tp->mac_mode);
} else if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
tp->mac_mode = MAC_MODE_PORT_MODE_GMII;
tw32_f(MAC_MODE, tp->mac_mode);
} else if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) {
tp->mac_mode &= (MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN);
if (tp->mac_mode & MAC_MODE_APE_TX_EN)
tp->mac_mode |= MAC_MODE_TDE_ENABLE;
tw32_f(MAC_MODE, tp->mac_mode);
} else
tw32_f(MAC_MODE, 0);
udelay(40);
tg3_ape_unlock(tp, TG3_APE_LOCK_GRC);
err = tg3_poll_fw(tp);
if (err)
return err;
tg3_mdio_start(tp);
if ((tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) &&
tp->pci_chip_rev_id != CHIPREV_ID_5750_A0 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5785 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5717) {
val = tr32(0x7c00);
tw32(0x7c00, val | (1 << 25));
}
/* Reprobe ASF enable state. */
tp->tg3_flags &= ~TG3_FLAG_ENABLE_ASF;
tp->tg3_flags2 &= ~TG3_FLG2_ASF_NEW_HANDSHAKE;
tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
if (val == NIC_SRAM_DATA_SIG_MAGIC) {
u32 nic_cfg;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
tp->tg3_flags |= TG3_FLAG_ENABLE_ASF;
tp->last_event_jiffies = jiffies;
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS)
tp->tg3_flags2 |= TG3_FLG2_ASF_NEW_HANDSHAKE;
}
}
return 0;
}
/* tp->lock is held. */
static void tg3_stop_fw(struct tg3 *tp)
{
if ((tp->tg3_flags & TG3_FLAG_ENABLE_ASF) &&
!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)) {
/* Wait for RX cpu to ACK the previous event. */
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_PAUSE_FW);
tg3_generate_fw_event(tp);
/* Wait for RX cpu to ACK this event. */
tg3_wait_for_event_ack(tp);
}
}
/* tp->lock is held. */
static int tg3_halt(struct tg3 *tp, int kind, int silent)
{
int err;
tg3_stop_fw(tp);
tg3_write_sig_pre_reset(tp, kind);
tg3_abort_hw(tp, silent);
err = tg3_chip_reset(tp);
__tg3_set_mac_addr(tp, 0);
tg3_write_sig_legacy(tp, kind);
tg3_write_sig_post_reset(tp, kind);
if (err)
return err;
return 0;
}
#define RX_CPU_SCRATCH_BASE 0x30000
#define RX_CPU_SCRATCH_SIZE 0x04000
#define TX_CPU_SCRATCH_BASE 0x34000
#define TX_CPU_SCRATCH_SIZE 0x04000
/* tp->lock is held. */
static int tg3_halt_cpu(struct tg3 *tp, u32 offset)
{
int i;
BUG_ON(offset == TX_CPU_BASE &&
(tp->tg3_flags2 & TG3_FLG2_5705_PLUS));
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
u32 val = tr32(GRC_VCPU_EXT_CTRL);
tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_HALT_CPU);
return 0;
}
if (offset == RX_CPU_BASE) {
for (i = 0; i < 10000; i++) {
tw32(offset + CPU_STATE, 0xffffffff);
tw32(offset + CPU_MODE, CPU_MODE_HALT);
if (tr32(offset + CPU_MODE) & CPU_MODE_HALT)
break;
}
tw32(offset + CPU_STATE, 0xffffffff);
tw32_f(offset + CPU_MODE, CPU_MODE_HALT);
udelay(10);
} else {
for (i = 0; i < 10000; i++) {
tw32(offset + CPU_STATE, 0xffffffff);
tw32(offset + CPU_MODE, CPU_MODE_HALT);
if (tr32(offset + CPU_MODE) & CPU_MODE_HALT)
break;
}
}
if (i >= 10000) {
printk(KERN_ERR PFX "tg3_reset_cpu timed out for %s, "
"and %s CPU\n",
tp->dev->name,
(offset == RX_CPU_BASE ? "RX" : "TX"));
return -ENODEV;
}
/* Clear firmware's nvram arbitration. */
if (tp->tg3_flags & TG3_FLAG_NVRAM)
tw32(NVRAM_SWARB, SWARB_REQ_CLR0);
return 0;
}
struct fw_info {
unsigned int fw_base;
unsigned int fw_len;
const __be32 *fw_data;
};
/* tp->lock is held. */
static int tg3_load_firmware_cpu(struct tg3 *tp, u32 cpu_base, u32 cpu_scratch_base,
int cpu_scratch_size, struct fw_info *info)
{
int err, lock_err, i;
void (*write_op)(struct tg3 *, u32, u32);
if (cpu_base == TX_CPU_BASE &&
(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
printk(KERN_ERR PFX "tg3_load_firmware_cpu: Trying to load "
"TX cpu firmware on %s which is 5705.\n",
tp->dev->name);
return -EINVAL;
}
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS)
write_op = tg3_write_mem;
else
write_op = tg3_write_indirect_reg32;
/* It is possible that bootcode is still loading at this point.
* Get the nvram lock first before halting the cpu.
*/
lock_err = tg3_nvram_lock(tp);
err = tg3_halt_cpu(tp, cpu_base);
if (!lock_err)
tg3_nvram_unlock(tp);
if (err)
goto out;
for (i = 0; i < cpu_scratch_size; i += sizeof(u32))
write_op(tp, cpu_scratch_base + i, 0);
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32(cpu_base + CPU_MODE, tr32(cpu_base+CPU_MODE)|CPU_MODE_HALT);
for (i = 0; i < (info->fw_len / sizeof(u32)); i++)
write_op(tp, (cpu_scratch_base +
(info->fw_base & 0xffff) +
(i * sizeof(u32))),
be32_to_cpu(info->fw_data[i]));
err = 0;
out:
return err;
}
/* tp->lock is held. */
static int tg3_load_5701_a0_firmware_fix(struct tg3 *tp)
{
struct fw_info info;
const __be32 *fw_data;
int err, i;
fw_data = (void *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
start address and length. We are setting complete length.
length = end_address_of_bss - start_address_of_text.
Remainder is the blob to be loaded contiguously
from start address. */
info.fw_base = be32_to_cpu(fw_data[1]);
info.fw_len = tp->fw->size - 12;
info.fw_data = &fw_data[3];
err = tg3_load_firmware_cpu(tp, RX_CPU_BASE,
RX_CPU_SCRATCH_BASE, RX_CPU_SCRATCH_SIZE,
&info);
if (err)
return err;
err = tg3_load_firmware_cpu(tp, TX_CPU_BASE,
TX_CPU_SCRATCH_BASE, TX_CPU_SCRATCH_SIZE,
&info);
if (err)
return err;
/* Now startup only the RX cpu. */
tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff);
tw32_f(RX_CPU_BASE + CPU_PC, info.fw_base);
for (i = 0; i < 5; i++) {
if (tr32(RX_CPU_BASE + CPU_PC) == info.fw_base)
break;
tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff);
tw32(RX_CPU_BASE + CPU_MODE, CPU_MODE_HALT);
tw32_f(RX_CPU_BASE + CPU_PC, info.fw_base);
udelay(1000);
}
if (i >= 5) {
printk(KERN_ERR PFX "tg3_load_firmware fails for %s "
"to set RX CPU PC, is %08x should be %08x\n",
tp->dev->name, tr32(RX_CPU_BASE + CPU_PC),
info.fw_base);
return -ENODEV;
}
tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff);
tw32_f(RX_CPU_BASE + CPU_MODE, 0x00000000);
return 0;
}
/* 5705 needs a special version of the TSO firmware. */
/* tp->lock is held. */
static int tg3_load_tso_firmware(struct tg3 *tp)
{
struct fw_info info;
const __be32 *fw_data;
unsigned long cpu_base, cpu_scratch_base, cpu_scratch_size;
int err, i;
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO)
return 0;
fw_data = (void *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
start address and length. We are setting complete length.
length = end_address_of_bss - start_address_of_text.
Remainder is the blob to be loaded contiguously
from start address. */
info.fw_base = be32_to_cpu(fw_data[1]);
cpu_scratch_size = tp->fw_len;
info.fw_len = tp->fw->size - 12;
info.fw_data = &fw_data[3];
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) {
cpu_base = RX_CPU_BASE;
cpu_scratch_base = NIC_SRAM_MBUF_POOL_BASE5705;
} else {
cpu_base = TX_CPU_BASE;
cpu_scratch_base = TX_CPU_SCRATCH_BASE;
cpu_scratch_size = TX_CPU_SCRATCH_SIZE;
}
err = tg3_load_firmware_cpu(tp, cpu_base,
cpu_scratch_base, cpu_scratch_size,
&info);
if (err)
return err;
/* Now startup the cpu. */
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32_f(cpu_base + CPU_PC, info.fw_base);
for (i = 0; i < 5; i++) {
if (tr32(cpu_base + CPU_PC) == info.fw_base)
break;
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32(cpu_base + CPU_MODE, CPU_MODE_HALT);
tw32_f(cpu_base + CPU_PC, info.fw_base);
udelay(1000);
}
if (i >= 5) {
printk(KERN_ERR PFX "tg3_load_tso_firmware fails for %s "
"to set CPU PC, is %08x should be %08x\n",
tp->dev->name, tr32(cpu_base + CPU_PC),
info.fw_base);
return -ENODEV;
}
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32_f(cpu_base + CPU_MODE, 0x00000000);
return 0;
}
static int tg3_set_mac_addr(struct net_device *dev, void *p)
{
struct tg3 *tp = netdev_priv(dev);
struct sockaddr *addr = p;
int err = 0, skip_mac_1 = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (!netif_running(dev))
return 0;
if (tp->tg3_flags & TG3_FLAG_ENABLE_ASF) {
u32 addr0_high, addr0_low, addr1_high, addr1_low;
addr0_high = tr32(MAC_ADDR_0_HIGH);
addr0_low = tr32(MAC_ADDR_0_LOW);
addr1_high = tr32(MAC_ADDR_1_HIGH);
addr1_low = tr32(MAC_ADDR_1_LOW);
/* Skip MAC addr 1 if ASF is using it. */
if ((addr0_high != addr1_high || addr0_low != addr1_low) &&
!(addr1_high == 0 && addr1_low == 0))
skip_mac_1 = 1;
}
spin_lock_bh(&tp->lock);
__tg3_set_mac_addr(tp, skip_mac_1);
spin_unlock_bh(&tp->lock);
return err;
}
/* tp->lock is held. */
static void tg3_set_bdinfo(struct tg3 *tp, u32 bdinfo_addr,
dma_addr_t mapping, u32 maxlen_flags,
u32 nic_addr)
{
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH),
((u64) mapping >> 32));
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW),
((u64) mapping & 0xffffffff));
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_MAXLEN_FLAGS),
maxlen_flags);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_NIC_ADDR),
nic_addr);
}
static void __tg3_set_rx_mode(struct net_device *);
static void __tg3_set_coalesce(struct tg3 *tp, struct ethtool_coalesce *ec)
{
int i;
if (!(tp->tg3_flags2 & TG3_FLG2_USING_MSIX)) {
tw32(HOSTCC_TXCOL_TICKS, ec->tx_coalesce_usecs);
tw32(HOSTCC_TXMAX_FRAMES, ec->tx_max_coalesced_frames);
tw32(HOSTCC_TXCOAL_MAXF_INT, ec->tx_max_coalesced_frames_irq);
tw32(HOSTCC_RXCOL_TICKS, ec->rx_coalesce_usecs);
tw32(HOSTCC_RXMAX_FRAMES, ec->rx_max_coalesced_frames);
tw32(HOSTCC_RXCOAL_MAXF_INT, ec->rx_max_coalesced_frames_irq);
} else {
tw32(HOSTCC_TXCOL_TICKS, 0);
tw32(HOSTCC_TXMAX_FRAMES, 0);
tw32(HOSTCC_TXCOAL_MAXF_INT, 0);
tw32(HOSTCC_RXCOL_TICKS, 0);
tw32(HOSTCC_RXMAX_FRAMES, 0);
tw32(HOSTCC_RXCOAL_MAXF_INT, 0);
}
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
u32 val = ec->stats_block_coalesce_usecs;
tw32(HOSTCC_RXCOAL_TICK_INT, ec->rx_coalesce_usecs_irq);
tw32(HOSTCC_TXCOAL_TICK_INT, ec->tx_coalesce_usecs_irq);
if (!netif_carrier_ok(tp->dev))
val = 0;
tw32(HOSTCC_STAT_COAL_TICKS, val);
}
for (i = 0; i < tp->irq_cnt - 1; i++) {
u32 reg;
reg = HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18;
tw32(reg, ec->rx_coalesce_usecs);
reg = HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18;
tw32(reg, ec->tx_coalesce_usecs);
reg = HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18;
tw32(reg, ec->rx_max_coalesced_frames);
reg = HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18;
tw32(reg, ec->tx_max_coalesced_frames);
reg = HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18;
tw32(reg, ec->rx_max_coalesced_frames_irq);
reg = HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18;
tw32(reg, ec->tx_max_coalesced_frames_irq);
}
for (; i < tp->irq_max - 1; i++) {
tw32(HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18, 0);
tw32(HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18, 0);
tw32(HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18, 0);
tw32(HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18, 0);
tw32(HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
tw32(HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
}
}
/* tp->lock is held. */
static void tg3_rings_reset(struct tg3 *tp)
{
int i;
u32 stblk, txrcb, rxrcb, limit;
struct tg3_napi *tnapi = &tp->napi[0];
/* Disable all transmit rings but the first. */
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 16;
else
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
for (txrcb = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
txrcb < limit; txrcb += TG3_BDINFO_SIZE)
tg3_write_mem(tp, txrcb + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Disable all receive return rings but the first. */
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 17;
else if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 16;
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755)
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 4;
else
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
for (rxrcb = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
rxrcb < limit; rxrcb += TG3_BDINFO_SIZE)
tg3_write_mem(tp, rxrcb + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Disable interrupts */
tw32_mailbox_f(tp->napi[0].int_mbox, 1);
/* Zero mailbox registers. */
if (tp->tg3_flags & TG3_FLAG_SUPPORT_MSIX) {
for (i = 1; i < TG3_IRQ_MAX_VECS; i++) {
tp->napi[i].tx_prod = 0;
tp->napi[i].tx_cons = 0;
tw32_mailbox(tp->napi[i].prodmbox, 0);
tw32_rx_mbox(tp->napi[i].consmbox, 0);
tw32_mailbox_f(tp->napi[i].int_mbox, 1);
}
} else {
tp->napi[0].tx_prod = 0;
tp->napi[0].tx_cons = 0;
tw32_mailbox(tp->napi[0].prodmbox, 0);
tw32_rx_mbox(tp->napi[0].consmbox, 0);
}
/* Make sure the NIC-based send BD rings are disabled. */
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
u32 mbox = MAILBOX_SNDNIC_PROD_IDX_0 + TG3_64BIT_REG_LOW;
for (i = 0; i < 16; i++)
tw32_tx_mbox(mbox + i * 8, 0);
}
txrcb = NIC_SRAM_SEND_RCB;
rxrcb = NIC_SRAM_RCV_RET_RCB;
/* Clear status block in ram. */
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
/* Set status block DMA address */
tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tnapi->status_mapping >> 32));
tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tnapi->status_mapping & 0xffffffff));
if (tnapi->tx_ring) {
tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping,
(TG3_TX_RING_SIZE <<
BDINFO_FLAGS_MAXLEN_SHIFT),
NIC_SRAM_TX_BUFFER_DESC);
txrcb += TG3_BDINFO_SIZE;
}
if (tnapi->rx_rcb) {
tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping,
(TG3_RX_RCB_RING_SIZE(tp) <<
BDINFO_FLAGS_MAXLEN_SHIFT), 0);
rxrcb += TG3_BDINFO_SIZE;
}
stblk = HOSTCC_STATBLCK_RING1;
for (i = 1, tnapi++; i < tp->irq_cnt; i++, tnapi++) {
u64 mapping = (u64)tnapi->status_mapping;
tw32(stblk + TG3_64BIT_REG_HIGH, mapping >> 32);
tw32(stblk + TG3_64BIT_REG_LOW, mapping & 0xffffffff);
/* Clear status block in ram. */
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping,
(TG3_TX_RING_SIZE <<
BDINFO_FLAGS_MAXLEN_SHIFT),
NIC_SRAM_TX_BUFFER_DESC);
tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping,
(TG3_RX_RCB_RING_SIZE(tp) <<
BDINFO_FLAGS_MAXLEN_SHIFT), 0);
stblk += 8;
txrcb += TG3_BDINFO_SIZE;
rxrcb += TG3_BDINFO_SIZE;
}
}
/* tp->lock is held. */
static int tg3_reset_hw(struct tg3 *tp, int reset_phy)
{
u32 val, rdmac_mode;
int i, err, limit;
struct tg3_rx_prodring_set *tpr = &tp->prodring[0];
tg3_disable_ints(tp);
tg3_stop_fw(tp);
tg3_write_sig_pre_reset(tp, RESET_KIND_INIT);
if (tp->tg3_flags & TG3_FLAG_INIT_COMPLETE) {
tg3_abort_hw(tp, 1);
}
if (reset_phy &&
!(tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB))
tg3_phy_reset(tp);
err = tg3_chip_reset(tp);
if (err)
return err;
tg3_write_sig_legacy(tp, RESET_KIND_INIT);
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5784_AX) {
val = tr32(TG3_CPMU_CTRL);
val &= ~(CPMU_CTRL_LINK_AWARE_MODE | CPMU_CTRL_LINK_IDLE_MODE);
tw32(TG3_CPMU_CTRL, val);
val = tr32(TG3_CPMU_LSPD_10MB_CLK);
val &= ~CPMU_LSPD_10MB_MACCLK_MASK;
val |= CPMU_LSPD_10MB_MACCLK_6_25;
tw32(TG3_CPMU_LSPD_10MB_CLK, val);
val = tr32(TG3_CPMU_LNK_AWARE_PWRMD);
val &= ~CPMU_LNK_AWARE_MACCLK_MASK;
val |= CPMU_LNK_AWARE_MACCLK_6_25;
tw32(TG3_CPMU_LNK_AWARE_PWRMD, val);
val = tr32(TG3_CPMU_HST_ACC);
val &= ~CPMU_HST_ACC_MACCLK_MASK;
val |= CPMU_HST_ACC_MACCLK_6_25;
tw32(TG3_CPMU_HST_ACC, val);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780) {
val = tr32(PCIE_PWR_MGMT_THRESH) & ~PCIE_PWR_MGMT_L1_THRESH_MSK;
val |= PCIE_PWR_MGMT_EXT_ASPM_TMR_EN |
PCIE_PWR_MGMT_L1_THRESH_4MS;
tw32(PCIE_PWR_MGMT_THRESH, val);
val = tr32(TG3_PCIE_EIDLE_DELAY) & ~TG3_PCIE_EIDLE_DELAY_MASK;
tw32(TG3_PCIE_EIDLE_DELAY, val | TG3_PCIE_EIDLE_DELAY_13_CLKS);
tw32(TG3_CORR_ERR_STAT, TG3_CORR_ERR_STAT_CLEAR);
}
if (tp->tg3_flags3 & TG3_FLG3_TOGGLE_10_100_L1PLLPD) {
val = tr32(TG3_PCIE_LNKCTL);
if (tp->tg3_flags3 & TG3_FLG3_CLKREQ_BUG)
val |= TG3_PCIE_LNKCTL_L1_PLL_PD_DIS;
else
val &= ~TG3_PCIE_LNKCTL_L1_PLL_PD_DIS;
tw32(TG3_PCIE_LNKCTL, val);
}
/* This works around an issue with Athlon chipsets on
* B3 tigon3 silicon. This bit has no effect on any
* other revision. But do not set this on PCI Express
* chips and don't even touch the clocks if the CPMU is present.
*/
if (!(tp->tg3_flags & TG3_FLAG_CPMU_PRESENT)) {
if (!(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS))
tp->pci_clock_ctrl |= CLOCK_CTRL_DELAY_PCI_GRANT;
tw32_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
}
if (tp->pci_chip_rev_id == CHIPREV_ID_5704_A0 &&
(tp->tg3_flags & TG3_FLAG_PCIX_MODE)) {
val = tr32(TG3PCI_PCISTATE);
val |= PCISTATE_RETRY_SAME_DMA;
tw32(TG3PCI_PCISTATE, val);
}
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) {
/* Allow reads and writes to the
* APE register and memory space.
*/
val = tr32(TG3PCI_PCISTATE);
val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR;
tw32(TG3PCI_PCISTATE, val);
}
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5704_BX) {
/* Enable some hw fixes. */
val = tr32(TG3PCI_MSI_DATA);
val |= (1 << 26) | (1 << 28) | (1 << 29);
tw32(TG3PCI_MSI_DATA, val);
}
/* Descriptor ring init may make accesses to the
* NIC SRAM area to setup the TX descriptors, so we
* can only do this after the hardware has been
* successfully reset.
*/
err = tg3_init_rings(tp);
if (err)
return err;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5784 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5761 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5717) {
/* This value is determined during the probe time DMA
* engine test, tg3_test_dma.
*/
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
}
tp->grc_mode &= ~(GRC_MODE_HOST_SENDBDS |
GRC_MODE_4X_NIC_SEND_RINGS |
GRC_MODE_NO_TX_PHDR_CSUM |
GRC_MODE_NO_RX_PHDR_CSUM);
tp->grc_mode |= GRC_MODE_HOST_SENDBDS;
/* Pseudo-header checksum is done by hardware logic and not
* the offload processers, so make the chip do the pseudo-
* header checksums on receive. For transmit it is more
* convenient to do the pseudo-header checksum in software
* as Linux does that on transmit for us in all cases.
*/
tp->grc_mode |= GRC_MODE_NO_TX_PHDR_CSUM;
tw32(GRC_MODE,
tp->grc_mode |
(GRC_MODE_IRQ_ON_MAC_ATTN | GRC_MODE_HOST_STACKUP));
/* Setup the timer prescalar register. Clock is always 66Mhz. */
val = tr32(GRC_MISC_CFG);
val &= ~0xff;
val |= (65 << GRC_MISC_CFG_PRESCALAR_SHIFT);
tw32(GRC_MISC_CFG, val);
/* Initialize MBUF/DESC pool. */
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS) {
/* Do nothing. */
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5705) {
tw32(BUFMGR_MB_POOL_ADDR, NIC_SRAM_MBUF_POOL_BASE);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704)
tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE64);
else
tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE96);
tw32(BUFMGR_DMA_DESC_POOL_ADDR, NIC_SRAM_DMA_DESC_POOL_BASE);
tw32(BUFMGR_DMA_DESC_POOL_SIZE, NIC_SRAM_DMA_DESC_POOL_SIZE);
}
else if (tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE) {
int fw_len;
fw_len = tp->fw_len;
fw_len = (fw_len + (0x80 - 1)) & ~(0x80 - 1);
tw32(BUFMGR_MB_POOL_ADDR,
NIC_SRAM_MBUF_POOL_BASE5705 + fw_len);
tw32(BUFMGR_MB_POOL_SIZE,
NIC_SRAM_MBUF_POOL_SIZE5705 - fw_len - 0xa00);
}
if (tp->dev->mtu <= ETH_DATA_LEN) {
tw32(BUFMGR_MB_RDMA_LOW_WATER,
tp->bufmgr_config.mbuf_read_dma_low_water);
tw32(BUFMGR_MB_MACRX_LOW_WATER,
tp->bufmgr_config.mbuf_mac_rx_low_water);
tw32(BUFMGR_MB_HIGH_WATER,
tp->bufmgr_config.mbuf_high_water);
} else {
tw32(BUFMGR_MB_RDMA_LOW_WATER,
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo);
tw32(BUFMGR_MB_MACRX_LOW_WATER,
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo);
tw32(BUFMGR_MB_HIGH_WATER,
tp->bufmgr_config.mbuf_high_water_jumbo);
}
tw32(BUFMGR_DMA_LOW_WATER,
tp->bufmgr_config.dma_low_water);
tw32(BUFMGR_DMA_HIGH_WATER,
tp->bufmgr_config.dma_high_water);
tw32(BUFMGR_MODE, BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
for (i = 0; i < 2000; i++) {
if (tr32(BUFMGR_MODE) & BUFMGR_MODE_ENABLE)
break;
udelay(10);
}
if (i >= 2000) {
printk(KERN_ERR PFX "tg3_reset_hw cannot enable BUFMGR for %s.\n",
tp->dev->name);
return -ENODEV;
}
/* Setup replenish threshold. */
val = tp->rx_pending / 8;
if (val == 0)
val = 1;
else if (val > tp->rx_std_max_post)
val = tp->rx_std_max_post;
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
if (tp->pci_chip_rev_id == CHIPREV_ID_5906_A1)
tw32(ISO_PKT_TX, (tr32(ISO_PKT_TX) & ~0x3) | 0x2);
if (val > (TG3_RX_INTERNAL_RING_SZ_5906 / 2))
val = TG3_RX_INTERNAL_RING_SZ_5906 / 2;
}
tw32(RCVBDI_STD_THRESH, val);
/* Initialize TG3_BDINFO's at:
* RCVDBDI_STD_BD: standard eth size rx ring
* RCVDBDI_JUMBO_BD: jumbo frame rx ring
* RCVDBDI_MINI_BD: small frame rx ring (??? does not work)
*
* like so:
* TG3_BDINFO_HOST_ADDR: high/low parts of DMA address of ring
* TG3_BDINFO_MAXLEN_FLAGS: (rx max buffer size << 16) |
* ring attribute flags
* TG3_BDINFO_NIC_ADDR: location of descriptors in nic SRAM
*
* Standard receive ring @ NIC_SRAM_RX_BUFFER_DESC, 512 entries.
* Jumbo receive ring @ NIC_SRAM_RX_JUMBO_BUFFER_DESC, 256 entries.
*
* The size of each ring is fixed in the firmware, but the location is
* configurable.
*/
tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tpr->rx_std_mapping >> 32));
tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tpr->rx_std_mapping & 0xffffffff));
tw32(RCVDBDI_STD_BD + TG3_BDINFO_NIC_ADDR,
NIC_SRAM_RX_BUFFER_DESC);
/* Disable the mini ring */
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
tw32(RCVDBDI_MINI_BD + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Program the jumbo buffer descriptor ring control
* blocks on those devices that have them.
*/
if ((tp->tg3_flags & TG3_FLAG_JUMBO_CAPABLE) &&
!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) {
/* Setup replenish threshold. */
tw32(RCVBDI_JUMBO_THRESH, tp->rx_jumbo_pending / 8);
if (tp->tg3_flags & TG3_FLAG_JUMBO_RING_ENABLE) {
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tpr->rx_jmb_mapping >> 32));
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tpr->rx_jmb_mapping & 0xffffffff));
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
(RX_JUMBO_MAX_SIZE << BDINFO_FLAGS_MAXLEN_SHIFT) |
BDINFO_FLAGS_USE_EXT_RECV);
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_NIC_ADDR,
NIC_SRAM_RX_JUMBO_BUFFER_DESC);
} else {
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
val = (RX_STD_MAX_SIZE_5705 << BDINFO_FLAGS_MAXLEN_SHIFT) |
(RX_STD_MAX_SIZE << 2);
else
val = RX_STD_MAX_SIZE << BDINFO_FLAGS_MAXLEN_SHIFT;
} else
val = RX_STD_MAX_SIZE_5705 << BDINFO_FLAGS_MAXLEN_SHIFT;
tw32(RCVDBDI_STD_BD + TG3_BDINFO_MAXLEN_FLAGS, val);
tpr->rx_std_ptr = tp->rx_pending;
tw32_rx_mbox(MAILBOX_RCV_STD_PROD_IDX + TG3_64BIT_REG_LOW,
tpr->rx_std_ptr);
tpr->rx_jmb_ptr = (tp->tg3_flags & TG3_FLAG_JUMBO_RING_ENABLE) ?
tp->rx_jumbo_pending : 0;
tw32_rx_mbox(MAILBOX_RCV_JUMBO_PROD_IDX + TG3_64BIT_REG_LOW,
tpr->rx_jmb_ptr);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
tw32(STD_REPLENISH_LWM, 32);
tw32(JMB_REPLENISH_LWM, 16);
}
tg3_rings_reset(tp);
/* Initialize MAC address and backoff seed. */
__tg3_set_mac_addr(tp, 0);
/* MTU + ethernet header + FCS + optional VLAN tag */
tw32(MAC_RX_MTU_SIZE,
tp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
/* The slot time is changed by tg3_setup_phy if we
* run at gigabit with half duplex.
*/
tw32(MAC_TX_LENGTHS,
(2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT));
/* Receive rules. */
tw32(MAC_RCV_RULE_CFG, RCV_RULE_CFG_DEFAULT_CLASS);
tw32(RCVLPC_CONFIG, 0x0181);
/* Calculate RDMAC_MODE setting early, we need it to determine
* the RCVLPC_STATE_ENABLE mask.
*/
rdmac_mode = (RDMAC_MODE_ENABLE | RDMAC_MODE_TGTABORT_ENAB |
RDMAC_MODE_MSTABORT_ENAB | RDMAC_MODE_PARITYERR_ENAB |
RDMAC_MODE_ADDROFLOW_ENAB | RDMAC_MODE_FIFOOFLOW_ENAB |
RDMAC_MODE_FIFOURUN_ENAB | RDMAC_MODE_FIFOOREAD_ENAB |
RDMAC_MODE_LNGREAD_ENAB);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780)
rdmac_mode |= RDMAC_MODE_BD_SBD_CRPT_ENAB |
RDMAC_MODE_MBUF_RBD_CRPT_ENAB |
RDMAC_MODE_MBUF_SBD_CRPT_ENAB;
/* If statement applies to 5705 and 5750 PCI devices only */
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705 &&
tp->pci_chip_rev_id != CHIPREV_ID_5705_A0) ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750)) {
if (tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE &&
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) {
rdmac_mode |= RDMAC_MODE_FIFO_SIZE_128;
} else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
!(tp->tg3_flags2 & TG3_FLG2_IS_5788)) {
rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
}
}
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS)
rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO)
rdmac_mode |= RDMAC_MODE_IPV4_LSO_EN;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780)
rdmac_mode |= RDMAC_MODE_IPV6_LSO_EN;
/* Receive/send statistics. */
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS) {
val = tr32(RCVLPC_STATS_ENABLE);
val &= ~RCVLPC_STATSENAB_DACK_FIX;
tw32(RCVLPC_STATS_ENABLE, val);
} else if ((rdmac_mode & RDMAC_MODE_FIFO_SIZE_128) &&
(tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE)) {
val = tr32(RCVLPC_STATS_ENABLE);
val &= ~RCVLPC_STATSENAB_LNGBRST_RFIX;
tw32(RCVLPC_STATS_ENABLE, val);
} else {
tw32(RCVLPC_STATS_ENABLE, 0xffffff);
}
tw32(RCVLPC_STATSCTRL, RCVLPC_STATSCTRL_ENABLE);
tw32(SNDDATAI_STATSENAB, 0xffffff);
tw32(SNDDATAI_STATSCTRL,
(SNDDATAI_SCTRL_ENABLE |
SNDDATAI_SCTRL_FASTUPD));
/* Setup host coalescing engine. */
tw32(HOSTCC_MODE, 0);
for (i = 0; i < 2000; i++) {
if (!(tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE))
break;
udelay(10);
}
__tg3_set_coalesce(tp, &tp->coal);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
/* Status/statistics block address. See tg3_timer,
* the tg3_periodic_fetch_stats call there, and
* tg3_get_stats to see how this works for 5705/5750 chips.
*/
tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tp->stats_mapping >> 32));
tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tp->stats_mapping & 0xffffffff));
tw32(HOSTCC_STATS_BLK_NIC_ADDR, NIC_SRAM_STATS_BLK);
tw32(HOSTCC_STATUS_BLK_NIC_ADDR, NIC_SRAM_STATUS_BLK);
/* Clear statistics and status block memory areas */
for (i = NIC_SRAM_STATS_BLK;
i < NIC_SRAM_STATUS_BLK + TG3_HW_STATUS_SIZE;
i += sizeof(u32)) {
tg3_write_mem(tp, i, 0);
udelay(40);
}
}
tw32(HOSTCC_MODE, HOSTCC_MODE_ENABLE | tp->coalesce_mode);
tw32(RCVCC_MODE, RCVCC_MODE_ENABLE | RCVCC_MODE_ATTN_ENABLE);
tw32(RCVLPC_MODE, RCVLPC_MODE_ENABLE);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
tw32(RCVLSC_MODE, RCVLSC_MODE_ENABLE | RCVLSC_MODE_ATTN_ENABLE);
if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
/* reset to prevent losing 1st rx packet intermittently */
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
}
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)
tp->mac_mode &= MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
else
tp->mac_mode = 0;
tp->mac_mode |= MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE |
MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE | MAC_MODE_FHDE_ENABLE;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700)
tp->mac_mode |= MAC_MODE_LINK_POLARITY;
tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR);
udelay(40);
/* tp->grc_local_ctrl is partially set up during tg3_get_invariants().
* If TG3_FLG2_IS_NIC is zero, we should read the
* register to preserve the GPIO settings for LOMs. The GPIOs,
* whether used as inputs or outputs, are set by boot code after
* reset.
*/
if (!(tp->tg3_flags2 & TG3_FLG2_IS_NIC)) {
u32 gpio_mask;
gpio_mask = GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1 | GRC_LCLCTRL_GPIO_OUTPUT2;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752)
gpio_mask |= GRC_LCLCTRL_GPIO_OE3 |
GRC_LCLCTRL_GPIO_OUTPUT3;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755)
gpio_mask |= GRC_LCLCTRL_GPIO_UART_SEL;
tp->grc_local_ctrl &= ~gpio_mask;
tp->grc_local_ctrl |= tr32(GRC_LOCAL_CTRL) & gpio_mask;
/* GPIO1 must be driven high for eeprom write protect */
if (tp->tg3_flags & TG3_FLAG_EEPROM_WRITE_PROT)
tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1);
}
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(100);
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX) {
val = tr32(MSGINT_MODE);
val |= MSGINT_MODE_MULTIVEC_EN | MSGINT_MODE_ENABLE;
tw32(MSGINT_MODE, val);
}
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
tw32_f(DMAC_MODE, DMAC_MODE_ENABLE);
udelay(40);
}
val = (WDMAC_MODE_ENABLE | WDMAC_MODE_TGTABORT_ENAB |
WDMAC_MODE_MSTABORT_ENAB | WDMAC_MODE_PARITYERR_ENAB |
WDMAC_MODE_ADDROFLOW_ENAB | WDMAC_MODE_FIFOOFLOW_ENAB |
WDMAC_MODE_FIFOURUN_ENAB | WDMAC_MODE_FIFOOREAD_ENAB |
WDMAC_MODE_LNGREAD_ENAB);
/* If statement applies to 5705 and 5750 PCI devices only */
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705 &&
tp->pci_chip_rev_id != CHIPREV_ID_5705_A0) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750) {
if ((tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE) &&
(tp->pci_chip_rev_id == CHIPREV_ID_5705_A1 ||
tp->pci_chip_rev_id == CHIPREV_ID_5705_A2)) {
/* nothing */
} else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
!(tp->tg3_flags2 & TG3_FLG2_IS_5788) &&
!(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS)) {
val |= WDMAC_MODE_RX_ACCEL;
}
}
/* Enable host coalescing bug fix */
if (tp->tg3_flags3 & TG3_FLG3_5755_PLUS)
val |= WDMAC_MODE_STATUS_TAG_FIX;
tw32_f(WDMAC_MODE, val);
udelay(40);
if (tp->tg3_flags & TG3_FLAG_PCIX_MODE) {
u16 pcix_cmd;
pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
&pcix_cmd);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703) {
pcix_cmd &= ~PCI_X_CMD_MAX_READ;
pcix_cmd |= PCI_X_CMD_READ_2K;
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) {
pcix_cmd &= ~(PCI_X_CMD_MAX_SPLIT | PCI_X_CMD_MAX_READ);
pcix_cmd |= PCI_X_CMD_READ_2K;
}
pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
pcix_cmd);
}
tw32_f(RDMAC_MODE, rdmac_mode);
udelay(40);
tw32(RCVDCC_MODE, RCVDCC_MODE_ENABLE | RCVDCC_MODE_ATTN_ENABLE);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
tw32(MBFREE_MODE, MBFREE_MODE_ENABLE);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761)
tw32(SNDDATAC_MODE,
SNDDATAC_MODE_ENABLE | SNDDATAC_MODE_CDELAY);
else
tw32(SNDDATAC_MODE, SNDDATAC_MODE_ENABLE);
tw32(SNDBDC_MODE, SNDBDC_MODE_ENABLE | SNDBDC_MODE_ATTN_ENABLE);
tw32(RCVBDI_MODE, RCVBDI_MODE_ENABLE | RCVBDI_MODE_RCB_ATTN_ENAB);
tw32(RCVDBDI_MODE, RCVDBDI_MODE_ENABLE | RCVDBDI_MODE_INV_RING_SZ);
tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE);
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO)
tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE | 0x8);
val = SNDBDI_MODE_ENABLE | SNDBDI_MODE_ATTN_ENABLE;
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX)
val |= SNDBDI_MODE_MULTI_TXQ_EN;
tw32(SNDBDI_MODE, val);
tw32(SNDBDS_MODE, SNDBDS_MODE_ENABLE | SNDBDS_MODE_ATTN_ENABLE);
if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0) {
err = tg3_load_5701_a0_firmware_fix(tp);
if (err)
return err;
}
if (tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE) {
err = tg3_load_tso_firmware(tp);
if (err)
return err;
}
tp->tx_mode = TX_MODE_ENABLE;
tw32_f(MAC_TX_MODE, tp->tx_mode);
udelay(100);
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_RSS) {
u32 reg = MAC_RSS_INDIR_TBL_0;
u8 *ent = (u8 *)&val;
/* Setup the indirection table */
for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) {
int idx = i % sizeof(val);
ent[idx] = i % (tp->irq_cnt - 1);
if (idx == sizeof(val) - 1) {
tw32(reg, val);
reg += 4;
}
}
/* Setup the "secret" hash key. */
tw32(MAC_RSS_HASH_KEY_0, 0x5f865437);
tw32(MAC_RSS_HASH_KEY_1, 0xe4ac62cc);
tw32(MAC_RSS_HASH_KEY_2, 0x50103a45);
tw32(MAC_RSS_HASH_KEY_3, 0x36621985);
tw32(MAC_RSS_HASH_KEY_4, 0xbf14c0e8);
tw32(MAC_RSS_HASH_KEY_5, 0x1bc27a1e);
tw32(MAC_RSS_HASH_KEY_6, 0x84f4b556);
tw32(MAC_RSS_HASH_KEY_7, 0x094ea6fe);
tw32(MAC_RSS_HASH_KEY_8, 0x7dda01e7);
tw32(MAC_RSS_HASH_KEY_9, 0xc04d7481);
}
tp->rx_mode = RX_MODE_ENABLE;
if (tp->tg3_flags3 & TG3_FLG3_5755_PLUS)
tp->rx_mode |= RX_MODE_IPV6_CSUM_ENABLE;
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_RSS)
tp->rx_mode |= RX_MODE_RSS_ENABLE |
RX_MODE_RSS_ITBL_HASH_BITS_7 |
RX_MODE_RSS_IPV6_HASH_EN |
RX_MODE_RSS_TCP_IPV6_HASH_EN |
RX_MODE_RSS_IPV4_HASH_EN |
RX_MODE_RSS_TCP_IPV4_HASH_EN;
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
tw32(MAC_LED_CTRL, tp->led_ctrl);
tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
}
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) &&
!(tp->tg3_flags2 & TG3_FLG2_SERDES_PREEMPHASIS)) {
/* Set drive transmission level to 1.2V */
/* only if the signal pre-emphasis bit is not set */
val = tr32(MAC_SERDES_CFG);
val &= 0xfffff000;
val |= 0x880;
tw32(MAC_SERDES_CFG, val);
}
if (tp->pci_chip_rev_id == CHIPREV_ID_5703_A1)
tw32(MAC_SERDES_CFG, 0x616000);
}
/* Prevent chip from dropping frames when flow control
* is enabled.
*/
tw32_f(MAC_LOW_WMARK_MAX_RX_FRAME, 2);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 &&
(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)) {
/* Use hardware link auto-negotiation */
tp->tg3_flags2 |= TG3_FLG2_HW_AUTONEG;
}
if ((tp->tg3_flags2 & TG3_FLG2_MII_SERDES) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714)) {
u32 tmp;
tmp = tr32(SERDES_RX_CTRL);
tw32(SERDES_RX_CTRL, tmp | SERDES_RX_SIG_DETECT);
tp->grc_local_ctrl &= ~GRC_LCLCTRL_USE_EXT_SIG_DETECT;
tp->grc_local_ctrl |= GRC_LCLCTRL_USE_SIG_DETECT;
tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
}
if (!(tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB)) {
if (tp->link_config.phy_is_low_power) {
tp->link_config.phy_is_low_power = 0;
tp->link_config.speed = tp->link_config.orig_speed;
tp->link_config.duplex = tp->link_config.orig_duplex;
tp->link_config.autoneg = tp->link_config.orig_autoneg;
}
err = tg3_setup_phy(tp, 0);
if (err)
return err;
if (!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) &&
!(tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET)) {
u32 tmp;
/* Clear CRC stats. */
if (!tg3_readphy(tp, MII_TG3_TEST1, &tmp)) {
tg3_writephy(tp, MII_TG3_TEST1,
tmp | MII_TG3_TEST1_CRC_EN);
tg3_readphy(tp, 0x14, &tmp);
}
}
}
__tg3_set_rx_mode(tp->dev);
/* Initialize receive rules. */
tw32(MAC_RCV_RULE_0, 0xc2000000 & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_VALUE_0, 0xffffffff & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_RULE_1, 0x86000004 & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_VALUE_1, 0xffffffff & RCV_RULE_DISABLE_MASK);
if ((tp->tg3_flags2 & TG3_FLG2_5705_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS))
limit = 8;
else
limit = 16;
if (tp->tg3_flags & TG3_FLAG_ENABLE_ASF)
limit -= 4;
switch (limit) {
case 16:
tw32(MAC_RCV_RULE_15, 0); tw32(MAC_RCV_VALUE_15, 0);
case 15:
tw32(MAC_RCV_RULE_14, 0); tw32(MAC_RCV_VALUE_14, 0);
case 14:
tw32(MAC_RCV_RULE_13, 0); tw32(MAC_RCV_VALUE_13, 0);
case 13:
tw32(MAC_RCV_RULE_12, 0); tw32(MAC_RCV_VALUE_12, 0);
case 12:
tw32(MAC_RCV_RULE_11, 0); tw32(MAC_RCV_VALUE_11, 0);
case 11:
tw32(MAC_RCV_RULE_10, 0); tw32(MAC_RCV_VALUE_10, 0);
case 10:
tw32(MAC_RCV_RULE_9, 0); tw32(MAC_RCV_VALUE_9, 0);
case 9:
tw32(MAC_RCV_RULE_8, 0); tw32(MAC_RCV_VALUE_8, 0);
case 8:
tw32(MAC_RCV_RULE_7, 0); tw32(MAC_RCV_VALUE_7, 0);
case 7:
tw32(MAC_RCV_RULE_6, 0); tw32(MAC_RCV_VALUE_6, 0);
case 6:
tw32(MAC_RCV_RULE_5, 0); tw32(MAC_RCV_VALUE_5, 0);
case 5:
tw32(MAC_RCV_RULE_4, 0); tw32(MAC_RCV_VALUE_4, 0);
case 4:
/* tw32(MAC_RCV_RULE_3, 0); tw32(MAC_RCV_VALUE_3, 0); */
case 3:
/* tw32(MAC_RCV_RULE_2, 0); tw32(MAC_RCV_VALUE_2, 0); */
case 2:
case 1:
default:
break;
}
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)
/* Write our heartbeat update interval to APE. */
tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_INT_MS,
APE_HOST_HEARTBEAT_INT_DISABLE);
tg3_write_sig_post_reset(tp, RESET_KIND_INIT);
return 0;
}
/* Called at device open time to get the chip ready for
* packet processing. Invoked with tp->lock held.
*/
static int tg3_init_hw(struct tg3 *tp, int reset_phy)
{
tg3_switch_clocks(tp);
tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
return tg3_reset_hw(tp, reset_phy);
}
#define TG3_STAT_ADD32(PSTAT, REG) \
do { u32 __val = tr32(REG); \
(PSTAT)->low += __val; \
if ((PSTAT)->low < __val) \
(PSTAT)->high += 1; \
} while (0)
static void tg3_periodic_fetch_stats(struct tg3 *tp)
{
struct tg3_hw_stats *sp = tp->hw_stats;
if (!netif_carrier_ok(tp->dev))
return;
TG3_STAT_ADD32(&sp->tx_octets, MAC_TX_STATS_OCTETS);
TG3_STAT_ADD32(&sp->tx_collisions, MAC_TX_STATS_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_xon_sent, MAC_TX_STATS_XON_SENT);
TG3_STAT_ADD32(&sp->tx_xoff_sent, MAC_TX_STATS_XOFF_SENT);
TG3_STAT_ADD32(&sp->tx_mac_errors, MAC_TX_STATS_MAC_ERRORS);
TG3_STAT_ADD32(&sp->tx_single_collisions, MAC_TX_STATS_SINGLE_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_mult_collisions, MAC_TX_STATS_MULT_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_deferred, MAC_TX_STATS_DEFERRED);
TG3_STAT_ADD32(&sp->tx_excessive_collisions, MAC_TX_STATS_EXCESSIVE_COL);
TG3_STAT_ADD32(&sp->tx_late_collisions, MAC_TX_STATS_LATE_COL);
TG3_STAT_ADD32(&sp->tx_ucast_packets, MAC_TX_STATS_UCAST);
TG3_STAT_ADD32(&sp->tx_mcast_packets, MAC_TX_STATS_MCAST);
TG3_STAT_ADD32(&sp->tx_bcast_packets, MAC_TX_STATS_BCAST);
TG3_STAT_ADD32(&sp->rx_octets, MAC_RX_STATS_OCTETS);
TG3_STAT_ADD32(&sp->rx_fragments, MAC_RX_STATS_FRAGMENTS);
TG3_STAT_ADD32(&sp->rx_ucast_packets, MAC_RX_STATS_UCAST);
TG3_STAT_ADD32(&sp->rx_mcast_packets, MAC_RX_STATS_MCAST);
TG3_STAT_ADD32(&sp->rx_bcast_packets, MAC_RX_STATS_BCAST);
TG3_STAT_ADD32(&sp->rx_fcs_errors, MAC_RX_STATS_FCS_ERRORS);
TG3_STAT_ADD32(&sp->rx_align_errors, MAC_RX_STATS_ALIGN_ERRORS);
TG3_STAT_ADD32(&sp->rx_xon_pause_rcvd, MAC_RX_STATS_XON_PAUSE_RECVD);
TG3_STAT_ADD32(&sp->rx_xoff_pause_rcvd, MAC_RX_STATS_XOFF_PAUSE_RECVD);
TG3_STAT_ADD32(&sp->rx_mac_ctrl_rcvd, MAC_RX_STATS_MAC_CTRL_RECVD);
TG3_STAT_ADD32(&sp->rx_xoff_entered, MAC_RX_STATS_XOFF_ENTERED);
TG3_STAT_ADD32(&sp->rx_frame_too_long_errors, MAC_RX_STATS_FRAME_TOO_LONG);
TG3_STAT_ADD32(&sp->rx_jabbers, MAC_RX_STATS_JABBERS);
TG3_STAT_ADD32(&sp->rx_undersize_packets, MAC_RX_STATS_UNDERSIZE);
TG3_STAT_ADD32(&sp->rxbds_empty, RCVLPC_NO_RCV_BD_CNT);
TG3_STAT_ADD32(&sp->rx_discards, RCVLPC_IN_DISCARDS_CNT);
TG3_STAT_ADD32(&sp->rx_errors, RCVLPC_IN_ERRORS_CNT);
}
static void tg3_timer(unsigned long __opaque)
{
struct tg3 *tp = (struct tg3 *) __opaque;
if (tp->irq_sync)
goto restart_timer;
spin_lock(&tp->lock);
if (!(tp->tg3_flags & TG3_FLAG_TAGGED_STATUS)) {
/* All of this garbage is because when using non-tagged
* IRQ status the mailbox/status_block protocol the chip
* uses with the cpu is race prone.
*/
if (tp->napi[0].hw_status->status & SD_STATUS_UPDATED) {
tw32(GRC_LOCAL_CTRL,
tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
} else {
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE | HOSTCC_MODE_NOW);
}
if (!(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
tp->tg3_flags2 |= TG3_FLG2_RESTART_TIMER;
spin_unlock(&tp->lock);
schedule_work(&tp->reset_task);
return;
}
}
/* This part only runs once per second. */
if (!--tp->timer_counter) {
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS)
tg3_periodic_fetch_stats(tp);
if (tp->tg3_flags & TG3_FLAG_USE_LINKCHG_REG) {
u32 mac_stat;
int phy_event;
mac_stat = tr32(MAC_STATUS);
phy_event = 0;
if (tp->tg3_flags & TG3_FLAG_USE_MI_INTERRUPT) {
if (mac_stat & MAC_STATUS_MI_INTERRUPT)
phy_event = 1;
} else if (mac_stat & MAC_STATUS_LNKSTATE_CHANGED)
phy_event = 1;
if (phy_event)
tg3_setup_phy(tp, 0);
} else if (tp->tg3_flags & TG3_FLAG_POLL_SERDES) {
u32 mac_stat = tr32(MAC_STATUS);
int need_setup = 0;
if (netif_carrier_ok(tp->dev) &&
(mac_stat & MAC_STATUS_LNKSTATE_CHANGED)) {
need_setup = 1;
}
if (! netif_carrier_ok(tp->dev) &&
(mac_stat & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET))) {
need_setup = 1;
}
if (need_setup) {
if (!tp->serdes_counter) {
tw32_f(MAC_MODE,
(tp->mac_mode &
~MAC_MODE_PORT_MODE_MASK));
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
tg3_setup_phy(tp, 0);
}
} else if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES)
tg3_serdes_parallel_detect(tp);
tp->timer_counter = tp->timer_multiplier;
}
/* Heartbeat is only sent once every 2 seconds.
*
* The heartbeat is to tell the ASF firmware that the host
* driver is still alive. In the event that the OS crashes,
* ASF needs to reset the hardware to free up the FIFO space
* that may be filled with rx packets destined for the host.
* If the FIFO is full, ASF will no longer function properly.
*
* Unintended resets have been reported on real time kernels
* where the timer doesn't run on time. Netpoll will also have
* same problem.
*
* The new FWCMD_NICDRV_ALIVE3 command tells the ASF firmware
* to check the ring condition when the heartbeat is expiring
* before doing the reset. This will prevent most unintended
* resets.
*/
if (!--tp->asf_counter) {
if ((tp->tg3_flags & TG3_FLAG_ENABLE_ASF) &&
!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)) {
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX,
FWCMD_NICDRV_ALIVE3);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 4);
/* 5 seconds timeout */
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX, 5);
tg3_generate_fw_event(tp);
}
tp->asf_counter = tp->asf_multiplier;
}
spin_unlock(&tp->lock);
restart_timer:
tp->timer.expires = jiffies + tp->timer_offset;
add_timer(&tp->timer);
}
static int tg3_request_irq(struct tg3 *tp, int irq_num)
{
irq_handler_t fn;
unsigned long flags;
char *name;
struct tg3_napi *tnapi = &tp->napi[irq_num];
if (tp->irq_cnt == 1)
name = tp->dev->name;
else {
name = &tnapi->irq_lbl[0];
snprintf(name, IFNAMSIZ, "%s-%d", tp->dev->name, irq_num);
name[IFNAMSIZ-1] = 0;
}
if (tp->tg3_flags2 & TG3_FLG2_USING_MSI_OR_MSIX) {
fn = tg3_msi;
if (tp->tg3_flags2 & TG3_FLG2_1SHOT_MSI)
fn = tg3_msi_1shot;
flags = IRQF_SAMPLE_RANDOM;
} else {
fn = tg3_interrupt;
if (tp->tg3_flags & TG3_FLAG_TAGGED_STATUS)
fn = tg3_interrupt_tagged;
flags = IRQF_SHARED | IRQF_SAMPLE_RANDOM;
}
return request_irq(tnapi->irq_vec, fn, flags, name, tnapi);
}
static int tg3_test_interrupt(struct tg3 *tp)
{
struct tg3_napi *tnapi = &tp->napi[0];
struct net_device *dev = tp->dev;
int err, i, intr_ok = 0;
u32 val;
if (!netif_running(dev))
return -ENODEV;
tg3_disable_ints(tp);
free_irq(tnapi->irq_vec, tnapi);
/*
* Turn off MSI one shot mode. Otherwise this test has no
* observable way to know whether the interrupt was delivered.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717 &&
(tp->tg3_flags2 & TG3_FLG2_USING_MSI)) {
val = tr32(MSGINT_MODE) | MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, val);
}
err = request_irq(tnapi->irq_vec, tg3_test_isr,
IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, tnapi);
if (err)
return err;
tnapi->hw_status->status &= ~SD_STATUS_UPDATED;
tg3_enable_ints(tp);
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
tnapi->coal_now);
for (i = 0; i < 5; i++) {
u32 int_mbox, misc_host_ctrl;
int_mbox = tr32_mailbox(tnapi->int_mbox);
misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
if ((int_mbox != 0) ||
(misc_host_ctrl & MISC_HOST_CTRL_MASK_PCI_INT)) {
intr_ok = 1;
break;
}
msleep(10);
}
tg3_disable_ints(tp);
free_irq(tnapi->irq_vec, tnapi);
err = tg3_request_irq(tp, 0);
if (err)
return err;
if (intr_ok) {
/* Reenable MSI one shot mode. */
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717 &&
(tp->tg3_flags2 & TG3_FLG2_USING_MSI)) {
val = tr32(MSGINT_MODE) & ~MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, val);
}
return 0;
}
return -EIO;
}
/* Returns 0 if MSI test succeeds or MSI test fails and INTx mode is
* successfully restored
*/
static int tg3_test_msi(struct tg3 *tp)
{
int err;
u16 pci_cmd;
if (!(tp->tg3_flags2 & TG3_FLG2_USING_MSI))
return 0;
/* Turn off SERR reporting in case MSI terminates with Master
* Abort.
*/
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(tp->pdev, PCI_COMMAND,
pci_cmd & ~PCI_COMMAND_SERR);
err = tg3_test_interrupt(tp);
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
if (!err)
return 0;
/* other failures */
if (err != -EIO)
return err;
/* MSI test failed, go back to INTx mode */
printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
"switching to INTx mode. Please report this failure to "
"the PCI maintainer and include system chipset information.\n",
tp->dev->name);
free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
pci_disable_msi(tp->pdev);
tp->tg3_flags2 &= ~TG3_FLG2_USING_MSI;
err = tg3_request_irq(tp, 0);
if (err)
return err;
/* Need to reset the chip because the MSI cycle may have terminated
* with Master Abort.
*/
tg3_full_lock(tp, 1);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_init_hw(tp, 1);
tg3_full_unlock(tp);
if (err)
free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
return err;
}
static int tg3_request_firmware(struct tg3 *tp)
{
const __be32 *fw_data;
if (request_firmware(&tp->fw, tp->fw_needed, &tp->pdev->dev)) {
printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
tp->dev->name, tp->fw_needed);
return -ENOENT;
}
fw_data = (void *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
* start address and _full_ length including BSS sections
* (which must be longer than the actual data, of course
*/
tp->fw_len = be32_to_cpu(fw_data[2]); /* includes bss */
if (tp->fw_len < (tp->fw->size - 12)) {
printk(KERN_ERR "%s: bogus length %d in \"%s\"\n",
tp->dev->name, tp->fw_len, tp->fw_needed);
release_firmware(tp->fw);
tp->fw = NULL;
return -EINVAL;
}
/* We no longer need firmware; we have it. */
tp->fw_needed = NULL;
return 0;
}
static bool tg3_enable_msix(struct tg3 *tp)
{
int i, rc, cpus = num_online_cpus();
struct msix_entry msix_ent[tp->irq_max];
if (cpus == 1)
/* Just fallback to the simpler MSI mode. */
return false;
/*
* We want as many rx rings enabled as there are cpus.
* The first MSIX vector only deals with link interrupts, etc,
* so we add one to the number of vectors we are requesting.
*/
tp->irq_cnt = min_t(unsigned, cpus + 1, tp->irq_max);
for (i = 0; i < tp->irq_max; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
}
rc = pci_enable_msix(tp->pdev, msix_ent, tp->irq_cnt);
if (rc != 0) {
if (rc < TG3_RSS_MIN_NUM_MSIX_VECS)
return false;
if (pci_enable_msix(tp->pdev, msix_ent, rc))
return false;
printk(KERN_NOTICE
"%s: Requested %d MSI-X vectors, received %d\n",
tp->dev->name, tp->irq_cnt, rc);
tp->irq_cnt = rc;
}
tp->tg3_flags3 |= TG3_FLG3_ENABLE_RSS;
for (i = 0; i < tp->irq_max; i++)
tp->napi[i].irq_vec = msix_ent[i].vector;
tp->dev->real_num_tx_queues = tp->irq_cnt - 1;
return true;
}
static void tg3_ints_init(struct tg3 *tp)
{
if ((tp->tg3_flags & TG3_FLAG_SUPPORT_MSI_OR_MSIX) &&
!(tp->tg3_flags & TG3_FLAG_TAGGED_STATUS)) {
/* All MSI supporting chips should support tagged
* status. Assert that this is the case.
*/
printk(KERN_WARNING PFX "%s: MSI without TAGGED? "
"Not using MSI.\n", tp->dev->name);
goto defcfg;
}
if ((tp->tg3_flags & TG3_FLAG_SUPPORT_MSIX) && tg3_enable_msix(tp))
tp->tg3_flags2 |= TG3_FLG2_USING_MSIX;
else if ((tp->tg3_flags & TG3_FLAG_SUPPORT_MSI) &&
pci_enable_msi(tp->pdev) == 0)
tp->tg3_flags2 |= TG3_FLG2_USING_MSI;
if (tp->tg3_flags2 & TG3_FLG2_USING_MSI_OR_MSIX) {
u32 msi_mode = tr32(MSGINT_MODE);
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX)
msi_mode |= MSGINT_MODE_MULTIVEC_EN;
tw32(MSGINT_MODE, msi_mode | MSGINT_MODE_ENABLE);
}
defcfg:
if (!(tp->tg3_flags2 & TG3_FLG2_USING_MSIX)) {
tp->irq_cnt = 1;
tp->napi[0].irq_vec = tp->pdev->irq;
tp->dev->real_num_tx_queues = 1;
}
}
static void tg3_ints_fini(struct tg3 *tp)
{
if (tp->tg3_flags2 & TG3_FLG2_USING_MSIX)
pci_disable_msix(tp->pdev);
else if (tp->tg3_flags2 & TG3_FLG2_USING_MSI)
pci_disable_msi(tp->pdev);
tp->tg3_flags2 &= ~TG3_FLG2_USING_MSI_OR_MSIX;
tp->tg3_flags3 &= ~TG3_FLG3_ENABLE_RSS;
}
static int tg3_open(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
int i, err;
if (tp->fw_needed) {
err = tg3_request_firmware(tp);
if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0) {
if (err)
return err;
} else if (err) {
printk(KERN_WARNING "%s: TSO capability disabled.\n",
tp->dev->name);
tp->tg3_flags2 &= ~TG3_FLG2_TSO_CAPABLE;
} else if (!(tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE)) {
printk(KERN_NOTICE "%s: TSO capability restored.\n",
tp->dev->name);
tp->tg3_flags2 |= TG3_FLG2_TSO_CAPABLE;
}
}
netif_carrier_off(tp->dev);
err = tg3_set_power_state(tp, PCI_D0);
if (err)
return err;
tg3_full_lock(tp, 0);
tg3_disable_ints(tp);
tp->tg3_flags &= ~TG3_FLAG_INIT_COMPLETE;
tg3_full_unlock(tp);
/*
* Setup interrupts first so we know how
* many NAPI resources to allocate
*/
tg3_ints_init(tp);
/* The placement of this call is tied
* to the setup and use of Host TX descriptors.
*/
err = tg3_alloc_consistent(tp);
if (err)
goto err_out1;
tg3_napi_enable(tp);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
err = tg3_request_irq(tp, i);
if (err) {
for (i--; i >= 0; i--)
free_irq(tnapi->irq_vec, tnapi);
break;
}
}
if (err)
goto err_out2;
tg3_full_lock(tp, 0);
err = tg3_init_hw(tp, 1);
if (err) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
} else {
if (tp->tg3_flags & TG3_FLAG_TAGGED_STATUS)
tp->timer_offset = HZ;
else
tp->timer_offset = HZ / 10;
BUG_ON(tp->timer_offset > HZ);
tp->timer_counter = tp->timer_multiplier =
(HZ / tp->timer_offset);
tp->asf_counter = tp->asf_multiplier =
((HZ / tp->timer_offset) * 2);
init_timer(&tp->timer);
tp->timer.expires = jiffies + tp->timer_offset;
tp->timer.data = (unsigned long) tp;
tp->timer.function = tg3_timer;
}
tg3_full_unlock(tp);
if (err)
goto err_out3;
if (tp->tg3_flags2 & TG3_FLG2_USING_MSI) {
err = tg3_test_msi(tp);
if (err) {
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
tg3_full_unlock(tp);
goto err_out2;
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5717 &&
(tp->tg3_flags2 & TG3_FLG2_USING_MSI) &&
(tp->tg3_flags2 & TG3_FLG2_1SHOT_MSI)) {
u32 val = tr32(PCIE_TRANSACTION_CFG);
tw32(PCIE_TRANSACTION_CFG,
val | PCIE_TRANS_CFG_1SHOT_MSI);
}
}
tg3_phy_start(tp);
tg3_full_lock(tp, 0);
add_timer(&tp->timer);
tp->tg3_flags |= TG3_FLAG_INIT_COMPLETE;
tg3_enable_ints(tp);
tg3_full_unlock(tp);
netif_tx_start_all_queues(dev);
return 0;
err_out3:
for (i = tp->irq_cnt - 1; i >= 0; i--) {
struct tg3_napi *tnapi = &tp->napi[i];
free_irq(tnapi->irq_vec, tnapi);
}
err_out2:
tg3_napi_disable(tp);
tg3_free_consistent(tp);
err_out1:
tg3_ints_fini(tp);
return err;
}
#if 0
/*static*/ void tg3_dump_state(struct tg3 *tp)
{
u32 val32, val32_2, val32_3, val32_4, val32_5;
u16 val16;
int i;
struct tg3_hw_status *sblk = tp->napi[0]->hw_status;
pci_read_config_word(tp->pdev, PCI_STATUS, &val16);
pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE, &val32);
printk("DEBUG: PCI status [%04x] TG3PCI state[%08x]\n",
val16, val32);
/* MAC block */
printk("DEBUG: MAC_MODE[%08x] MAC_STATUS[%08x]\n",
tr32(MAC_MODE), tr32(MAC_STATUS));
printk(" MAC_EVENT[%08x] MAC_LED_CTRL[%08x]\n",
tr32(MAC_EVENT), tr32(MAC_LED_CTRL));
printk("DEBUG: MAC_TX_MODE[%08x] MAC_TX_STATUS[%08x]\n",
tr32(MAC_TX_MODE), tr32(MAC_TX_STATUS));
printk(" MAC_RX_MODE[%08x] MAC_RX_STATUS[%08x]\n",
tr32(MAC_RX_MODE), tr32(MAC_RX_STATUS));
/* Send data initiator control block */
printk("DEBUG: SNDDATAI_MODE[%08x] SNDDATAI_STATUS[%08x]\n",
tr32(SNDDATAI_MODE), tr32(SNDDATAI_STATUS));
printk(" SNDDATAI_STATSCTRL[%08x]\n",
tr32(SNDDATAI_STATSCTRL));
/* Send data completion control block */
printk("DEBUG: SNDDATAC_MODE[%08x]\n", tr32(SNDDATAC_MODE));
/* Send BD ring selector block */
printk("DEBUG: SNDBDS_MODE[%08x] SNDBDS_STATUS[%08x]\n",
tr32(SNDBDS_MODE), tr32(SNDBDS_STATUS));
/* Send BD initiator control block */
printk("DEBUG: SNDBDI_MODE[%08x] SNDBDI_STATUS[%08x]\n",
tr32(SNDBDI_MODE), tr32(SNDBDI_STATUS));
/* Send BD completion control block */
printk("DEBUG: SNDBDC_MODE[%08x]\n", tr32(SNDBDC_MODE));
/* Receive list placement control block */
printk("DEBUG: RCVLPC_MODE[%08x] RCVLPC_STATUS[%08x]\n",
tr32(RCVLPC_MODE), tr32(RCVLPC_STATUS));
printk(" RCVLPC_STATSCTRL[%08x]\n",
tr32(RCVLPC_STATSCTRL));
/* Receive data and receive BD initiator control block */
printk("DEBUG: RCVDBDI_MODE[%08x] RCVDBDI_STATUS[%08x]\n",
tr32(RCVDBDI_MODE), tr32(RCVDBDI_STATUS));
/* Receive data completion control block */
printk("DEBUG: RCVDCC_MODE[%08x]\n",
tr32(RCVDCC_MODE));
/* Receive BD initiator control block */
printk("DEBUG: RCVBDI_MODE[%08x] RCVBDI_STATUS[%08x]\n",
tr32(RCVBDI_MODE), tr32(RCVBDI_STATUS));
/* Receive BD completion control block */
printk("DEBUG: RCVCC_MODE[%08x] RCVCC_STATUS[%08x]\n",
tr32(RCVCC_MODE), tr32(RCVCC_STATUS));
/* Receive list selector control block */
printk("DEBUG: RCVLSC_MODE[%08x] RCVLSC_STATUS[%08x]\n",
tr32(RCVLSC_MODE), tr32(RCVLSC_STATUS));
/* Mbuf cluster free block */
printk("DEBUG: MBFREE_MODE[%08x] MBFREE_STATUS[%08x]\n",
tr32(MBFREE_MODE), tr32(MBFREE_STATUS));
/* Host coalescing control block */
printk("DEBUG: HOSTCC_MODE[%08x] HOSTCC_STATUS[%08x]\n",
tr32(HOSTCC_MODE), tr32(HOSTCC_STATUS));
printk("DEBUG: HOSTCC_STATS_BLK_HOST_ADDR[%08x%08x]\n",
tr32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH),
tr32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW));
printk("DEBUG: HOSTCC_STATUS_BLK_HOST_ADDR[%08x%08x]\n",
tr32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH),
tr32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW));
printk("DEBUG: HOSTCC_STATS_BLK_NIC_ADDR[%08x]\n",
tr32(HOSTCC_STATS_BLK_NIC_ADDR));
printk("DEBUG: HOSTCC_STATUS_BLK_NIC_ADDR[%08x]\n",
tr32(HOSTCC_STATUS_BLK_NIC_ADDR));
/* Memory arbiter control block */
printk("DEBUG: MEMARB_MODE[%08x] MEMARB_STATUS[%08x]\n",
tr32(MEMARB_MODE), tr32(MEMARB_STATUS));
/* Buffer manager control block */
printk("DEBUG: BUFMGR_MODE[%08x] BUFMGR_STATUS[%08x]\n",
tr32(BUFMGR_MODE), tr32(BUFMGR_STATUS));
printk("DEBUG: BUFMGR_MB_POOL_ADDR[%08x] BUFMGR_MB_POOL_SIZE[%08x]\n",
tr32(BUFMGR_MB_POOL_ADDR), tr32(BUFMGR_MB_POOL_SIZE));
printk("DEBUG: BUFMGR_DMA_DESC_POOL_ADDR[%08x] "
"BUFMGR_DMA_DESC_POOL_SIZE[%08x]\n",
tr32(BUFMGR_DMA_DESC_POOL_ADDR),
tr32(BUFMGR_DMA_DESC_POOL_SIZE));
/* Read DMA control block */
printk("DEBUG: RDMAC_MODE[%08x] RDMAC_STATUS[%08x]\n",
tr32(RDMAC_MODE), tr32(RDMAC_STATUS));
/* Write DMA control block */
printk("DEBUG: WDMAC_MODE[%08x] WDMAC_STATUS[%08x]\n",
tr32(WDMAC_MODE), tr32(WDMAC_STATUS));
/* DMA completion block */
printk("DEBUG: DMAC_MODE[%08x]\n",
tr32(DMAC_MODE));
/* GRC block */
printk("DEBUG: GRC_MODE[%08x] GRC_MISC_CFG[%08x]\n",
tr32(GRC_MODE), tr32(GRC_MISC_CFG));
printk("DEBUG: GRC_LOCAL_CTRL[%08x]\n",
tr32(GRC_LOCAL_CTRL));
/* TG3_BDINFOs */
printk("DEBUG: RCVDBDI_JUMBO_BD[%08x%08x:%08x:%08x]\n",
tr32(RCVDBDI_JUMBO_BD + 0x0),
tr32(RCVDBDI_JUMBO_BD + 0x4),
tr32(RCVDBDI_JUMBO_BD + 0x8),
tr32(RCVDBDI_JUMBO_BD + 0xc));
printk("DEBUG: RCVDBDI_STD_BD[%08x%08x:%08x:%08x]\n",
tr32(RCVDBDI_STD_BD + 0x0),
tr32(RCVDBDI_STD_BD + 0x4),
tr32(RCVDBDI_STD_BD + 0x8),
tr32(RCVDBDI_STD_BD + 0xc));
printk("DEBUG: RCVDBDI_MINI_BD[%08x%08x:%08x:%08x]\n",
tr32(RCVDBDI_MINI_BD + 0x0),
tr32(RCVDBDI_MINI_BD + 0x4),
tr32(RCVDBDI_MINI_BD + 0x8),
tr32(RCVDBDI_MINI_BD + 0xc));
tg3_read_mem(tp, NIC_SRAM_SEND_RCB + 0x0, &val32);
tg3_read_mem(tp, NIC_SRAM_SEND_RCB + 0x4, &val32_2);
tg3_read_mem(tp, NIC_SRAM_SEND_RCB + 0x8, &val32_3);
tg3_read_mem(tp, NIC_SRAM_SEND_RCB + 0xc, &val32_4);
printk("DEBUG: SRAM_SEND_RCB_0[%08x%08x:%08x:%08x]\n",
val32, val32_2, val32_3, val32_4);
tg3_read_mem(tp, NIC_SRAM_RCV_RET_RCB + 0x0, &val32);
tg3_read_mem(tp, NIC_SRAM_RCV_RET_RCB + 0x4, &val32_2);
tg3_read_mem(tp, NIC_SRAM_RCV_RET_RCB + 0x8, &val32_3);
tg3_read_mem(tp, NIC_SRAM_RCV_RET_RCB + 0xc, &val32_4);
printk("DEBUG: SRAM_RCV_RET_RCB_0[%08x%08x:%08x:%08x]\n",
val32, val32_2, val32_3, val32_4);
tg3_read_mem(tp, NIC_SRAM_STATUS_BLK + 0x0, &val32);
tg3_read_mem(tp, NIC_SRAM_STATUS_BLK + 0x4, &val32_2);
tg3_read_mem(tp, NIC_SRAM_STATUS_BLK + 0x8, &val32_3);
tg3_read_mem(tp, NIC_SRAM_STATUS_BLK + 0xc, &val32_4);
tg3_read_mem(tp, NIC_SRAM_STATUS_BLK + 0x10, &val32_5);
printk("DEBUG: SRAM_STATUS_BLK[%08x:%08x:%08x:%08x:%08x]\n",
val32, val32_2, val32_3, val32_4, val32_5);
/* SW status block */
printk(KERN_DEBUG
"Host status block [%08x:%08x:(%04x:%04x:%04x):(%04x:%04x)]\n",
sblk->status,
sblk->status_tag,
sblk->rx_jumbo_consumer,
sblk->rx_consumer,
sblk->rx_mini_consumer,
sblk->idx[0].rx_producer,
sblk->idx[0].tx_consumer);
/* SW statistics block */
printk("DEBUG: Host statistics block [%08x:%08x:%08x:%08x]\n",
((u32 *)tp->hw_stats)[0],
((u32 *)tp->hw_stats)[1],
((u32 *)tp->hw_stats)[2],
((u32 *)tp->hw_stats)[3]);
/* Mailboxes */
printk("DEBUG: SNDHOST_PROD[%08x%08x] SNDNIC_PROD[%08x%08x]\n",
tr32_mailbox(MAILBOX_SNDHOST_PROD_IDX_0 + 0x0),
tr32_mailbox(MAILBOX_SNDHOST_PROD_IDX_0 + 0x4),
tr32_mailbox(MAILBOX_SNDNIC_PROD_IDX_0 + 0x0),
tr32_mailbox(MAILBOX_SNDNIC_PROD_IDX_0 + 0x4));
/* NIC side send descriptors. */
for (i = 0; i < 6; i++) {
unsigned long txd;
txd = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_TX_BUFFER_DESC
+ (i * sizeof(struct tg3_tx_buffer_desc));
printk("DEBUG: NIC TXD(%d)[%08x:%08x:%08x:%08x]\n",
i,
readl(txd + 0x0), readl(txd + 0x4),
readl(txd + 0x8), readl(txd + 0xc));
}
/* NIC side RX descriptors. */
for (i = 0; i < 6; i++) {
unsigned long rxd;
rxd = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_RX_BUFFER_DESC
+ (i * sizeof(struct tg3_rx_buffer_desc));
printk("DEBUG: NIC RXD_STD(%d)[0][%08x:%08x:%08x:%08x]\n",
i,
readl(rxd + 0x0), readl(rxd + 0x4),
readl(rxd + 0x8), readl(rxd + 0xc));
rxd += (4 * sizeof(u32));
printk("DEBUG: NIC RXD_STD(%d)[1][%08x:%08x:%08x:%08x]\n",
i,
readl(rxd + 0x0), readl(rxd + 0x4),
readl(rxd + 0x8), readl(rxd + 0xc));
}
for (i = 0; i < 6; i++) {
unsigned long rxd;
rxd = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_RX_JUMBO_BUFFER_DESC
+ (i * sizeof(struct tg3_rx_buffer_desc));
printk("DEBUG: NIC RXD_JUMBO(%d)[0][%08x:%08x:%08x:%08x]\n",
i,
readl(rxd + 0x0), readl(rxd + 0x4),
readl(rxd + 0x8), readl(rxd + 0xc));
rxd += (4 * sizeof(u32));
printk("DEBUG: NIC RXD_JUMBO(%d)[1][%08x:%08x:%08x:%08x]\n",
i,
readl(rxd + 0x0), readl(rxd + 0x4),
readl(rxd + 0x8), readl(rxd + 0xc));
}
}
#endif
static struct net_device_stats *tg3_get_stats(struct net_device *);
static struct tg3_ethtool_stats *tg3_get_estats(struct tg3 *);
static int tg3_close(struct net_device *dev)
{
int i;
struct tg3 *tp = netdev_priv(dev);
tg3_napi_disable(tp);
cancel_work_sync(&tp->reset_task);
netif_tx_stop_all_queues(dev);
del_timer_sync(&tp->timer);
tg3_phy_stop(tp);
tg3_full_lock(tp, 1);
#if 0
tg3_dump_state(tp);
#endif
tg3_disable_ints(tp);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
tp->tg3_flags &= ~TG3_FLAG_INIT_COMPLETE;
tg3_full_unlock(tp);
for (i = tp->irq_cnt - 1; i >= 0; i--) {
struct tg3_napi *tnapi = &tp->napi[i];
free_irq(tnapi->irq_vec, tnapi);
}
tg3_ints_fini(tp);
memcpy(&tp->net_stats_prev, tg3_get_stats(tp->dev),
sizeof(tp->net_stats_prev));
memcpy(&tp->estats_prev, tg3_get_estats(tp),
sizeof(tp->estats_prev));
tg3_free_consistent(tp);
tg3_set_power_state(tp, PCI_D3hot);
netif_carrier_off(tp->dev);
return 0;
}
static inline unsigned long get_stat64(tg3_stat64_t *val)
{
unsigned long ret;
#if (BITS_PER_LONG == 32)
ret = val->low;
#else
ret = ((u64)val->high << 32) | ((u64)val->low);
#endif
return ret;
}
static inline u64 get_estat64(tg3_stat64_t *val)
{
return ((u64)val->high << 32) | ((u64)val->low);
}
static unsigned long calc_crc_errors(struct tg3 *tp)
{
struct tg3_hw_stats *hw_stats = tp->hw_stats;
if (!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)) {
u32 val;
spin_lock_bh(&tp->lock);
if (!tg3_readphy(tp, MII_TG3_TEST1, &val)) {
tg3_writephy(tp, MII_TG3_TEST1,
val | MII_TG3_TEST1_CRC_EN);
tg3_readphy(tp, 0x14, &val);
} else
val = 0;
spin_unlock_bh(&tp->lock);
tp->phy_crc_errors += val;
return tp->phy_crc_errors;
}
return get_stat64(&hw_stats->rx_fcs_errors);
}
#define ESTAT_ADD(member) \
estats->member = old_estats->member + \
get_estat64(&hw_stats->member)
static struct tg3_ethtool_stats *tg3_get_estats(struct tg3 *tp)
{
struct tg3_ethtool_stats *estats = &tp->estats;
struct tg3_ethtool_stats *old_estats = &tp->estats_prev;
struct tg3_hw_stats *hw_stats = tp->hw_stats;
if (!hw_stats)
return old_estats;
ESTAT_ADD(rx_octets);
ESTAT_ADD(rx_fragments);
ESTAT_ADD(rx_ucast_packets);
ESTAT_ADD(rx_mcast_packets);
ESTAT_ADD(rx_bcast_packets);
ESTAT_ADD(rx_fcs_errors);
ESTAT_ADD(rx_align_errors);
ESTAT_ADD(rx_xon_pause_rcvd);
ESTAT_ADD(rx_xoff_pause_rcvd);
ESTAT_ADD(rx_mac_ctrl_rcvd);
ESTAT_ADD(rx_xoff_entered);
ESTAT_ADD(rx_frame_too_long_errors);
ESTAT_ADD(rx_jabbers);
ESTAT_ADD(rx_undersize_packets);
ESTAT_ADD(rx_in_length_errors);
ESTAT_ADD(rx_out_length_errors);
ESTAT_ADD(rx_64_or_less_octet_packets);
ESTAT_ADD(rx_65_to_127_octet_packets);
ESTAT_ADD(rx_128_to_255_octet_packets);
ESTAT_ADD(rx_256_to_511_octet_packets);
ESTAT_ADD(rx_512_to_1023_octet_packets);
ESTAT_ADD(rx_1024_to_1522_octet_packets);
ESTAT_ADD(rx_1523_to_2047_octet_packets);
ESTAT_ADD(rx_2048_to_4095_octet_packets);
ESTAT_ADD(rx_4096_to_8191_octet_packets);
ESTAT_ADD(rx_8192_to_9022_octet_packets);
ESTAT_ADD(tx_octets);
ESTAT_ADD(tx_collisions);
ESTAT_ADD(tx_xon_sent);
ESTAT_ADD(tx_xoff_sent);
ESTAT_ADD(tx_flow_control);
ESTAT_ADD(tx_mac_errors);
ESTAT_ADD(tx_single_collisions);
ESTAT_ADD(tx_mult_collisions);
ESTAT_ADD(tx_deferred);
ESTAT_ADD(tx_excessive_collisions);
ESTAT_ADD(tx_late_collisions);
ESTAT_ADD(tx_collide_2times);
ESTAT_ADD(tx_collide_3times);
ESTAT_ADD(tx_collide_4times);
ESTAT_ADD(tx_collide_5times);
ESTAT_ADD(tx_collide_6times);
ESTAT_ADD(tx_collide_7times);
ESTAT_ADD(tx_collide_8times);
ESTAT_ADD(tx_collide_9times);
ESTAT_ADD(tx_collide_10times);
ESTAT_ADD(tx_collide_11times);
ESTAT_ADD(tx_collide_12times);
ESTAT_ADD(tx_collide_13times);
ESTAT_ADD(tx_collide_14times);
ESTAT_ADD(tx_collide_15times);
ESTAT_ADD(tx_ucast_packets);
ESTAT_ADD(tx_mcast_packets);
ESTAT_ADD(tx_bcast_packets);
ESTAT_ADD(tx_carrier_sense_errors);
ESTAT_ADD(tx_discards);
ESTAT_ADD(tx_errors);
ESTAT_ADD(dma_writeq_full);
ESTAT_ADD(dma_write_prioq_full);
ESTAT_ADD(rxbds_empty);
ESTAT_ADD(rx_discards);
ESTAT_ADD(rx_errors);
ESTAT_ADD(rx_threshold_hit);
ESTAT_ADD(dma_readq_full);
ESTAT_ADD(dma_read_prioq_full);
ESTAT_ADD(tx_comp_queue_full);
ESTAT_ADD(ring_set_send_prod_index);
ESTAT_ADD(ring_status_update);
ESTAT_ADD(nic_irqs);
ESTAT_ADD(nic_avoided_irqs);
ESTAT_ADD(nic_tx_threshold_hit);
return estats;
}
static struct net_device_stats *tg3_get_stats(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
struct net_device_stats *stats = &tp->net_stats;
struct net_device_stats *old_stats = &tp->net_stats_prev;
struct tg3_hw_stats *hw_stats = tp->hw_stats;
if (!hw_stats)
return old_stats;
stats->rx_packets = old_stats->rx_packets +
get_stat64(&hw_stats->rx_ucast_packets) +
get_stat64(&hw_stats->rx_mcast_packets) +
get_stat64(&hw_stats->rx_bcast_packets);
stats->tx_packets = old_stats->tx_packets +
get_stat64(&hw_stats->tx_ucast_packets) +
get_stat64(&hw_stats->tx_mcast_packets) +
get_stat64(&hw_stats->tx_bcast_packets);
stats->rx_bytes = old_stats->rx_bytes +
get_stat64(&hw_stats->rx_octets);
stats->tx_bytes = old_stats->tx_bytes +
get_stat64(&hw_stats->tx_octets);
stats->rx_errors = old_stats->rx_errors +
get_stat64(&hw_stats->rx_errors);
stats->tx_errors = old_stats->tx_errors +
get_stat64(&hw_stats->tx_errors) +
get_stat64(&hw_stats->tx_mac_errors) +
get_stat64(&hw_stats->tx_carrier_sense_errors) +
get_stat64(&hw_stats->tx_discards);
stats->multicast = old_stats->multicast +
get_stat64(&hw_stats->rx_mcast_packets);
stats->collisions = old_stats->collisions +
get_stat64(&hw_stats->tx_collisions);
stats->rx_length_errors = old_stats->rx_length_errors +
get_stat64(&hw_stats->rx_frame_too_long_errors) +
get_stat64(&hw_stats->rx_undersize_packets);
stats->rx_over_errors = old_stats->rx_over_errors +
get_stat64(&hw_stats->rxbds_empty);
stats->rx_frame_errors = old_stats->rx_frame_errors +
get_stat64(&hw_stats->rx_align_errors);
stats->tx_aborted_errors = old_stats->tx_aborted_errors +
get_stat64(&hw_stats->tx_discards);
stats->tx_carrier_errors = old_stats->tx_carrier_errors +
get_stat64(&hw_stats->tx_carrier_sense_errors);
stats->rx_crc_errors = old_stats->rx_crc_errors +
calc_crc_errors(tp);
stats->rx_missed_errors = old_stats->rx_missed_errors +
get_stat64(&hw_stats->rx_discards);
return stats;
}
static inline u32 calc_crc(unsigned char *buf, int len)
{
u32 reg;
u32 tmp;
int j, k;
reg = 0xffffffff;
for (j = 0; j < len; j++) {
reg ^= buf[j];
for (k = 0; k < 8; k++) {
tmp = reg & 0x01;
reg >>= 1;
if (tmp) {
reg ^= 0xedb88320;
}
}
}
return ~reg;
}
static void tg3_set_multi(struct tg3 *tp, unsigned int accept_all)
{
/* accept or reject all multicast frames */
tw32(MAC_HASH_REG_0, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_1, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_2, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_3, accept_all ? 0xffffffff : 0);
}
static void __tg3_set_rx_mode(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
u32 rx_mode;
rx_mode = tp->rx_mode & ~(RX_MODE_PROMISC |
RX_MODE_KEEP_VLAN_TAG);
/* When ASF is in use, we always keep the RX_MODE_KEEP_VLAN_TAG
* flag clear.
*/
#if TG3_VLAN_TAG_USED
if (!tp->vlgrp &&
!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))
rx_mode |= RX_MODE_KEEP_VLAN_TAG;
#else
/* By definition, VLAN is disabled always in this
* case.
*/
if (!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))
rx_mode |= RX_MODE_KEEP_VLAN_TAG;
#endif
if (dev->flags & IFF_PROMISC) {
/* Promiscuous mode. */
rx_mode |= RX_MODE_PROMISC;
} else if (dev->flags & IFF_ALLMULTI) {
/* Accept all multicast. */
tg3_set_multi (tp, 1);
} else if (dev->mc_count < 1) {
/* Reject all multicast. */
tg3_set_multi (tp, 0);
} else {
/* Accept one or more multicast(s). */
struct dev_mc_list *mclist;
unsigned int i;
u32 mc_filter[4] = { 0, };
u32 regidx;
u32 bit;
u32 crc;
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
crc = calc_crc (mclist->dmi_addr, ETH_ALEN);
bit = ~crc & 0x7f;
regidx = (bit & 0x60) >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
tw32(MAC_HASH_REG_0, mc_filter[0]);
tw32(MAC_HASH_REG_1, mc_filter[1]);
tw32(MAC_HASH_REG_2, mc_filter[2]);
tw32(MAC_HASH_REG_3, mc_filter[3]);
}
if (rx_mode != tp->rx_mode) {
tp->rx_mode = rx_mode;
tw32_f(MAC_RX_MODE, rx_mode);
udelay(10);
}
}
static void tg3_set_rx_mode(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
tg3_full_lock(tp, 0);
__tg3_set_rx_mode(dev);
tg3_full_unlock(tp);
}
#define TG3_REGDUMP_LEN (32 * 1024)
static int tg3_get_regs_len(struct net_device *dev)
{
return TG3_REGDUMP_LEN;
}
static void tg3_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *_p)
{
u32 *p = _p;
struct tg3 *tp = netdev_priv(dev);
u8 *orig_p = _p;
int i;
regs->version = 0;
memset(p, 0, TG3_REGDUMP_LEN);
if (tp->link_config.phy_is_low_power)
return;
tg3_full_lock(tp, 0);
#define __GET_REG32(reg) (*(p)++ = tr32(reg))
#define GET_REG32_LOOP(base,len) \
do { p = (u32 *)(orig_p + (base)); \
for (i = 0; i < len; i += 4) \
__GET_REG32((base) + i); \
} while (0)
#define GET_REG32_1(reg) \
do { p = (u32 *)(orig_p + (reg)); \
__GET_REG32((reg)); \
} while (0)
GET_REG32_LOOP(TG3PCI_VENDOR, 0xb0);
GET_REG32_LOOP(MAILBOX_INTERRUPT_0, 0x200);
GET_REG32_LOOP(MAC_MODE, 0x4f0);
GET_REG32_LOOP(SNDDATAI_MODE, 0xe0);
GET_REG32_1(SNDDATAC_MODE);
GET_REG32_LOOP(SNDBDS_MODE, 0x80);
GET_REG32_LOOP(SNDBDI_MODE, 0x48);
GET_REG32_1(SNDBDC_MODE);
GET_REG32_LOOP(RCVLPC_MODE, 0x20);
GET_REG32_LOOP(RCVLPC_SELLST_BASE, 0x15c);
GET_REG32_LOOP(RCVDBDI_MODE, 0x0c);
GET_REG32_LOOP(RCVDBDI_JUMBO_BD, 0x3c);
GET_REG32_LOOP(RCVDBDI_BD_PROD_IDX_0, 0x44);
GET_REG32_1(RCVDCC_MODE);
GET_REG32_LOOP(RCVBDI_MODE, 0x20);
GET_REG32_LOOP(RCVCC_MODE, 0x14);
GET_REG32_LOOP(RCVLSC_MODE, 0x08);
GET_REG32_1(MBFREE_MODE);
GET_REG32_LOOP(HOSTCC_MODE, 0x100);
GET_REG32_LOOP(MEMARB_MODE, 0x10);
GET_REG32_LOOP(BUFMGR_MODE, 0x58);
GET_REG32_LOOP(RDMAC_MODE, 0x08);
GET_REG32_LOOP(WDMAC_MODE, 0x08);
GET_REG32_1(RX_CPU_MODE);
GET_REG32_1(RX_CPU_STATE);
GET_REG32_1(RX_CPU_PGMCTR);
GET_REG32_1(RX_CPU_HWBKPT);
GET_REG32_1(TX_CPU_MODE);
GET_REG32_1(TX_CPU_STATE);
GET_REG32_1(TX_CPU_PGMCTR);
GET_REG32_LOOP(GRCMBOX_INTERRUPT_0, 0x110);
GET_REG32_LOOP(FTQ_RESET, 0x120);
GET_REG32_LOOP(MSGINT_MODE, 0x0c);
GET_REG32_1(DMAC_MODE);
GET_REG32_LOOP(GRC_MODE, 0x4c);
if (tp->tg3_flags & TG3_FLAG_NVRAM)
GET_REG32_LOOP(NVRAM_CMD, 0x24);
#undef __GET_REG32
#undef GET_REG32_LOOP
#undef GET_REG32_1
tg3_full_unlock(tp);
}
static int tg3_get_eeprom_len(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
return tp->nvram_size;
}
static int tg3_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
struct tg3 *tp = netdev_priv(dev);
int ret;
u8 *pd;
u32 i, offset, len, b_offset, b_count;
__be32 val;
if (tp->tg3_flags3 & TG3_FLG3_NO_NVRAM)
return -EINVAL;
if (tp->link_config.phy_is_low_power)
return -EAGAIN;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
eeprom->magic = TG3_EEPROM_MAGIC;
if (offset & 3) {
/* adjustments to start on required 4 byte boundary */
b_offset = offset & 3;
b_count = 4 - b_offset;
if (b_count > len) {
/* i.e. offset=1 len=2 */
b_count = len;
}
ret = tg3_nvram_read_be32(tp, offset-b_offset, &val);
if (ret)
return ret;
memcpy(data, ((char*)&val) + b_offset, b_count);
len -= b_count;
offset += b_count;
eeprom->len += b_count;
}
/* read bytes upto the last 4 byte boundary */
pd = &data[eeprom->len];
for (i = 0; i < (len - (len & 3)); i += 4) {
ret = tg3_nvram_read_be32(tp, offset + i, &val);
if (ret) {
eeprom->len += i;
return ret;
}
memcpy(pd + i, &val, 4);
}
eeprom->len += i;
if (len & 3) {
/* read last bytes not ending on 4 byte boundary */
pd = &data[eeprom->len];
b_count = len & 3;
b_offset = offset + len - b_count;
ret = tg3_nvram_read_be32(tp, b_offset, &val);
if (ret)
return ret;
memcpy(pd, &val, b_count);
eeprom->len += b_count;
}
return 0;
}
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf);
static int tg3_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
struct tg3 *tp = netdev_priv(dev);
int ret;
u32 offset, len, b_offset, odd_len;
u8 *buf;
__be32 start, end;
if (tp->link_config.phy_is_low_power)
return -EAGAIN;
if ((tp->tg3_flags3 & TG3_FLG3_NO_NVRAM) ||
eeprom->magic != TG3_EEPROM_MAGIC)
return -EINVAL;
offset = eeprom->offset;
len = eeprom->len;
if ((b_offset = (offset & 3))) {
/* adjustments to start on required 4 byte boundary */
ret = tg3_nvram_read_be32(tp, offset-b_offset, &start);
if (ret)
return ret;
len += b_offset;
offset &= ~3;
if (len < 4)
len = 4;
}
odd_len = 0;
if (len & 3) {
/* adjustments to end on required 4 byte boundary */
odd_len = 1;
len = (len + 3) & ~3;
ret = tg3_nvram_read_be32(tp, offset+len-4, &end);
if (ret)
return ret;
}
buf = data;
if (b_offset || odd_len) {
buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (b_offset)
memcpy(buf, &start, 4);
if (odd_len)
memcpy(buf+len-4, &end, 4);
memcpy(buf + b_offset, data, eeprom->len);
}
ret = tg3_nvram_write_block(tp, offset, len, buf);
if (buf != data)
kfree(buf);
return ret;
}
static int tg3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return -EAGAIN;
return phy_ethtool_gset(tp->mdio_bus->phy_map[PHY_ADDR], cmd);
}
cmd->supported = (SUPPORTED_Autoneg);
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY))
cmd->supported |= (SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
if (!(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES)) {
cmd->supported |= (SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_TP);
cmd->port = PORT_TP;
} else {
cmd->supported |= SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
}
cmd->advertising = tp->link_config.advertising;
if (netif_running(dev)) {
cmd->speed = tp->link_config.active_speed;
cmd->duplex = tp->link_config.active_duplex;
}
cmd->phy_address = tp->phy_addr;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = tp->link_config.autoneg;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
return 0;
}
static int tg3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return -EAGAIN;
return phy_ethtool_sset(tp->mdio_bus->phy_map[PHY_ADDR], cmd);
}
if (cmd->autoneg != AUTONEG_ENABLE &&
cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
cmd->duplex != DUPLEX_FULL &&
cmd->duplex != DUPLEX_HALF)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE) {
u32 mask = ADVERTISED_Autoneg |
ADVERTISED_Pause |
ADVERTISED_Asym_Pause;
if (!(tp->tg3_flags2 & TG3_FLAG_10_100_ONLY))
mask |= ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full;
if (!(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES))
mask |= ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_TP;
else
mask |= ADVERTISED_FIBRE;
if (cmd->advertising & ~mask)
return -EINVAL;
mask &= (ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full);
cmd->advertising &= mask;
} else {
if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES) {
if (cmd->speed != SPEED_1000)
return -EINVAL;
if (cmd->duplex != DUPLEX_FULL)
return -EINVAL;
} else {
if (cmd->speed != SPEED_100 &&
cmd->speed != SPEED_10)
return -EINVAL;
}
}
tg3_full_lock(tp, 0);
tp->link_config.autoneg = cmd->autoneg;
if (cmd->autoneg == AUTONEG_ENABLE) {
tp->link_config.advertising = (cmd->advertising |
ADVERTISED_Autoneg);
tp->link_config.speed = SPEED_INVALID;
tp->link_config.duplex = DUPLEX_INVALID;
} else {
tp->link_config.advertising = 0;
tp->link_config.speed = cmd->speed;
tp->link_config.duplex = cmd->duplex;
}
tp->link_config.orig_speed = tp->link_config.speed;
tp->link_config.orig_duplex = tp->link_config.duplex;
tp->link_config.orig_autoneg = tp->link_config.autoneg;
if (netif_running(dev))
tg3_setup_phy(tp, 1);
tg3_full_unlock(tp);
return 0;
}
static void tg3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tg3 *tp = netdev_priv(dev);
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
strcpy(info->fw_version, tp->fw_ver);
strcpy(info->bus_info, pci_name(tp->pdev));
}
static void tg3_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct tg3 *tp = netdev_priv(dev);
if ((tp->tg3_flags & TG3_FLAG_WOL_CAP) &&
device_can_wakeup(&tp->pdev->dev))
wol->supported = WAKE_MAGIC;
else
wol->supported = 0;
wol->wolopts = 0;
if ((tp->tg3_flags & TG3_FLAG_WOL_ENABLE) &&
device_can_wakeup(&tp->pdev->dev))
wol->wolopts = WAKE_MAGIC;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int tg3_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct tg3 *tp = netdev_priv(dev);
struct device *dp = &tp->pdev->dev;
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if ((wol->wolopts & WAKE_MAGIC) &&
!((tp->tg3_flags & TG3_FLAG_WOL_CAP) && device_can_wakeup(dp)))
return -EINVAL;
spin_lock_bh(&tp->lock);
if (wol->wolopts & WAKE_MAGIC) {
tp->tg3_flags |= TG3_FLAG_WOL_ENABLE;
device_set_wakeup_enable(dp, true);
} else {
tp->tg3_flags &= ~TG3_FLAG_WOL_ENABLE;
device_set_wakeup_enable(dp, false);
}
spin_unlock_bh(&tp->lock);
return 0;
}
static u32 tg3_get_msglevel(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void tg3_set_msglevel(struct net_device *dev, u32 value)
{
struct tg3 *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static int tg3_set_tso(struct net_device *dev, u32 value)
{
struct tg3 *tp = netdev_priv(dev);
if (!(tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE)) {
if (value)
return -EINVAL;
return 0;
}
if ((dev->features & NETIF_F_IPV6_CSUM) &&
(tp->tg3_flags2 & TG3_FLG2_HW_TSO_2)) {
if (value) {
dev->features |= NETIF_F_TSO6;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761 ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5784_AX) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
dev->features |= NETIF_F_TSO_ECN;
} else
dev->features &= ~(NETIF_F_TSO6 | NETIF_F_TSO_ECN);
}
return ethtool_op_set_tso(dev, value);
}
static int tg3_nway_reset(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
int r;
if (!netif_running(dev))
return -EAGAIN;
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)
return -EINVAL;
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return -EAGAIN;
r = phy_start_aneg(tp->mdio_bus->phy_map[PHY_ADDR]);
} else {
u32 bmcr;
spin_lock_bh(&tp->lock);
r = -EINVAL;
tg3_readphy(tp, MII_BMCR, &bmcr);
if (!tg3_readphy(tp, MII_BMCR, &bmcr) &&
((bmcr & BMCR_ANENABLE) ||
(tp->tg3_flags2 & TG3_FLG2_PARALLEL_DETECT))) {
tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART |
BMCR_ANENABLE);
r = 0;
}
spin_unlock_bh(&tp->lock);
}
return r;
}
static void tg3_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct tg3 *tp = netdev_priv(dev);
ering->rx_max_pending = TG3_RX_RING_SIZE - 1;
ering->rx_mini_max_pending = 0;
if (tp->tg3_flags & TG3_FLAG_JUMBO_RING_ENABLE)
ering->rx_jumbo_max_pending = TG3_RX_JUMBO_RING_SIZE - 1;
else
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TG3_TX_RING_SIZE - 1;
ering->rx_pending = tp->rx_pending;
ering->rx_mini_pending = 0;
if (tp->tg3_flags & TG3_FLAG_JUMBO_RING_ENABLE)
ering->rx_jumbo_pending = tp->rx_jumbo_pending;
else
ering->rx_jumbo_pending = 0;
ering->tx_pending = tp->napi[0].tx_pending;
}
static int tg3_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct tg3 *tp = netdev_priv(dev);
int i, irq_sync = 0, err = 0;
if ((ering->rx_pending > TG3_RX_RING_SIZE - 1) ||
(ering->rx_jumbo_pending > TG3_RX_JUMBO_RING_SIZE - 1) ||
(ering->tx_pending > TG3_TX_RING_SIZE - 1) ||
(ering->tx_pending <= MAX_SKB_FRAGS) ||
((tp->tg3_flags2 & TG3_FLG2_TSO_BUG) &&
(ering->tx_pending <= (MAX_SKB_FRAGS * 3))))
return -EINVAL;
if (netif_running(dev)) {
tg3_phy_stop(tp);
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
tp->rx_pending = ering->rx_pending;
if ((tp->tg3_flags2 & TG3_FLG2_MAX_RXPEND_64) &&
tp->rx_pending > 63)
tp->rx_pending = 63;
tp->rx_jumbo_pending = ering->rx_jumbo_pending;
for (i = 0; i < TG3_IRQ_MAX_VECS; i++)
tp->napi[i].tx_pending = ering->tx_pending;
if (netif_running(dev)) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_restart_hw(tp, 1);
if (!err)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
if (irq_sync && !err)
tg3_phy_start(tp);
return err;
}
static void tg3_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct tg3 *tp = netdev_priv(dev);
epause->autoneg = (tp->tg3_flags & TG3_FLAG_PAUSE_AUTONEG) != 0;
if (tp->link_config.active_flowctrl & FLOW_CTRL_RX)
epause->rx_pause = 1;
else
epause->rx_pause = 0;
if (tp->link_config.active_flowctrl & FLOW_CTRL_TX)
epause->tx_pause = 1;
else
epause->tx_pause = 0;
}
static int tg3_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct tg3 *tp = netdev_priv(dev);
int err = 0;
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return -EAGAIN;
if (epause->autoneg) {
u32 newadv;
struct phy_device *phydev;
phydev = tp->mdio_bus->phy_map[PHY_ADDR];
if (epause->rx_pause) {
if (epause->tx_pause)
newadv = ADVERTISED_Pause;
else
newadv = ADVERTISED_Pause |
ADVERTISED_Asym_Pause;
} else if (epause->tx_pause) {
newadv = ADVERTISED_Asym_Pause;
} else
newadv = 0;
if (tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED) {
u32 oldadv = phydev->advertising &
(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
if (oldadv != newadv) {
phydev->advertising &=
~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
phydev->advertising |= newadv;
err = phy_start_aneg(phydev);
}
} else {
tp->link_config.advertising &=
~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
tp->link_config.advertising |= newadv;
}
} else {
if (epause->rx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_RX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_RX;
if (epause->tx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_TX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_TX;
if (netif_running(dev))
tg3_setup_flow_control(tp, 0, 0);
}
} else {
int irq_sync = 0;
if (netif_running(dev)) {
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
if (epause->autoneg)
tp->tg3_flags |= TG3_FLAG_PAUSE_AUTONEG;
else
tp->tg3_flags &= ~TG3_FLAG_PAUSE_AUTONEG;
if (epause->rx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_RX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_RX;
if (epause->tx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_TX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_TX;
if (netif_running(dev)) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_restart_hw(tp, 1);
if (!err)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
}
return err;
}
static u32 tg3_get_rx_csum(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
return (tp->tg3_flags & TG3_FLAG_RX_CHECKSUMS) != 0;
}
static int tg3_set_rx_csum(struct net_device *dev, u32 data)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->tg3_flags & TG3_FLAG_BROKEN_CHECKSUMS) {
if (data != 0)
return -EINVAL;
return 0;
}
spin_lock_bh(&tp->lock);
if (data)
tp->tg3_flags |= TG3_FLAG_RX_CHECKSUMS;
else
tp->tg3_flags &= ~TG3_FLAG_RX_CHECKSUMS;
spin_unlock_bh(&tp->lock);
return 0;
}
static int tg3_set_tx_csum(struct net_device *dev, u32 data)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->tg3_flags & TG3_FLAG_BROKEN_CHECKSUMS) {
if (data != 0)
return -EINVAL;
return 0;
}
if (tp->tg3_flags3 & TG3_FLG3_5755_PLUS)
ethtool_op_set_tx_ipv6_csum(dev, data);
else
ethtool_op_set_tx_csum(dev, data);
return 0;
}
static int tg3_get_sset_count (struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return TG3_NUM_TEST;
case ETH_SS_STATS:
return TG3_NUM_STATS;
default:
return -EOPNOTSUPP;
}
}
static void tg3_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
break;
case ETH_SS_TEST:
memcpy(buf, &ethtool_test_keys, sizeof(ethtool_test_keys));
break;
default:
WARN_ON(1); /* we need a WARN() */
break;
}
}
static int tg3_phys_id(struct net_device *dev, u32 data)
{
struct tg3 *tp = netdev_priv(dev);
int i;
if (!netif_running(tp->dev))
return -EAGAIN;
if (data == 0)
data = UINT_MAX / 2;
for (i = 0; i < (data * 2); i++) {
if ((i % 2) == 0)
tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_1000MBPS_ON |
LED_CTRL_100MBPS_ON |
LED_CTRL_10MBPS_ON |
LED_CTRL_TRAFFIC_OVERRIDE |
LED_CTRL_TRAFFIC_BLINK |
LED_CTRL_TRAFFIC_LED);
else
tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_TRAFFIC_OVERRIDE);
if (msleep_interruptible(500))
break;
}
tw32(MAC_LED_CTRL, tp->led_ctrl);
return 0;
}
static void tg3_get_ethtool_stats (struct net_device *dev,
struct ethtool_stats *estats, u64 *tmp_stats)
{
struct tg3 *tp = netdev_priv(dev);
memcpy(tmp_stats, tg3_get_estats(tp), sizeof(tp->estats));
}
#define NVRAM_TEST_SIZE 0x100
#define NVRAM_SELFBOOT_FORMAT1_0_SIZE 0x14
#define NVRAM_SELFBOOT_FORMAT1_2_SIZE 0x18
#define NVRAM_SELFBOOT_FORMAT1_3_SIZE 0x1c
#define NVRAM_SELFBOOT_HW_SIZE 0x20
#define NVRAM_SELFBOOT_DATA_SIZE 0x1c
static int tg3_test_nvram(struct tg3 *tp)
{
u32 csum, magic;
__be32 *buf;
int i, j, k, err = 0, size;
if (tp->tg3_flags3 & TG3_FLG3_NO_NVRAM)
return 0;
if (tg3_nvram_read(tp, 0, &magic) != 0)
return -EIO;
if (magic == TG3_EEPROM_MAGIC)
size = NVRAM_TEST_SIZE;
else if ((magic & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) {
if ((magic & TG3_EEPROM_SB_FORMAT_MASK) ==
TG3_EEPROM_SB_FORMAT_1) {
switch (magic & TG3_EEPROM_SB_REVISION_MASK) {
case TG3_EEPROM_SB_REVISION_0:
size = NVRAM_SELFBOOT_FORMAT1_0_SIZE;
break;
case TG3_EEPROM_SB_REVISION_2:
size = NVRAM_SELFBOOT_FORMAT1_2_SIZE;
break;
case TG3_EEPROM_SB_REVISION_3:
size = NVRAM_SELFBOOT_FORMAT1_3_SIZE;
break;
default:
return 0;
}
} else
return 0;
} else if ((magic & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
size = NVRAM_SELFBOOT_HW_SIZE;
else
return -EIO;
buf = kmalloc(size, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
err = -EIO;
for (i = 0, j = 0; i < size; i += 4, j++) {
err = tg3_nvram_read_be32(tp, i, &buf[j]);
if (err)
break;
}
if (i < size)
goto out;
/* Selfboot format */
magic = be32_to_cpu(buf[0]);
if ((magic & TG3_EEPROM_MAGIC_FW_MSK) ==
TG3_EEPROM_MAGIC_FW) {
u8 *buf8 = (u8 *) buf, csum8 = 0;
if ((magic & TG3_EEPROM_SB_REVISION_MASK) ==
TG3_EEPROM_SB_REVISION_2) {
/* For rev 2, the csum doesn't include the MBA. */
for (i = 0; i < TG3_EEPROM_SB_F1R2_MBA_OFF; i++)
csum8 += buf8[i];
for (i = TG3_EEPROM_SB_F1R2_MBA_OFF + 4; i < size; i++)
csum8 += buf8[i];
} else {
for (i = 0; i < size; i++)
csum8 += buf8[i];
}
if (csum8 == 0) {
err = 0;
goto out;
}
err = -EIO;
goto out;
}
if ((magic & TG3_EEPROM_MAGIC_HW_MSK) ==
TG3_EEPROM_MAGIC_HW) {
u8 data[NVRAM_SELFBOOT_DATA_SIZE];
u8 parity[NVRAM_SELFBOOT_DATA_SIZE];
u8 *buf8 = (u8 *) buf;
/* Separate the parity bits and the data bytes. */
for (i = 0, j = 0, k = 0; i < NVRAM_SELFBOOT_HW_SIZE; i++) {
if ((i == 0) || (i == 8)) {
int l;
u8 msk;
for (l = 0, msk = 0x80; l < 7; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
}
else if (i == 16) {
int l;
u8 msk;
for (l = 0, msk = 0x20; l < 6; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
for (l = 0, msk = 0x80; l < 8; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
}
data[j++] = buf8[i];
}
err = -EIO;
for (i = 0; i < NVRAM_SELFBOOT_DATA_SIZE; i++) {
u8 hw8 = hweight8(data[i]);
if ((hw8 & 0x1) && parity[i])
goto out;
else if (!(hw8 & 0x1) && !parity[i])
goto out;
}
err = 0;
goto out;
}
/* Bootstrap checksum at offset 0x10 */
csum = calc_crc((unsigned char *) buf, 0x10);
if (csum != be32_to_cpu(buf[0x10/4]))
goto out;
/* Manufacturing block starts at offset 0x74, checksum at 0xfc */
csum = calc_crc((unsigned char *) &buf[0x74/4], 0x88);
if (csum != be32_to_cpu(buf[0xfc/4]))
goto out;
err = 0;
out:
kfree(buf);
return err;
}
#define TG3_SERDES_TIMEOUT_SEC 2
#define TG3_COPPER_TIMEOUT_SEC 6
static int tg3_test_link(struct tg3 *tp)
{
int i, max;
if (!netif_running(tp->dev))
return -ENODEV;
if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES)
max = TG3_SERDES_TIMEOUT_SEC;
else
max = TG3_COPPER_TIMEOUT_SEC;
for (i = 0; i < max; i++) {
if (netif_carrier_ok(tp->dev))
return 0;
if (msleep_interruptible(1000))
break;
}
return -EIO;
}
/* Only test the commonly used registers */
static int tg3_test_registers(struct tg3 *tp)
{
int i, is_5705, is_5750;
u32 offset, read_mask, write_mask, val, save_val, read_val;
static struct {
u16 offset;
u16 flags;
#define TG3_FL_5705 0x1
#define TG3_FL_NOT_5705 0x2
#define TG3_FL_NOT_5788 0x4
#define TG3_FL_NOT_5750 0x8
u32 read_mask;
u32 write_mask;
} reg_tbl[] = {
/* MAC Control Registers */
{ MAC_MODE, TG3_FL_NOT_5705,
0x00000000, 0x00ef6f8c },
{ MAC_MODE, TG3_FL_5705,
0x00000000, 0x01ef6b8c },
{ MAC_STATUS, TG3_FL_NOT_5705,
0x03800107, 0x00000000 },
{ MAC_STATUS, TG3_FL_5705,
0x03800100, 0x00000000 },
{ MAC_ADDR_0_HIGH, 0x0000,
0x00000000, 0x0000ffff },
{ MAC_ADDR_0_LOW, 0x0000,
0x00000000, 0xffffffff },
{ MAC_RX_MTU_SIZE, 0x0000,
0x00000000, 0x0000ffff },
{ MAC_TX_MODE, 0x0000,
0x00000000, 0x00000070 },
{ MAC_TX_LENGTHS, 0x0000,
0x00000000, 0x00003fff },
{ MAC_RX_MODE, TG3_FL_NOT_5705,
0x00000000, 0x000007fc },
{ MAC_RX_MODE, TG3_FL_5705,
0x00000000, 0x000007dc },
{ MAC_HASH_REG_0, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_1, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_2, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_3, 0x0000,
0x00000000, 0xffffffff },
/* Receive Data and Receive BD Initiator Control Registers. */
{ RCVDBDI_JUMBO_BD+0, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_JUMBO_BD+4, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_JUMBO_BD+8, TG3_FL_NOT_5705,
0x00000000, 0x00000003 },
{ RCVDBDI_JUMBO_BD+0xc, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+0, 0x0000,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+4, 0x0000,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+8, 0x0000,
0x00000000, 0xffff0002 },
{ RCVDBDI_STD_BD+0xc, 0x0000,
0x00000000, 0xffffffff },
/* Receive BD Initiator Control Registers. */
{ RCVBDI_STD_THRESH, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVBDI_STD_THRESH, TG3_FL_5705,
0x00000000, 0x000003ff },
{ RCVBDI_JUMBO_THRESH, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
/* Host Coalescing Control Registers. */
{ HOSTCC_MODE, TG3_FL_NOT_5705,
0x00000000, 0x00000004 },
{ HOSTCC_MODE, TG3_FL_5705,
0x00000000, 0x000000f6 },
{ HOSTCC_RXCOL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOL_TICKS, TG3_FL_5705,
0x00000000, 0x000003ff },
{ HOSTCC_TXCOL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOL_TICKS, TG3_FL_5705,
0x00000000, 0x000003ff },
{ HOSTCC_RXMAX_FRAMES, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_TXMAX_FRAMES, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_RXCOAL_TICK_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOAL_TICK_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOAL_MAXF_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_TXCOAL_MAXF_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_STAT_COAL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_HOST_ADDR, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_HOST_ADDR+4, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATUS_BLK_HOST_ADDR, 0x0000,
0x00000000, 0xffffffff },
{ HOSTCC_STATUS_BLK_HOST_ADDR+4, 0x0000,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_NIC_ADDR, 0x0000,
0xffffffff, 0x00000000 },
{ HOSTCC_STATUS_BLK_NIC_ADDR, 0x0000,
0xffffffff, 0x00000000 },
/* Buffer Manager Control Registers. */
{ BUFMGR_MB_POOL_ADDR, TG3_FL_NOT_5750,
0x00000000, 0x007fff80 },
{ BUFMGR_MB_POOL_SIZE, TG3_FL_NOT_5750,
0x00000000, 0x007fffff },
{ BUFMGR_MB_RDMA_LOW_WATER, 0x0000,
0x00000000, 0x0000003f },
{ BUFMGR_MB_MACRX_LOW_WATER, 0x0000,
0x00000000, 0x000001ff },
{ BUFMGR_MB_HIGH_WATER, 0x0000,
0x00000000, 0x000001ff },
{ BUFMGR_DMA_DESC_POOL_ADDR, TG3_FL_NOT_5705,
0xffffffff, 0x00000000 },
{ BUFMGR_DMA_DESC_POOL_SIZE, TG3_FL_NOT_5705,
0xffffffff, 0x00000000 },
/* Mailbox Registers */
{ GRCMBOX_RCVSTD_PROD_IDX+4, 0x0000,
0x00000000, 0x000001ff },
{ GRCMBOX_RCVJUMBO_PROD_IDX+4, TG3_FL_NOT_5705,
0x00000000, 0x000001ff },
{ GRCMBOX_RCVRET_CON_IDX_0+4, 0x0000,
0x00000000, 0x000007ff },
{ GRCMBOX_SNDHOST_PROD_IDX_0+4, 0x0000,
0x00000000, 0x000001ff },
{ 0xffff, 0x0000, 0x00000000, 0x00000000 },
};
is_5705 = is_5750 = 0;
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS) {
is_5705 = 1;
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS)
is_5750 = 1;
}
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
if (is_5705 && (reg_tbl[i].flags & TG3_FL_NOT_5705))
continue;
if (!is_5705 && (reg_tbl[i].flags & TG3_FL_5705))
continue;
if ((tp->tg3_flags2 & TG3_FLG2_IS_5788) &&
(reg_tbl[i].flags & TG3_FL_NOT_5788))
continue;
if (is_5750 && (reg_tbl[i].flags & TG3_FL_NOT_5750))
continue;
offset = (u32) reg_tbl[i].offset;
read_mask = reg_tbl[i].read_mask;
write_mask = reg_tbl[i].write_mask;
/* Save the original register content */
save_val = tr32(offset);
/* Determine the read-only value. */
read_val = save_val & read_mask;
/* Write zero to the register, then make sure the read-only bits
* are not changed and the read/write bits are all zeros.
*/
tw32(offset, 0);
val = tr32(offset);
/* Test the read-only and read/write bits. */
if (((val & read_mask) != read_val) || (val & write_mask))
goto out;
/* Write ones to all the bits defined by RdMask and WrMask, then
* make sure the read-only bits are not changed and the
* read/write bits are all ones.
*/
tw32(offset, read_mask | write_mask);
val = tr32(offset);
/* Test the read-only bits. */
if ((val & read_mask) != read_val)
goto out;
/* Test the read/write bits. */
if ((val & write_mask) != write_mask)
goto out;
tw32(offset, save_val);
}
return 0;
out:
if (netif_msg_hw(tp))
printk(KERN_ERR PFX "Register test failed at offset %x\n",
offset);
tw32(offset, save_val);
return -EIO;
}
static int tg3_do_mem_test(struct tg3 *tp, u32 offset, u32 len)
{
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0xaa55a55a };
int i;
u32 j;
for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
for (j = 0; j < len; j += 4) {
u32 val;
tg3_write_mem(tp, offset + j, test_pattern[i]);
tg3_read_mem(tp, offset + j, &val);
if (val != test_pattern[i])
return -EIO;
}
}
return 0;
}
static int tg3_test_memory(struct tg3 *tp)
{
static struct mem_entry {
u32 offset;
u32 len;
} mem_tbl_570x[] = {
{ 0x00000000, 0x00b50},
{ 0x00002000, 0x1c000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5705[] = {
{ 0x00000100, 0x0000c},
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00800},
{ 0x00006000, 0x01000},
{ 0x00008000, 0x02000},
{ 0x00010000, 0x0e000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5755[] = {
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00800},
{ 0x00006000, 0x00800},
{ 0x00008000, 0x02000},
{ 0x00010000, 0x0c000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5906[] = {
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00400},
{ 0x00006000, 0x00400},
{ 0x00008000, 0x01000},
{ 0x00010000, 0x01000},
{ 0xffffffff, 0x00000}
};
struct mem_entry *mem_tbl;
int err = 0;
int i;
if (tp->tg3_flags3 & TG3_FLG3_5755_PLUS)
mem_tbl = mem_tbl_5755;
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
mem_tbl = mem_tbl_5906;
else if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS)
mem_tbl = mem_tbl_5705;
else
mem_tbl = mem_tbl_570x;
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
if ((err = tg3_do_mem_test(tp, mem_tbl[i].offset,
mem_tbl[i].len)) != 0)
break;
}
return err;
}
#define TG3_MAC_LOOPBACK 0
#define TG3_PHY_LOOPBACK 1
static int tg3_run_loopback(struct tg3 *tp, int loopback_mode)
{
u32 mac_mode, rx_start_idx, rx_idx, tx_idx, opaque_key;
u32 desc_idx, coal_now;
struct sk_buff *skb, *rx_skb;
u8 *tx_data;
dma_addr_t map;
int num_pkts, tx_len, rx_len, i, err;
struct tg3_rx_buffer_desc *desc;
struct tg3_napi *tnapi, *rnapi;
struct tg3_rx_prodring_set *tpr = &tp->prodring[0];
if (tp->irq_cnt > 1) {
tnapi = &tp->napi[1];
rnapi = &tp->napi[1];
} else {
tnapi = &tp->napi[0];
rnapi = &tp->napi[0];
}
coal_now = tnapi->coal_now | rnapi->coal_now;
if (loopback_mode == TG3_MAC_LOOPBACK) {
/* HW errata - mac loopback fails in some cases on 5780.
* Normal traffic and PHY loopback are not affected by
* errata.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5780)
return 0;
mac_mode = (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK) |
MAC_MODE_PORT_INT_LPBACK;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
mac_mode |= MAC_MODE_LINK_POLARITY;
if (tp->tg3_flags & TG3_FLAG_10_100_ONLY)
mac_mode |= MAC_MODE_PORT_MODE_MII;
else
mac_mode |= MAC_MODE_PORT_MODE_GMII;
tw32(MAC_MODE, mac_mode);
} else if (loopback_mode == TG3_PHY_LOOPBACK) {
u32 val;
if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) {
tg3_phy_fet_toggle_apd(tp, false);
val = BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED100;
} else
val = BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
tg3_phy_toggle_automdix(tp, 0);
tg3_writephy(tp, MII_BMCR, val);
udelay(40);
mac_mode = tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK;
if (tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
tg3_writephy(tp, MII_TG3_FET_PTEST, 0x1800);
mac_mode |= MAC_MODE_PORT_MODE_MII;
} else
mac_mode |= MAC_MODE_PORT_MODE_GMII;
/* reset to prevent losing 1st rx packet intermittently */
if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
tw32_f(MAC_RX_MODE, tp->rx_mode);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700) {
if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401)
mac_mode &= ~MAC_MODE_LINK_POLARITY;
else if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5411)
mac_mode |= MAC_MODE_LINK_POLARITY;
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_LNK3_LED_MODE);
}
tw32(MAC_MODE, mac_mode);
}
else
return -EINVAL;
err = -EIO;
tx_len = 1514;
skb = netdev_alloc_skb(tp->dev, tx_len);
if (!skb)
return -ENOMEM;
tx_data = skb_put(skb, tx_len);
memcpy(tx_data, tp->dev->dev_addr, 6);
memset(tx_data + 6, 0x0, 8);
tw32(MAC_RX_MTU_SIZE, tx_len + 4);
for (i = 14; i < tx_len; i++)
tx_data[i] = (u8) (i & 0xff);
map = pci_map_single(tp->pdev, skb->data, tx_len, PCI_DMA_TODEVICE);
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
rnapi->coal_now);
udelay(10);
rx_start_idx = rnapi->hw_status->idx[0].rx_producer;
num_pkts = 0;
tg3_set_txd(tnapi, tnapi->tx_prod, map, tx_len, 0, 1);
tnapi->tx_prod++;
num_pkts++;
tw32_tx_mbox(tnapi->prodmbox, tnapi->tx_prod);
tr32_mailbox(tnapi->prodmbox);
udelay(10);
/* 250 usec to allow enough time on some 10/100 Mbps devices. */
for (i = 0; i < 25; i++) {
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
coal_now);
udelay(10);
tx_idx = tnapi->hw_status->idx[0].tx_consumer;
rx_idx = rnapi->hw_status->idx[0].rx_producer;
if ((tx_idx == tnapi->tx_prod) &&
(rx_idx == (rx_start_idx + num_pkts)))
break;
}
pci_unmap_single(tp->pdev, map, tx_len, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
if (tx_idx != tnapi->tx_prod)
goto out;
if (rx_idx != rx_start_idx + num_pkts)
goto out;
desc = &rnapi->rx_rcb[rx_start_idx];
desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
if (opaque_key != RXD_OPAQUE_RING_STD)
goto out;
if ((desc->err_vlan & RXD_ERR_MASK) != 0 &&
(desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII))
goto out;
rx_len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) - 4;
if (rx_len != tx_len)
goto out;
rx_skb = tpr->rx_std_buffers[desc_idx].skb;
map = pci_unmap_addr(&tpr->rx_std_buffers[desc_idx], mapping);
pci_dma_sync_single_for_cpu(tp->pdev, map, rx_len, PCI_DMA_FROMDEVICE);
for (i = 14; i < tx_len; i++) {
if (*(rx_skb->data + i) != (u8) (i & 0xff))
goto out;
}
err = 0;
/* tg3_free_rings will unmap and free the rx_skb */
out:
return err;
}
#define TG3_MAC_LOOPBACK_FAILED 1
#define TG3_PHY_LOOPBACK_FAILED 2
#define TG3_LOOPBACK_FAILED (TG3_MAC_LOOPBACK_FAILED | \
TG3_PHY_LOOPBACK_FAILED)
static int tg3_test_loopback(struct tg3 *tp)
{
int err = 0;
u32 cpmuctrl = 0;
if (!netif_running(tp->dev))
return TG3_LOOPBACK_FAILED;
err = tg3_reset_hw(tp, 1);
if (err)
return TG3_LOOPBACK_FAILED;
/* Turn off gphy autopowerdown. */
if (tp->tg3_flags3 & TG3_FLG3_PHY_ENABLE_APD)
tg3_phy_toggle_apd(tp, false);
if (tp->tg3_flags & TG3_FLAG_CPMU_PRESENT) {
int i;
u32 status;
tw32(TG3_CPMU_MUTEX_REQ, CPMU_MUTEX_REQ_DRIVER);
/* Wait for up to 40 microseconds to acquire lock. */
for (i = 0; i < 4; i++) {
status = tr32(TG3_CPMU_MUTEX_GNT);
if (status == CPMU_MUTEX_GNT_DRIVER)
break;
udelay(10);
}
if (status != CPMU_MUTEX_GNT_DRIVER)
return TG3_LOOPBACK_FAILED;
/* Turn off link-based power management. */
cpmuctrl = tr32(TG3_CPMU_CTRL);
tw32(TG3_CPMU_CTRL,
cpmuctrl & ~(CPMU_CTRL_LINK_SPEED_MODE |
CPMU_CTRL_LINK_AWARE_MODE));
}
if (tg3_run_loopback(tp, TG3_MAC_LOOPBACK))
err |= TG3_MAC_LOOPBACK_FAILED;
if (tp->tg3_flags & TG3_FLAG_CPMU_PRESENT) {
tw32(TG3_CPMU_CTRL, cpmuctrl);
/* Release the mutex */
tw32(TG3_CPMU_MUTEX_GNT, CPMU_MUTEX_GNT_DRIVER);
}
if (!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) &&
!(tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB)) {
if (tg3_run_loopback(tp, TG3_PHY_LOOPBACK))
err |= TG3_PHY_LOOPBACK_FAILED;
}
/* Re-enable gphy autopowerdown. */
if (tp->tg3_flags3 & TG3_FLG3_PHY_ENABLE_APD)
tg3_phy_toggle_apd(tp, true);
return err;
}
static void tg3_self_test(struct net_device *dev, struct ethtool_test *etest,
u64 *data)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->link_config.phy_is_low_power)
tg3_set_power_state(tp, PCI_D0);
memset(data, 0, sizeof(u64) * TG3_NUM_TEST);
if (tg3_test_nvram(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[0] = 1;
}
if (tg3_test_link(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[1] = 1;
}
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int err, err2 = 0, irq_sync = 0;
if (netif_running(dev)) {
tg3_phy_stop(tp);
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
tg3_halt(tp, RESET_KIND_SUSPEND, 1);
err = tg3_nvram_lock(tp);
tg3_halt_cpu(tp, RX_CPU_BASE);
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
tg3_halt_cpu(tp, TX_CPU_BASE);
if (!err)
tg3_nvram_unlock(tp);
if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES)
tg3_phy_reset(tp);
if (tg3_test_registers(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[2] = 1;
}
if (tg3_test_memory(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[3] = 1;
}
if ((data[4] = tg3_test_loopback(tp)) != 0)
etest->flags |= ETH_TEST_FL_FAILED;
tg3_full_unlock(tp);
if (tg3_test_interrupt(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[5] = 1;
}
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
if (netif_running(dev)) {
tp->tg3_flags |= TG3_FLAG_INIT_COMPLETE;
err2 = tg3_restart_hw(tp, 1);
if (!err2)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
if (irq_sync && !err2)
tg3_phy_start(tp);
}
if (tp->link_config.phy_is_low_power)
tg3_set_power_state(tp, PCI_D3hot);
}
static int tg3_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct tg3 *tp = netdev_priv(dev);
int err;
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
if (!(tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED))
return -EAGAIN;
return phy_mii_ioctl(tp->mdio_bus->phy_map[PHY_ADDR], data, cmd);
}
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = tp->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u32 mii_regval;
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)
break; /* We have no PHY */
if (tp->link_config.phy_is_low_power)
return -EAGAIN;
spin_lock_bh(&tp->lock);
err = tg3_readphy(tp, data->reg_num & 0x1f, &mii_regval);
spin_unlock_bh(&tp->lock);
data->val_out = mii_regval;
return err;
}
case SIOCSMIIREG:
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)
break; /* We have no PHY */
if (tp->link_config.phy_is_low_power)
return -EAGAIN;
spin_lock_bh(&tp->lock);
err = tg3_writephy(tp, data->reg_num & 0x1f, data->val_in);
spin_unlock_bh(&tp->lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
#if TG3_VLAN_TAG_USED
static void tg3_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct tg3 *tp = netdev_priv(dev);
if (!netif_running(dev)) {
tp->vlgrp = grp;
return;
}
tg3_netif_stop(tp);
tg3_full_lock(tp, 0);
tp->vlgrp = grp;
/* Update RX_MODE_KEEP_VLAN_TAG bit in RX_MODE register. */
__tg3_set_rx_mode(dev);
tg3_netif_start(tp);
tg3_full_unlock(tp);
}
#endif
static int tg3_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct tg3 *tp = netdev_priv(dev);
memcpy(ec, &tp->coal, sizeof(*ec));
return 0;
}
static int tg3_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct tg3 *tp = netdev_priv(dev);
u32 max_rxcoal_tick_int = 0, max_txcoal_tick_int = 0;
u32 max_stat_coal_ticks = 0, min_stat_coal_ticks = 0;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS)) {
max_rxcoal_tick_int = MAX_RXCOAL_TICK_INT;
max_txcoal_tick_int = MAX_TXCOAL_TICK_INT;
max_stat_coal_ticks = MAX_STAT_COAL_TICKS;
min_stat_coal_ticks = MIN_STAT_COAL_TICKS;
}
if ((ec->rx_coalesce_usecs > MAX_RXCOL_TICKS) ||
(ec->tx_coalesce_usecs > MAX_TXCOL_TICKS) ||
(ec->rx_max_coalesced_frames > MAX_RXMAX_FRAMES) ||
(ec->tx_max_coalesced_frames > MAX_TXMAX_FRAMES) ||
(ec->rx_coalesce_usecs_irq > max_rxcoal_tick_int) ||
(ec->tx_coalesce_usecs_irq > max_txcoal_tick_int) ||
(ec->rx_max_coalesced_frames_irq > MAX_RXCOAL_MAXF_INT) ||
(ec->tx_max_coalesced_frames_irq > MAX_TXCOAL_MAXF_INT) ||
(ec->stats_block_coalesce_usecs > max_stat_coal_ticks) ||
(ec->stats_block_coalesce_usecs < min_stat_coal_ticks))
return -EINVAL;
/* No rx interrupts will be generated if both are zero */
if ((ec->rx_coalesce_usecs == 0) &&
(ec->rx_max_coalesced_frames == 0))
return -EINVAL;
/* No tx interrupts will be generated if both are zero */
if ((ec->tx_coalesce_usecs == 0) &&
(ec->tx_max_coalesced_frames == 0))
return -EINVAL;
/* Only copy relevant parameters, ignore all others. */
tp->coal.rx_coalesce_usecs = ec->rx_coalesce_usecs;
tp->coal.tx_coalesce_usecs = ec->tx_coalesce_usecs;
tp->coal.rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
tp->coal.tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
tp->coal.rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
tp->coal.tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
tp->coal.rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
tp->coal.tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
tp->coal.stats_block_coalesce_usecs = ec->stats_block_coalesce_usecs;
if (netif_running(dev)) {
tg3_full_lock(tp, 0);
__tg3_set_coalesce(tp, &tp->coal);
tg3_full_unlock(tp);
}
return 0;
}
static const struct ethtool_ops tg3_ethtool_ops = {
.get_settings = tg3_get_settings,
.set_settings = tg3_set_settings,
.get_drvinfo = tg3_get_drvinfo,
.get_regs_len = tg3_get_regs_len,
.get_regs = tg3_get_regs,
.get_wol = tg3_get_wol,
.set_wol = tg3_set_wol,
.get_msglevel = tg3_get_msglevel,
.set_msglevel = tg3_set_msglevel,
.nway_reset = tg3_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = tg3_get_eeprom_len,
.get_eeprom = tg3_get_eeprom,
.set_eeprom = tg3_set_eeprom,
.get_ringparam = tg3_get_ringparam,
.set_ringparam = tg3_set_ringparam,
.get_pauseparam = tg3_get_pauseparam,
.set_pauseparam = tg3_set_pauseparam,
.get_rx_csum = tg3_get_rx_csum,
.set_rx_csum = tg3_set_rx_csum,
.set_tx_csum = tg3_set_tx_csum,
.set_sg = ethtool_op_set_sg,
.set_tso = tg3_set_tso,
.self_test = tg3_self_test,
.get_strings = tg3_get_strings,
.phys_id = tg3_phys_id,
.get_ethtool_stats = tg3_get_ethtool_stats,
.get_coalesce = tg3_get_coalesce,
.set_coalesce = tg3_set_coalesce,
.get_sset_count = tg3_get_sset_count,
};
static void __devinit tg3_get_eeprom_size(struct tg3 *tp)
{
u32 cursize, val, magic;
tp->nvram_size = EEPROM_CHIP_SIZE;
if (tg3_nvram_read(tp, 0, &magic) != 0)
return;
if ((magic != TG3_EEPROM_MAGIC) &&
((magic & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW) &&
((magic & TG3_EEPROM_MAGIC_HW_MSK) != TG3_EEPROM_MAGIC_HW))
return;
/*
* Size the chip by reading offsets at increasing powers of two.
* When we encounter our validation signature, we know the addressing
* has wrapped around, and thus have our chip size.
*/
cursize = 0x10;
while (cursize < tp->nvram_size) {
if (tg3_nvram_read(tp, cursize, &val) != 0)
return;
if (val == magic)
break;
cursize <<= 1;
}
tp->nvram_size = cursize;
}
static void __devinit tg3_get_nvram_size(struct tg3 *tp)
{
u32 val;
if ((tp->tg3_flags3 & TG3_FLG3_NO_NVRAM) ||
tg3_nvram_read(tp, 0, &val) != 0)
return;
/* Selfboot format */
if (val != TG3_EEPROM_MAGIC) {
tg3_get_eeprom_size(tp);
return;
}
if (tg3_nvram_read(tp, 0xf0, &val) == 0) {
if (val != 0) {
/* This is confusing. We want to operate on the
* 16-bit value at offset 0xf2. The tg3_nvram_read()
* call will read from NVRAM and byteswap the data
* according to the byteswapping settings for all
* other register accesses. This ensures the data we
* want will always reside in the lower 16-bits.
* However, the data in NVRAM is in LE format, which
* means the data from the NVRAM read will always be
* opposite the endianness of the CPU. The 16-bit
* byteswap then brings the data to CPU endianness.
*/
tp->nvram_size = swab16((u16)(val & 0x0000ffff)) * 1024;
return;
}
}
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
}
static void __devinit tg3_get_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
if (nvcfg1 & NVRAM_CFG1_FLASHIF_ENAB) {
tp->tg3_flags2 |= TG3_FLG2_FLASH;
} else {
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
}
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) {
switch (nvcfg1 & NVRAM_CFG1_VENDOR_MASK) {
case FLASH_VENDOR_ATMEL_FLASH_BUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
break;
case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT25F512_PAGE_SIZE;
break;
case FLASH_VENDOR_ATMEL_EEPROM:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
break;
case FLASH_VENDOR_ST:
tp->nvram_jedecnum = JEDEC_ST;
tp->nvram_pagesize = ST_M45PEX0_PAGE_SIZE;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
break;
case FLASH_VENDOR_SAIFUN:
tp->nvram_jedecnum = JEDEC_SAIFUN;
tp->nvram_pagesize = SAIFUN_SA25F0XX_PAGE_SIZE;
break;
case FLASH_VENDOR_SST_SMALL:
case FLASH_VENDOR_SST_LARGE:
tp->nvram_jedecnum = JEDEC_SST;
tp->nvram_pagesize = SST_25VF0X0_PAGE_SIZE;
break;
}
} else {
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
}
}
static void __devinit tg3_nvram_get_pagesize(struct tg3 *tp, u32 nvmcfg1)
{
switch (nvmcfg1 & NVRAM_CFG1_5752PAGE_SIZE_MASK) {
case FLASH_5752PAGE_SIZE_256:
tp->nvram_pagesize = 256;
break;
case FLASH_5752PAGE_SIZE_512:
tp->nvram_pagesize = 512;
break;
case FLASH_5752PAGE_SIZE_1K:
tp->nvram_pagesize = 1024;
break;
case FLASH_5752PAGE_SIZE_2K:
tp->nvram_pagesize = 2048;
break;
case FLASH_5752PAGE_SIZE_4K:
tp->nvram_pagesize = 4096;
break;
case FLASH_5752PAGE_SIZE_264:
tp->nvram_pagesize = 264;
break;
case FLASH_5752PAGE_SIZE_528:
tp->nvram_pagesize = 528;
break;
}
}
static void __devinit tg3_get_5752_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27))
tp->tg3_flags2 |= TG3_FLG2_PROTECTED_NVRAM;
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ATMEL_EEPROM_64KHZ:
case FLASH_5752VENDOR_ATMEL_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
break;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
break;
}
if (tp->tg3_flags2 & TG3_FLG2_FLASH) {
tg3_nvram_get_pagesize(tp, nvcfg1);
} else {
/* For eeprom, set pagesize to maximum eeprom size */
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
}
}
static void __devinit tg3_get_5755_nvram_info(struct tg3 *tp)
{
u32 nvcfg1, protect = 0;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27)) {
tp->tg3_flags2 |= TG3_FLG2_PROTECTED_NVRAM;
protect = 1;
}
nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
switch (nvcfg1) {
case FLASH_5755VENDOR_ATMEL_FLASH_1:
case FLASH_5755VENDOR_ATMEL_FLASH_2:
case FLASH_5755VENDOR_ATMEL_FLASH_3:
case FLASH_5755VENDOR_ATMEL_FLASH_5:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->nvram_pagesize = 264;
if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_1 ||
nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_5)
tp->nvram_size = (protect ? 0x3e200 :
TG3_NVRAM_SIZE_512KB);
else if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_2)
tp->nvram_size = (protect ? 0x1f200 :
TG3_NVRAM_SIZE_256KB);
else
tp->nvram_size = (protect ? 0x1f200 :
TG3_NVRAM_SIZE_128KB);
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->nvram_pagesize = 256;
if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE10)
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_64KB :
TG3_NVRAM_SIZE_128KB);
else if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE20)
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_64KB :
TG3_NVRAM_SIZE_256KB);
else
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_128KB :
TG3_NVRAM_SIZE_512KB);
break;
}
}
static void __devinit tg3_get_5787_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5787VENDOR_ATMEL_EEPROM_64KHZ:
case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_64KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
break;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_5755VENDOR_ATMEL_FLASH_1:
case FLASH_5755VENDOR_ATMEL_FLASH_2:
case FLASH_5755VENDOR_ATMEL_FLASH_3:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->nvram_pagesize = 264;
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->nvram_pagesize = 256;
break;
}
}
static void __devinit tg3_get_5761_nvram_info(struct tg3 *tp)
{
u32 nvcfg1, protect = 0;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27)) {
tp->tg3_flags2 |= TG3_FLG2_PROTECTED_NVRAM;
protect = 1;
}
nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
switch (nvcfg1) {
case FLASH_5761VENDOR_ATMEL_ADB021D:
case FLASH_5761VENDOR_ATMEL_ADB041D:
case FLASH_5761VENDOR_ATMEL_ADB081D:
case FLASH_5761VENDOR_ATMEL_ADB161D:
case FLASH_5761VENDOR_ATMEL_MDB021D:
case FLASH_5761VENDOR_ATMEL_MDB041D:
case FLASH_5761VENDOR_ATMEL_MDB081D:
case FLASH_5761VENDOR_ATMEL_MDB161D:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->tg3_flags3 |= TG3_FLG3_NO_NVRAM_ADDR_TRANS;
tp->nvram_pagesize = 256;
break;
case FLASH_5761VENDOR_ST_A_M45PE20:
case FLASH_5761VENDOR_ST_A_M45PE40:
case FLASH_5761VENDOR_ST_A_M45PE80:
case FLASH_5761VENDOR_ST_A_M45PE16:
case FLASH_5761VENDOR_ST_M_M45PE20:
case FLASH_5761VENDOR_ST_M_M45PE40:
case FLASH_5761VENDOR_ST_M_M45PE80:
case FLASH_5761VENDOR_ST_M_M45PE16:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
tp->nvram_pagesize = 256;
break;
}
if (protect) {
tp->nvram_size = tr32(NVRAM_ADDR_LOCKOUT);
} else {
switch (nvcfg1) {
case FLASH_5761VENDOR_ATMEL_ADB161D:
case FLASH_5761VENDOR_ATMEL_MDB161D:
case FLASH_5761VENDOR_ST_A_M45PE16:
case FLASH_5761VENDOR_ST_M_M45PE16:
tp->nvram_size = TG3_NVRAM_SIZE_2MB;
break;
case FLASH_5761VENDOR_ATMEL_ADB081D:
case FLASH_5761VENDOR_ATMEL_MDB081D:
case FLASH_5761VENDOR_ST_A_M45PE80:
case FLASH_5761VENDOR_ST_M_M45PE80:
tp->nvram_size = TG3_NVRAM_SIZE_1MB;
break;
case FLASH_5761VENDOR_ATMEL_ADB041D:
case FLASH_5761VENDOR_ATMEL_MDB041D:
case FLASH_5761VENDOR_ST_A_M45PE40:
case FLASH_5761VENDOR_ST_M_M45PE40:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
case FLASH_5761VENDOR_ATMEL_ADB021D:
case FLASH_5761VENDOR_ATMEL_MDB021D:
case FLASH_5761VENDOR_ST_A_M45PE20:
case FLASH_5761VENDOR_ST_M_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
}
}
}
static void __devinit tg3_get_5906_nvram_info(struct tg3 *tp)
{
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
}
static void __devinit tg3_get_57780_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
return;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_57780VENDOR_ATMEL_AT45DB011D:
case FLASH_57780VENDOR_ATMEL_AT45DB011B:
case FLASH_57780VENDOR_ATMEL_AT45DB021D:
case FLASH_57780VENDOR_ATMEL_AT45DB021B:
case FLASH_57780VENDOR_ATMEL_AT45DB041D:
case FLASH_57780VENDOR_ATMEL_AT45DB041B:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_57780VENDOR_ATMEL_AT45DB011D:
case FLASH_57780VENDOR_ATMEL_AT45DB011B:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
case FLASH_57780VENDOR_ATMEL_AT45DB021D:
case FLASH_57780VENDOR_ATMEL_AT45DB021B:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_57780VENDOR_ATMEL_AT45DB041D:
case FLASH_57780VENDOR_ATMEL_AT45DB041B:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
}
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ST_M45PE10:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
case FLASH_5752VENDOR_ST_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
}
break;
default:
tp->tg3_flags3 |= TG3_FLG3_NO_NVRAM;
return;
}
tg3_nvram_get_pagesize(tp, nvcfg1);
if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
tp->tg3_flags3 |= TG3_FLG3_NO_NVRAM_ADDR_TRANS;
}
static void __devinit tg3_get_5717_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ATMEL_EEPROM:
case FLASH_5717VENDOR_MICRO_EEPROM:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
return;
case FLASH_5717VENDOR_ATMEL_MDB011D:
case FLASH_5717VENDOR_ATMEL_ADB011B:
case FLASH_5717VENDOR_ATMEL_ADB011D:
case FLASH_5717VENDOR_ATMEL_MDB021D:
case FLASH_5717VENDOR_ATMEL_ADB021B:
case FLASH_5717VENDOR_ATMEL_ADB021D:
case FLASH_5717VENDOR_ATMEL_45USPT:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ATMEL_MDB021D:
case FLASH_5717VENDOR_ATMEL_ADB021B:
case FLASH_5717VENDOR_ATMEL_ADB021D:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
default:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
case FLASH_5717VENDOR_ST_M_M25PE10:
case FLASH_5717VENDOR_ST_A_M25PE10:
case FLASH_5717VENDOR_ST_M_M45PE10:
case FLASH_5717VENDOR_ST_A_M45PE10:
case FLASH_5717VENDOR_ST_M_M25PE20:
case FLASH_5717VENDOR_ST_A_M25PE20:
case FLASH_5717VENDOR_ST_M_M45PE20:
case FLASH_5717VENDOR_ST_A_M45PE20:
case FLASH_5717VENDOR_ST_25USPT:
case FLASH_5717VENDOR_ST_45USPT:
tp->nvram_jedecnum = JEDEC_ST;
tp->tg3_flags |= TG3_FLAG_NVRAM_BUFFERED;
tp->tg3_flags2 |= TG3_FLG2_FLASH;
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ST_M_M25PE20:
case FLASH_5717VENDOR_ST_A_M25PE20:
case FLASH_5717VENDOR_ST_M_M45PE20:
case FLASH_5717VENDOR_ST_A_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
default:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
default:
tp->tg3_flags3 |= TG3_FLG3_NO_NVRAM;
return;
}
tg3_nvram_get_pagesize(tp, nvcfg1);
if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
tp->tg3_flags3 |= TG3_FLG3_NO_NVRAM_ADDR_TRANS;
}
/* Chips other than 5700/5701 use the NVRAM for fetching info. */
static void __devinit tg3_nvram_init(struct tg3 *tp)
{
tw32_f(GRC_EEPROM_ADDR,
(EEPROM_ADDR_FSM_RESET |
(EEPROM_DEFAULT_CLOCK_PERIOD <<
EEPROM_ADDR_CLKPERD_SHIFT)));
msleep(1);
/* Enable seeprom accesses. */
tw32_f(GRC_LOCAL_CTRL,
tr32(GRC_LOCAL_CTRL) | GRC_LCLCTRL_AUTO_SEEPROM);
udelay(100);
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701) {
tp->tg3_flags |= TG3_FLAG_NVRAM;
if (tg3_nvram_lock(tp)) {
printk(KERN_WARNING PFX "%s: Cannot get nvarm lock, "
"tg3_nvram_init failed.\n", tp->dev->name);
return;
}
tg3_enable_nvram_access(tp);
tp->nvram_size = 0;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752)
tg3_get_5752_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755)
tg3_get_5755_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5787 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785)
tg3_get_5787_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761)
tg3_get_5761_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
tg3_get_5906_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780)
tg3_get_57780_nvram_info(tp);
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
tg3_get_5717_nvram_info(tp);
else
tg3_get_nvram_info(tp);
if (tp->nvram_size == 0)
tg3_get_nvram_size(tp);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
} else {
tp->tg3_flags &= ~(TG3_FLAG_NVRAM | TG3_FLAG_NVRAM_BUFFERED);
tg3_get_eeprom_size(tp);
}
}
static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp,
u32 offset, u32 len, u8 *buf)
{
int i, j, rc = 0;
u32 val;
for (i = 0; i < len; i += 4) {
u32 addr;
__be32 data;
addr = offset + i;
memcpy(&data, buf + i, 4);
/*
* The SEEPROM interface expects the data to always be opposite
* the native endian format. We accomplish this by reversing
* all the operations that would have been performed on the
* data from a call to tg3_nvram_read_be32().
*/
tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data)));
val = tr32(GRC_EEPROM_ADDR);
tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE);
val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR, val |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
(addr & EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_START |
EEPROM_ADDR_WRITE);
for (j = 0; j < 1000; j++) {
val = tr32(GRC_EEPROM_ADDR);
if (val & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(val & EEPROM_ADDR_COMPLETE)) {
rc = -EBUSY;
break;
}
}
return rc;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int ret = 0;
u32 pagesize = tp->nvram_pagesize;
u32 pagemask = pagesize - 1;
u32 nvram_cmd;
u8 *tmp;
tmp = kmalloc(pagesize, GFP_KERNEL);
if (tmp == NULL)
return -ENOMEM;
while (len) {
int j;
u32 phy_addr, page_off, size;
phy_addr = offset & ~pagemask;
for (j = 0; j < pagesize; j += 4) {
ret = tg3_nvram_read_be32(tp, phy_addr + j,
(__be32 *) (tmp + j));
if (ret)
break;
}
if (ret)
break;
page_off = offset & pagemask;
size = pagesize;
if (len < size)
size = len;
len -= size;
memcpy(tmp + page_off, buf, size);
offset = offset + (pagesize - page_off);
tg3_enable_nvram_access(tp);
/*
* Before we can erase the flash page, we need
* to issue a special "write enable" command.
*/
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Erase the target page */
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Issue another write enable to start the write. */
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
for (j = 0; j < pagesize; j += 4) {
__be32 data;
data = *((__be32 *) (tmp + j));
tw32(NVRAM_WRDATA, be32_to_cpu(data));
tw32(NVRAM_ADDR, phy_addr + j);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE |
NVRAM_CMD_WR;
if (j == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
else if (j == (pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if ((ret = tg3_nvram_exec_cmd(tp, nvram_cmd)))
break;
}
if (ret)
break;
}
nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE;
tg3_nvram_exec_cmd(tp, nvram_cmd);
kfree(tmp);
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int i, ret = 0;
for (i = 0; i < len; i += 4, offset += 4) {
u32 page_off, phy_addr, nvram_cmd;
__be32 data;
memcpy(&data, buf + i, 4);
tw32(NVRAM_WRDATA, be32_to_cpu(data));
page_off = offset % tp->nvram_pagesize;
phy_addr = tg3_nvram_phys_addr(tp, offset);
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR;
if ((page_off == 0) || (i == 0))
nvram_cmd |= NVRAM_CMD_FIRST;
if (page_off == (tp->nvram_pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (i == (len - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5752 &&
!(tp->tg3_flags3 & TG3_FLG3_5755_PLUS) &&
(tp->nvram_jedecnum == JEDEC_ST) &&
(nvram_cmd & NVRAM_CMD_FIRST)) {
if ((ret = tg3_nvram_exec_cmd(tp,
NVRAM_CMD_WREN | NVRAM_CMD_GO |
NVRAM_CMD_DONE)))
break;
}
if (!(tp->tg3_flags2 & TG3_FLG2_FLASH)) {
/* We always do complete word writes to eeprom. */
nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
}
if ((ret = tg3_nvram_exec_cmd(tp, nvram_cmd)))
break;
}
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
{
int ret;
if (tp->tg3_flags & TG3_FLAG_EEPROM_WRITE_PROT) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
~GRC_LCLCTRL_GPIO_OUTPUT1);
udelay(40);
}
if (!(tp->tg3_flags & TG3_FLAG_NVRAM)) {
ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf);
}
else {
u32 grc_mode;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
if ((tp->tg3_flags2 & TG3_FLG2_5750_PLUS) &&
!(tp->tg3_flags2 & TG3_FLG2_PROTECTED_NVRAM))
tw32(NVRAM_WRITE1, 0x406);
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE);
if ((tp->tg3_flags & TG3_FLAG_NVRAM_BUFFERED) ||
!(tp->tg3_flags2 & TG3_FLG2_FLASH)) {
ret = tg3_nvram_write_block_buffered(tp, offset, len,
buf);
}
else {
ret = tg3_nvram_write_block_unbuffered(tp, offset, len,
buf);
}
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
}
if (tp->tg3_flags & TG3_FLAG_EEPROM_WRITE_PROT) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(40);
}
return ret;
}
struct subsys_tbl_ent {
u16 subsys_vendor, subsys_devid;
u32 phy_id;
};
static struct subsys_tbl_ent subsys_id_to_phy_id[] = {
/* Broadcom boards. */
{ PCI_VENDOR_ID_BROADCOM, 0x1644, PHY_ID_BCM5401 }, /* BCM95700A6 */
{ PCI_VENDOR_ID_BROADCOM, 0x0001, PHY_ID_BCM5701 }, /* BCM95701A5 */
{ PCI_VENDOR_ID_BROADCOM, 0x0002, PHY_ID_BCM8002 }, /* BCM95700T6 */
{ PCI_VENDOR_ID_BROADCOM, 0x0003, 0 }, /* BCM95700A9 */
{ PCI_VENDOR_ID_BROADCOM, 0x0005, PHY_ID_BCM5701 }, /* BCM95701T1 */
{ PCI_VENDOR_ID_BROADCOM, 0x0006, PHY_ID_BCM5701 }, /* BCM95701T8 */
{ PCI_VENDOR_ID_BROADCOM, 0x0007, 0 }, /* BCM95701A7 */
{ PCI_VENDOR_ID_BROADCOM, 0x0008, PHY_ID_BCM5701 }, /* BCM95701A10 */
{ PCI_VENDOR_ID_BROADCOM, 0x8008, PHY_ID_BCM5701 }, /* BCM95701A12 */
{ PCI_VENDOR_ID_BROADCOM, 0x0009, PHY_ID_BCM5703 }, /* BCM95703Ax1 */
{ PCI_VENDOR_ID_BROADCOM, 0x8009, PHY_ID_BCM5703 }, /* BCM95703Ax2 */
/* 3com boards. */
{ PCI_VENDOR_ID_3COM, 0x1000, PHY_ID_BCM5401 }, /* 3C996T */
{ PCI_VENDOR_ID_3COM, 0x1006, PHY_ID_BCM5701 }, /* 3C996BT */
{ PCI_VENDOR_ID_3COM, 0x1004, 0 }, /* 3C996SX */
{ PCI_VENDOR_ID_3COM, 0x1007, PHY_ID_BCM5701 }, /* 3C1000T */
{ PCI_VENDOR_ID_3COM, 0x1008, PHY_ID_BCM5701 }, /* 3C940BR01 */
/* DELL boards. */
{ PCI_VENDOR_ID_DELL, 0x00d1, PHY_ID_BCM5401 }, /* VIPER */
{ PCI_VENDOR_ID_DELL, 0x0106, PHY_ID_BCM5401 }, /* JAGUAR */
{ PCI_VENDOR_ID_DELL, 0x0109, PHY_ID_BCM5411 }, /* MERLOT */
{ PCI_VENDOR_ID_DELL, 0x010a, PHY_ID_BCM5411 }, /* SLIM_MERLOT */
/* Compaq boards. */
{ PCI_VENDOR_ID_COMPAQ, 0x007c, PHY_ID_BCM5701 }, /* BANSHEE */
{ PCI_VENDOR_ID_COMPAQ, 0x009a, PHY_ID_BCM5701 }, /* BANSHEE_2 */
{ PCI_VENDOR_ID_COMPAQ, 0x007d, 0 }, /* CHANGELING */
{ PCI_VENDOR_ID_COMPAQ, 0x0085, PHY_ID_BCM5701 }, /* NC7780 */
{ PCI_VENDOR_ID_COMPAQ, 0x0099, PHY_ID_BCM5701 }, /* NC7780_2 */
/* IBM boards. */
{ PCI_VENDOR_ID_IBM, 0x0281, 0 } /* IBM??? */
};
static inline struct subsys_tbl_ent *lookup_by_subsys(struct tg3 *tp)
{
int i;
for (i = 0; i < ARRAY_SIZE(subsys_id_to_phy_id); i++) {
if ((subsys_id_to_phy_id[i].subsys_vendor ==
tp->pdev->subsystem_vendor) &&
(subsys_id_to_phy_id[i].subsys_devid ==
tp->pdev->subsystem_device))
return &subsys_id_to_phy_id[i];
}
return NULL;
}
static void __devinit tg3_get_eeprom_hw_cfg(struct tg3 *tp)
{
u32 val;
u16 pmcsr;
/* On some early chips the SRAM cannot be accessed in D3hot state,
* so need make sure we're in D0.
*/
pci_read_config_word(tp->pdev, tp->pm_cap + PCI_PM_CTRL, &pmcsr);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pci_write_config_word(tp->pdev, tp->pm_cap + PCI_PM_CTRL, pmcsr);
msleep(1);
/* Make sure register accesses (indirect or otherwise)
* will function correctly.
*/
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
/* The memory arbiter has to be enabled in order for SRAM accesses
* to succeed. Normally on powerup the tg3 chip firmware will make
* sure it is enabled, but other entities such as system netboot
* code might disable it.
*/
val = tr32(MEMARB_MODE);
tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
tp->phy_id = PHY_ID_INVALID;
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
/* Assume an onboard device and WOL capable by default. */
tp->tg3_flags |= TG3_FLAG_EEPROM_WRITE_PROT | TG3_FLAG_WOL_CAP;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
if (!(tr32(PCIE_TRANSACTION_CFG) & PCIE_TRANS_CFG_LOM)) {
tp->tg3_flags &= ~TG3_FLAG_EEPROM_WRITE_PROT;
tp->tg3_flags2 |= TG3_FLG2_IS_NIC;
}
val = tr32(VCPU_CFGSHDW);
if (val & VCPU_CFGSHDW_ASPM_DBNC)
tp->tg3_flags |= TG3_FLAG_ASPM_WORKAROUND;
if ((val & VCPU_CFGSHDW_WOL_ENABLE) &&
(val & VCPU_CFGSHDW_WOL_MAGPKT))
tp->tg3_flags |= TG3_FLAG_WOL_ENABLE;
goto done;
}
tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
if (val == NIC_SRAM_DATA_SIG_MAGIC) {
u32 nic_cfg, led_cfg;
u32 nic_phy_id, ver, cfg2 = 0, cfg4 = 0, eeprom_phy_id;
int eeprom_phy_serdes = 0;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
tp->nic_sram_data_cfg = nic_cfg;
tg3_read_mem(tp, NIC_SRAM_DATA_VER, &ver);
ver >>= NIC_SRAM_DATA_VER_SHIFT;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5703) &&
(ver > 0) && (ver < 0x100))
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_2, &cfg2);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785)
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_4, &cfg4);
if ((nic_cfg & NIC_SRAM_DATA_CFG_PHY_TYPE_MASK) ==
NIC_SRAM_DATA_CFG_PHY_TYPE_FIBER)
eeprom_phy_serdes = 1;
tg3_read_mem(tp, NIC_SRAM_DATA_PHY_ID, &nic_phy_id);
if (nic_phy_id != 0) {
u32 id1 = nic_phy_id & NIC_SRAM_DATA_PHY_ID1_MASK;
u32 id2 = nic_phy_id & NIC_SRAM_DATA_PHY_ID2_MASK;
eeprom_phy_id = (id1 >> 16) << 10;
eeprom_phy_id |= (id2 & 0xfc00) << 16;
eeprom_phy_id |= (id2 & 0x03ff) << 0;
} else
eeprom_phy_id = 0;
tp->phy_id = eeprom_phy_id;
if (eeprom_phy_serdes) {
if (tp->tg3_flags2 & TG3_FLG2_5780_CLASS)
tp->tg3_flags2 |= TG3_FLG2_MII_SERDES;
else
tp->tg3_flags2 |= TG3_FLG2_PHY_SERDES;
}
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS)
led_cfg = cfg2 & (NIC_SRAM_DATA_CFG_LED_MODE_MASK |
SHASTA_EXT_LED_MODE_MASK);
else
led_cfg = nic_cfg & NIC_SRAM_DATA_CFG_LED_MODE_MASK;
switch (led_cfg) {
default:
case NIC_SRAM_DATA_CFG_LED_MODE_PHY_1:
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
break;
case NIC_SRAM_DATA_CFG_LED_MODE_PHY_2:
tp->led_ctrl = LED_CTRL_MODE_PHY_2;
break;
case NIC_SRAM_DATA_CFG_LED_MODE_MAC:
tp->led_ctrl = LED_CTRL_MODE_MAC;
/* Default to PHY_1_MODE if 0 (MAC_MODE) is
* read on some older 5700/5701 bootcode.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5701)
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
break;
case SHASTA_EXT_LED_SHARED:
tp->led_ctrl = LED_CTRL_MODE_SHARED;
if (tp->pci_chip_rev_id != CHIPREV_ID_5750_A0 &&
tp->pci_chip_rev_id != CHIPREV_ID_5750_A1)
tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
LED_CTRL_MODE_PHY_2);
break;
case SHASTA_EXT_LED_MAC:
tp->led_ctrl = LED_CTRL_MODE_SHASTA_MAC;
break;
case SHASTA_EXT_LED_COMBO:
tp->led_ctrl = LED_CTRL_MODE_COMBO;
if (tp->pci_chip_rev_id != CHIPREV_ID_5750_A0)
tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
LED_CTRL_MODE_PHY_2);
break;
}
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) &&
tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)
tp->led_ctrl = LED_CTRL_MODE_PHY_2;
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5784_AX)
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
if (nic_cfg & NIC_SRAM_DATA_CFG_EEPROM_WP) {
tp->tg3_flags |= TG3_FLAG_EEPROM_WRITE_PROT;
if ((tp->pdev->subsystem_vendor ==
PCI_VENDOR_ID_ARIMA) &&
(tp->pdev->subsystem_device == 0x205a ||
tp->pdev->subsystem_device == 0x2063))
tp->tg3_flags &= ~TG3_FLAG_EEPROM_WRITE_PROT;
} else {
tp->tg3_flags &= ~TG3_FLAG_EEPROM_WRITE_PROT;
tp->tg3_flags2 |= TG3_FLG2_IS_NIC;
}
if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
tp->tg3_flags |= TG3_FLAG_ENABLE_ASF;
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS)
tp->tg3_flags2 |= TG3_FLG2_ASF_NEW_HANDSHAKE;
}
if ((nic_cfg & NIC_SRAM_DATA_CFG_APE_ENABLE) &&
(tp->tg3_flags2 & TG3_FLG2_5750_PLUS))
tp->tg3_flags3 |= TG3_FLG3_ENABLE_APE;
if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES &&
!(nic_cfg & NIC_SRAM_DATA_CFG_FIBER_WOL))
tp->tg3_flags &= ~TG3_FLAG_WOL_CAP;
if ((tp->tg3_flags & TG3_FLAG_WOL_CAP) &&
(nic_cfg & NIC_SRAM_DATA_CFG_WOL_ENABLE))
tp->tg3_flags |= TG3_FLAG_WOL_ENABLE;
if (cfg2 & (1 << 17))
tp->tg3_flags2 |= TG3_FLG2_CAPACITIVE_COUPLING;
/* serdes signal pre-emphasis in register 0x590 set by */
/* bootcode if bit 18 is set */
if (cfg2 & (1 << 18))
tp->tg3_flags2 |= TG3_FLG2_SERDES_PREEMPHASIS;
if (((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5784_AX)) &&
(cfg2 & NIC_SRAM_DATA_CFG_2_APD_EN))
tp->tg3_flags3 |= TG3_FLG3_PHY_ENABLE_APD;
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
u32 cfg3;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &cfg3);
if (cfg3 & NIC_SRAM_ASPM_DEBOUNCE)
tp->tg3_flags |= TG3_FLAG_ASPM_WORKAROUND;
}
if (cfg4 & NIC_SRAM_RGMII_STD_IBND_DISABLE)
tp->tg3_flags3 |= TG3_FLG3_RGMII_STD_IBND_DISABLE;
if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_RX_EN)
tp->tg3_flags3 |= TG3_FLG3_RGMII_EXT_IBND_RX_EN;
if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_TX_EN)
tp->tg3_flags3 |= TG3_FLG3_RGMII_EXT_IBND_TX_EN;
}
done:
device_init_wakeup(&tp->pdev->dev, tp->tg3_flags & TG3_FLAG_WOL_CAP);
device_set_wakeup_enable(&tp->pdev->dev,
tp->tg3_flags & TG3_FLAG_WOL_ENABLE);
}
static int __devinit tg3_issue_otp_command(struct tg3 *tp, u32 cmd)
{
int i;
u32 val;
tw32(OTP_CTRL, cmd | OTP_CTRL_OTP_CMD_START);
tw32(OTP_CTRL, cmd);
/* Wait for up to 1 ms for command to execute. */
for (i = 0; i < 100; i++) {
val = tr32(OTP_STATUS);
if (val & OTP_STATUS_CMD_DONE)
break;
udelay(10);
}
return (val & OTP_STATUS_CMD_DONE) ? 0 : -EBUSY;
}
/* Read the gphy configuration from the OTP region of the chip. The gphy
* configuration is a 32-bit value that straddles the alignment boundary.
* We do two 32-bit reads and then shift and merge the results.
*/
static u32 __devinit tg3_read_otp_phycfg(struct tg3 *tp)
{
u32 bhalf_otp, thalf_otp;
tw32(OTP_MODE, OTP_MODE_OTP_THRU_GRC);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_INIT))
return 0;
tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC1);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
return 0;
thalf_otp = tr32(OTP_READ_DATA);
tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC2);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
return 0;
bhalf_otp = tr32(OTP_READ_DATA);
return ((thalf_otp & 0x0000ffff) << 16) | (bhalf_otp >> 16);
}
static int __devinit tg3_phy_probe(struct tg3 *tp)
{
u32 hw_phy_id_1, hw_phy_id_2;
u32 hw_phy_id, hw_phy_id_masked;
int err;
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB)
return tg3_phy_init(tp);
/* Reading the PHY ID register can conflict with ASF
* firmware access to the PHY hardware.
*/
err = 0;
if ((tp->tg3_flags & TG3_FLAG_ENABLE_ASF) ||
(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)) {
hw_phy_id = hw_phy_id_masked = PHY_ID_INVALID;
} else {
/* Now read the physical PHY_ID from the chip and verify
* that it is sane. If it doesn't look good, we fall back
* to either the hard-coded table based PHY_ID and failing
* that the value found in the eeprom area.
*/
err |= tg3_readphy(tp, MII_PHYSID1, &hw_phy_id_1);
err |= tg3_readphy(tp, MII_PHYSID2, &hw_phy_id_2);
hw_phy_id = (hw_phy_id_1 & 0xffff) << 10;
hw_phy_id |= (hw_phy_id_2 & 0xfc00) << 16;
hw_phy_id |= (hw_phy_id_2 & 0x03ff) << 0;
hw_phy_id_masked = hw_phy_id & PHY_ID_MASK;
}
if (!err && KNOWN_PHY_ID(hw_phy_id_masked)) {
tp->phy_id = hw_phy_id;
if (hw_phy_id_masked == PHY_ID_BCM8002)
tp->tg3_flags2 |= TG3_FLG2_PHY_SERDES;
else
tp->tg3_flags2 &= ~TG3_FLG2_PHY_SERDES;
} else {
if (tp->phy_id != PHY_ID_INVALID) {
/* Do nothing, phy ID already set up in
* tg3_get_eeprom_hw_cfg().
*/
} else {
struct subsys_tbl_ent *p;
/* No eeprom signature? Try the hardcoded
* subsys device table.
*/
p = lookup_by_subsys(tp);
if (!p)
return -ENODEV;
tp->phy_id = p->phy_id;
if (!tp->phy_id ||
tp->phy_id == PHY_ID_BCM8002)
tp->tg3_flags2 |= TG3_FLG2_PHY_SERDES;
}
}
if (!(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES) &&
!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) &&
!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF)) {
u32 bmsr, adv_reg, tg3_ctrl, mask;
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS))
goto skip_phy_reset;
err = tg3_phy_reset(tp);
if (err)
return err;
adv_reg = (ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL |
ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
tg3_ctrl = 0;
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY)) {
tg3_ctrl = (MII_TG3_CTRL_ADV_1000_HALF |
MII_TG3_CTRL_ADV_1000_FULL);
if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B0)
tg3_ctrl |= (MII_TG3_CTRL_AS_MASTER |
MII_TG3_CTRL_ENABLE_AS_MASTER);
}
mask = (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full);
if (!tg3_copper_is_advertising_all(tp, mask)) {
tg3_writephy(tp, MII_ADVERTISE, adv_reg);
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY))
tg3_writephy(tp, MII_TG3_CTRL, tg3_ctrl);
tg3_writephy(tp, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
}
tg3_phy_set_wirespeed(tp);
tg3_writephy(tp, MII_ADVERTISE, adv_reg);
if (!(tp->tg3_flags & TG3_FLAG_10_100_ONLY))
tg3_writephy(tp, MII_TG3_CTRL, tg3_ctrl);
}
skip_phy_reset:
if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401) {
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
}
if (!err && ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401)) {
err = tg3_init_5401phy_dsp(tp);
}
if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES)
tp->link_config.advertising =
(ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_Autoneg |
ADVERTISED_FIBRE);
if (tp->tg3_flags & TG3_FLAG_10_100_ONLY)
tp->link_config.advertising &=
~(ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full);
return err;
}
static void __devinit tg3_read_partno(struct tg3 *tp)
{
unsigned char vpd_data[256]; /* in little-endian format */
unsigned int i;
u32 magic;
if ((tp->tg3_flags3 & TG3_FLG3_NO_NVRAM) ||
tg3_nvram_read(tp, 0x0, &magic))
goto out_not_found;
if (magic == TG3_EEPROM_MAGIC) {
for (i = 0; i < 256; i += 4) {
u32 tmp;
/* The data is in little-endian format in NVRAM.
* Use the big-endian read routines to preserve
* the byte order as it exists in NVRAM.
*/
if (tg3_nvram_read_be32(tp, 0x100 + i, &tmp))
goto out_not_found;
memcpy(&vpd_data[i], &tmp, sizeof(tmp));
}
} else {
int vpd_cap;
vpd_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_VPD);
for (i = 0; i < 256; i += 4) {
u32 tmp, j = 0;
__le32 v;
u16 tmp16;
pci_write_config_word(tp->pdev, vpd_cap + PCI_VPD_ADDR,
i);
while (j++ < 100) {
pci_read_config_word(tp->pdev, vpd_cap +
PCI_VPD_ADDR, &tmp16);
if (tmp16 & 0x8000)
break;
msleep(1);
}
if (!(tmp16 & 0x8000))
goto out_not_found;
pci_read_config_dword(tp->pdev, vpd_cap + PCI_VPD_DATA,
&tmp);
v = cpu_to_le32(tmp);
memcpy(&vpd_data[i], &v, sizeof(v));
}
}
/* Now parse and find the part number. */
for (i = 0; i < 254; ) {
unsigned char val = vpd_data[i];
unsigned int block_end;
if (val == 0x82 || val == 0x91) {
i = (i + 3 +
(vpd_data[i + 1] +
(vpd_data[i + 2] << 8)));
continue;
}
if (val != 0x90)
goto out_not_found;
block_end = (i + 3 +
(vpd_data[i + 1] +
(vpd_data[i + 2] << 8)));
i += 3;
if (block_end > 256)
goto out_not_found;
while (i < (block_end - 2)) {
if (vpd_data[i + 0] == 'P' &&
vpd_data[i + 1] == 'N') {
int partno_len = vpd_data[i + 2];
i += 3;
if (partno_len > 24 || (partno_len + i) > 256)
goto out_not_found;
memcpy(tp->board_part_number,
&vpd_data[i], partno_len);
/* Success. */
return;
}
i += 3 + vpd_data[i + 2];
}
/* Part number not found. */
goto out_not_found;
}
out_not_found:
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
strcpy(tp->board_part_number, "BCM95906");
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 &&
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57780)
strcpy(tp->board_part_number, "BCM57780");
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 &&
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57760)
strcpy(tp->board_part_number, "BCM57760");
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 &&
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790)
strcpy(tp->board_part_number, "BCM57790");
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 &&
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57788)
strcpy(tp->board_part_number, "BCM57788");
else
strcpy(tp->board_part_number, "none");
}
static int __devinit tg3_fw_img_is_valid(struct tg3 *tp, u32 offset)
{
u32 val;
if (tg3_nvram_read(tp, offset, &val) ||
(val & 0xfc000000) != 0x0c000000 ||
tg3_nvram_read(tp, offset + 4, &val) ||
val != 0)
return 0;
return 1;
}
static void __devinit tg3_read_bc_ver(struct tg3 *tp)
{
u32 val, offset, start, ver_offset;
int i;
bool newver = false;
if (tg3_nvram_read(tp, 0xc, &offset) ||
tg3_nvram_read(tp, 0x4, &start))
return;
offset = tg3_nvram_logical_addr(tp, offset);
if (tg3_nvram_read(tp, offset, &val))
return;
if ((val & 0xfc000000) == 0x0c000000) {
if (tg3_nvram_read(tp, offset + 4, &val))
return;
if (val == 0)
newver = true;
}
if (newver) {
if (tg3_nvram_read(tp, offset + 8, &ver_offset))
return;
offset = offset + ver_offset - start;
for (i = 0; i < 16; i += 4) {
__be32 v;
if (tg3_nvram_read_be32(tp, offset + i, &v))
return;
memcpy(tp->fw_ver + i, &v, sizeof(v));
}
} else {
u32 major, minor;
if (tg3_nvram_read(tp, TG3_NVM_PTREV_BCVER, &ver_offset))
return;
major = (ver_offset & TG3_NVM_BCVER_MAJMSK) >>
TG3_NVM_BCVER_MAJSFT;
minor = ver_offset & TG3_NVM_BCVER_MINMSK;
snprintf(&tp->fw_ver[0], 32, "v%d.%02d", major, minor);
}
}
static void __devinit tg3_read_hwsb_ver(struct tg3 *tp)
{
u32 val, major, minor;
/* Use native endian representation */
if (tg3_nvram_read(tp, TG3_NVM_HWSB_CFG1, &val))
return;
major = (val & TG3_NVM_HWSB_CFG1_MAJMSK) >>
TG3_NVM_HWSB_CFG1_MAJSFT;
minor = (val & TG3_NVM_HWSB_CFG1_MINMSK) >>
TG3_NVM_HWSB_CFG1_MINSFT;
snprintf(&tp->fw_ver[0], 32, "sb v%d.%02d", major, minor);
}
static void __devinit tg3_read_sb_ver(struct tg3 *tp, u32 val)
{
u32 offset, major, minor, build;
tp->fw_ver[0] = 's';
tp->fw_ver[1] = 'b';
tp->fw_ver[2] = '\0';
if ((val & TG3_EEPROM_SB_FORMAT_MASK) != TG3_EEPROM_SB_FORMAT_1)
return;
switch (val & TG3_EEPROM_SB_REVISION_MASK) {
case TG3_EEPROM_SB_REVISION_0:
offset = TG3_EEPROM_SB_F1R0_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_2:
offset = TG3_EEPROM_SB_F1R2_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_3:
offset = TG3_EEPROM_SB_F1R3_EDH_OFF;
break;
default:
return;
}
if (tg3_nvram_read(tp, offset, &val))
return;
build = (val & TG3_EEPROM_SB_EDH_BLD_MASK) >>
TG3_EEPROM_SB_EDH_BLD_SHFT;
major = (val & TG3_EEPROM_SB_EDH_MAJ_MASK) >>
TG3_EEPROM_SB_EDH_MAJ_SHFT;
minor = val & TG3_EEPROM_SB_EDH_MIN_MASK;
if (minor > 99 || build > 26)
return;
snprintf(&tp->fw_ver[2], 30, " v%d.%02d", major, minor);
if (build > 0) {
tp->fw_ver[8] = 'a' + build - 1;
tp->fw_ver[9] = '\0';
}
}
static void __devinit tg3_read_mgmtfw_ver(struct tg3 *tp)
{
u32 val, offset, start;
int i, vlen;
for (offset = TG3_NVM_DIR_START;
offset < TG3_NVM_DIR_END;
offset += TG3_NVM_DIRENT_SIZE) {
if (tg3_nvram_read(tp, offset, &val))
return;
if ((val >> TG3_NVM_DIRTYPE_SHIFT) == TG3_NVM_DIRTYPE_ASFINI)
break;
}
if (offset == TG3_NVM_DIR_END)
return;
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS))
start = 0x08000000;
else if (tg3_nvram_read(tp, offset - 4, &start))
return;
if (tg3_nvram_read(tp, offset + 4, &offset) ||
!tg3_fw_img_is_valid(tp, offset) ||
tg3_nvram_read(tp, offset + 8, &val))
return;
offset += val - start;
vlen = strlen(tp->fw_ver);
tp->fw_ver[vlen++] = ',';
tp->fw_ver[vlen++] = ' ';
for (i = 0; i < 4; i++) {
__be32 v;
if (tg3_nvram_read_be32(tp, offset, &v))
return;
offset += sizeof(v);
if (vlen > TG3_VER_SIZE - sizeof(v)) {
memcpy(&tp->fw_ver[vlen], &v, TG3_VER_SIZE - vlen);
break;
}
memcpy(&tp->fw_ver[vlen], &v, sizeof(v));
vlen += sizeof(v);
}
}
static void __devinit tg3_read_dash_ver(struct tg3 *tp)
{
int vlen;
u32 apedata;
if (!(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) ||
!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF))
return;
apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
if (apedata != APE_SEG_SIG_MAGIC)
return;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return;
apedata = tg3_ape_read32(tp, TG3_APE_FW_VERSION);
vlen = strlen(tp->fw_ver);
snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " DASH v%d.%d.%d.%d",
(apedata & APE_FW_VERSION_MAJMSK) >> APE_FW_VERSION_MAJSFT,
(apedata & APE_FW_VERSION_MINMSK) >> APE_FW_VERSION_MINSFT,
(apedata & APE_FW_VERSION_REVMSK) >> APE_FW_VERSION_REVSFT,
(apedata & APE_FW_VERSION_BLDMSK));
}
static void __devinit tg3_read_fw_ver(struct tg3 *tp)
{
u32 val;
if (tp->tg3_flags3 & TG3_FLG3_NO_NVRAM) {
tp->fw_ver[0] = 's';
tp->fw_ver[1] = 'b';
tp->fw_ver[2] = '\0';
return;
}
if (tg3_nvram_read(tp, 0, &val))
return;
if (val == TG3_EEPROM_MAGIC)
tg3_read_bc_ver(tp);
else if ((val & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW)
tg3_read_sb_ver(tp, val);
else if ((val & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
tg3_read_hwsb_ver(tp);
else
return;
if (!(tp->tg3_flags & TG3_FLAG_ENABLE_ASF) ||
(tp->tg3_flags3 & TG3_FLG3_ENABLE_APE))
return;
tg3_read_mgmtfw_ver(tp);
tp->fw_ver[TG3_VER_SIZE - 1] = 0;
}
static struct pci_dev * __devinit tg3_find_peer(struct tg3 *);
static int __devinit tg3_get_invariants(struct tg3 *tp)
{
static struct pci_device_id write_reorder_chipsets[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_FE_GATE_700C) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_8131_BRIDGE) },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA,
PCI_DEVICE_ID_VIA_8385_0) },
{ },
};
u32 misc_ctrl_reg;
u32 pci_state_reg, grc_misc_cfg;
u32 val;
u16 pci_cmd;
int err;
/* Force memory write invalidate off. If we leave it on,
* then on 5700_BX chips we have to enable a workaround.
* The workaround is to set the TG3PCI_DMA_RW_CTRL boundary
* to match the cacheline size. The Broadcom driver have this
* workaround but turns MWI off all the times so never uses
* it. This seems to suggest that the workaround is insufficient.
*/
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_INVALIDATE;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
/* It is absolutely critical that TG3PCI_MISC_HOST_CTRL
* has the register indirect write enable bit set before
* we try to access any of the MMIO registers. It is also
* critical that the PCI-X hw workaround situation is decided
* before that as well.
*/
pci_read_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
&misc_ctrl_reg);
tp->pci_chip_rev_id = (misc_ctrl_reg >>
MISC_HOST_CTRL_CHIPREV_SHIFT);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_USE_PROD_ID_REG) {
u32 prod_id_asic_rev;
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717C ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717S ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718C ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718S)
pci_read_config_dword(tp->pdev,
TG3PCI_GEN2_PRODID_ASICREV,
&prod_id_asic_rev);
else
pci_read_config_dword(tp->pdev, TG3PCI_PRODID_ASICREV,
&prod_id_asic_rev);
tp->pci_chip_rev_id = prod_id_asic_rev;
}
/* Wrong chip ID in 5752 A0. This code can be removed later
* as A0 is not in production.
*/
if (tp->pci_chip_rev_id == CHIPREV_ID_5752_A0_HW)
tp->pci_chip_rev_id = CHIPREV_ID_5752_A0;
/* If we have 5702/03 A1 or A2 on certain ICH chipsets,
* we need to disable memory and use config. cycles
* only to access all registers. The 5702/03 chips
* can mistakenly decode the special cycles from the
* ICH chipsets as memory write cycles, causing corruption
* of register and memory space. Only certain ICH bridges
* will drive special cycles with non-zero data during the
* address phase which can fall within the 5703's address
* range. This is not an ICH bug as the PCI spec allows
* non-zero address during special cycles. However, only
* these ICH bridges are known to drive non-zero addresses
* during special cycles.
*
* Since special cycles do not cross PCI bridges, we only
* enable this workaround if the 5703 is on the secondary
* bus of these ICH bridges.
*/
if ((tp->pci_chip_rev_id == CHIPREV_ID_5703_A1) ||
(tp->pci_chip_rev_id == CHIPREV_ID_5703_A2)) {
static struct tg3_dev_id {
u32 vendor;
u32 device;
u32 rev;
} ich_chipsets[] = {
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_8,
PCI_ANY_ID },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_8,
PCI_ANY_ID },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_11,
0xa },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_6,
PCI_ANY_ID },
{ },
};
struct tg3_dev_id *pci_id = &ich_chipsets[0];
struct pci_dev *bridge = NULL;
while (pci_id->vendor != 0) {
bridge = pci_get_device(pci_id->vendor, pci_id->device,
bridge);
if (!bridge) {
pci_id++;
continue;
}
if (pci_id->rev != PCI_ANY_ID) {
if (bridge->revision > pci_id->rev)
continue;
}
if (bridge->subordinate &&
(bridge->subordinate->number ==
tp->pdev->bus->number)) {
tp->tg3_flags2 |= TG3_FLG2_ICH_WORKAROUND;
pci_dev_put(bridge);
break;
}
}
}
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)) {
static struct tg3_dev_id {
u32 vendor;
u32 device;
} bridge_chipsets[] = {
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_0 },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_1 },
{ },
};
struct tg3_dev_id *pci_id = &bridge_chipsets[0];
struct pci_dev *bridge = NULL;
while (pci_id->vendor != 0) {
bridge = pci_get_device(pci_id->vendor,
pci_id->device,
bridge);
if (!bridge) {
pci_id++;
continue;
}
if (bridge->subordinate &&
(bridge->subordinate->number <=
tp->pdev->bus->number) &&
(bridge->subordinate->subordinate >=
tp->pdev->bus->number)) {
tp->tg3_flags3 |= TG3_FLG3_5701_DMA_BUG;
pci_dev_put(bridge);
break;
}
}
}
/* The EPB bridge inside 5714, 5715, and 5780 cannot support
* DMA addresses > 40-bit. This bridge may have other additional
* 57xx devices behind it in some 4-port NIC designs for example.
* Any tg3 device found behind the bridge will also need the 40-bit
* DMA workaround.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5780 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714) {
tp->tg3_flags2 |= TG3_FLG2_5780_CLASS;
tp->tg3_flags |= TG3_FLAG_40BIT_DMA_BUG;
tp->msi_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_MSI);
}
else {
struct pci_dev *bridge = NULL;
do {
bridge = pci_get_device(PCI_VENDOR_ID_SERVERWORKS,
PCI_DEVICE_ID_SERVERWORKS_EPB,
bridge);
if (bridge && bridge->subordinate &&
(bridge->subordinate->number <=
tp->pdev->bus->number) &&
(bridge->subordinate->subordinate >=
tp->pdev->bus->number)) {
tp->tg3_flags |= TG3_FLAG_40BIT_DMA_BUG;
pci_dev_put(bridge);
break;
}
} while (bridge);
}
/* Initialize misc host control in PCI block. */
tp->misc_host_ctrl |= (misc_ctrl_reg &
MISC_HOST_CTRL_CHIPREV);
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
tp->pdev_peer = tg3_find_peer(tp);
/* Intentionally exclude ASIC_REV_5906 */
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5787 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
tp->tg3_flags3 |= TG3_FLG3_5755_PLUS;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906 ||
(tp->tg3_flags3 & TG3_FLG3_5755_PLUS) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS))
tp->tg3_flags2 |= TG3_FLG2_5750_PLUS;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) ||
(tp->tg3_flags2 & TG3_FLG2_5750_PLUS))
tp->tg3_flags2 |= TG3_FLG2_5705_PLUS;
/* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*/
if (tp->pci_chip_rev_id == CHIPREV_ID_5700_B0)
tp->tg3_flags |= TG3_FLAG_BROKEN_CHECKSUMS;
else {
tp->tg3_flags |= TG3_FLAG_RX_CHECKSUMS;
tp->dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
if (tp->tg3_flags3 & TG3_FLG3_5755_PLUS)
tp->dev->features |= NETIF_F_IPV6_CSUM;
}
if (tp->tg3_flags2 & TG3_FLG2_5750_PLUS) {
tp->tg3_flags |= TG3_FLAG_SUPPORT_MSI;
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5750_AX ||
GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5750_BX ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714 &&
tp->pci_chip_rev_id <= CHIPREV_ID_5714_A2 &&
tp->pdev_peer == tp->pdev))
tp->tg3_flags &= ~TG3_FLAG_SUPPORT_MSI;
if ((tp->tg3_flags3 & TG3_FLG3_5755_PLUS) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
tp->tg3_flags2 |= TG3_FLG2_HW_TSO_2;
tp->tg3_flags2 |= TG3_FLG2_1SHOT_MSI;
} else {
tp->tg3_flags2 |= TG3_FLG2_HW_TSO_1 | TG3_FLG2_TSO_BUG;
if (GET_ASIC_REV(tp->pci_chip_rev_id) ==
ASIC_REV_5750 &&
tp->pci_chip_rev_id >= CHIPREV_ID_5750_C2)
tp->tg3_flags2 &= ~TG3_FLG2_TSO_BUG;
}
}
tp->irq_max = 1;
#ifdef TG3_NAPI
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
tp->tg3_flags |= TG3_FLAG_SUPPORT_MSIX;
tp->irq_max = TG3_IRQ_MAX_VECS;
}
#endif
if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
tp->tg3_flags |= TG3_FLAG_JUMBO_CAPABLE;
pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
&pci_state_reg);
tp->pcie_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_EXP);
if (tp->pcie_cap != 0) {
u16 lnkctl;
tp->tg3_flags2 |= TG3_FLG2_PCI_EXPRESS;
pcie_set_readrq(tp->pdev, 4096);
pci_read_config_word(tp->pdev,
tp->pcie_cap + PCI_EXP_LNKCTL,
&lnkctl);
if (lnkctl & PCI_EXP_LNKCTL_CLKREQ_EN) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
tp->tg3_flags2 &= ~TG3_FLG2_HW_TSO_2;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761 ||
tp->pci_chip_rev_id == CHIPREV_ID_57780_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_57780_A1)
tp->tg3_flags3 |= TG3_FLG3_CLKREQ_BUG;
}
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785) {
tp->tg3_flags2 |= TG3_FLG2_PCI_EXPRESS;
} else if (!(tp->tg3_flags2 & TG3_FLG2_5705_PLUS) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) {
tp->pcix_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_PCIX);
if (!tp->pcix_cap) {
printk(KERN_ERR PFX "Cannot find PCI-X "
"capability, aborting.\n");
return -EIO;
}
if (!(pci_state_reg & PCISTATE_CONV_PCI_MODE))
tp->tg3_flags |= TG3_FLAG_PCIX_MODE;
}
/* If we have an AMD 762 or VIA K8T800 chipset, write
* reordering to the mailbox registers done by the host
* controller can cause major troubles. We read back from
* every mailbox register write to force the writes to be
* posted to the chip in order.
*/
if (pci_dev_present(write_reorder_chipsets) &&
!(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS))
tp->tg3_flags |= TG3_FLAG_MBOX_WRITE_REORDER;
pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
&tp->pci_cacheline_sz);
pci_read_config_byte(tp->pdev, PCI_LATENCY_TIMER,
&tp->pci_lat_timer);
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 &&
tp->pci_lat_timer < 64) {
tp->pci_lat_timer = 64;
pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
tp->pci_lat_timer);
}
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5700_BX) {
/* 5700 BX chips need to have their TX producer index
* mailboxes written twice to workaround a bug.
*/
tp->tg3_flags |= TG3_FLAG_TXD_MBOX_HWBUG;
/* If we are in PCI-X mode, enable register write workaround.
*
* The workaround is to use indirect register accesses
* for all chip writes not to mailbox registers.
*/
if (tp->tg3_flags & TG3_FLAG_PCIX_MODE) {
u32 pm_reg;
tp->tg3_flags |= TG3_FLAG_PCIX_TARGET_HWBUG;
/* The chip can have it's power management PCI config
* space registers clobbered due to this bug.
* So explicitly force the chip into D0 here.
*/
pci_read_config_dword(tp->pdev,
tp->pm_cap + PCI_PM_CTRL,
&pm_reg);
pm_reg &= ~PCI_PM_CTRL_STATE_MASK;
pm_reg |= PCI_PM_CTRL_PME_ENABLE | 0 /* D0 */;
pci_write_config_dword(tp->pdev,
tp->pm_cap + PCI_PM_CTRL,
pm_reg);
/* Also, force SERR#/PERR# in PCI command. */
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
}
}
if ((pci_state_reg & PCISTATE_BUS_SPEED_HIGH) != 0)
tp->tg3_flags |= TG3_FLAG_PCI_HIGH_SPEED;
if ((pci_state_reg & PCISTATE_BUS_32BIT) != 0)
tp->tg3_flags |= TG3_FLAG_PCI_32BIT;
/* Chip-specific fixup from Broadcom driver */
if ((tp->pci_chip_rev_id == CHIPREV_ID_5704_A0) &&
(!(pci_state_reg & PCISTATE_RETRY_SAME_DMA))) {
pci_state_reg |= PCISTATE_RETRY_SAME_DMA;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, pci_state_reg);
}
/* Default fast path register access methods */
tp->read32 = tg3_read32;
tp->write32 = tg3_write32;
tp->read32_mbox = tg3_read32;
tp->write32_mbox = tg3_write32;
tp->write32_tx_mbox = tg3_write32;
tp->write32_rx_mbox = tg3_write32;
/* Various workaround register access methods */
if (tp->tg3_flags & TG3_FLAG_PCIX_TARGET_HWBUG)
tp->write32 = tg3_write_indirect_reg32;
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701 ||
((tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) &&
tp->pci_chip_rev_id == CHIPREV_ID_5750_A0)) {
/*
* Back to back register writes can cause problems on these
* chips, the workaround is to read back all reg writes
* except those to mailbox regs.
*
* See tg3_write_indirect_reg32().
*/
tp->write32 = tg3_write_flush_reg32;
}
if ((tp->tg3_flags & TG3_FLAG_TXD_MBOX_HWBUG) ||
(tp->tg3_flags & TG3_FLAG_MBOX_WRITE_REORDER)) {
tp->write32_tx_mbox = tg3_write32_tx_mbox;
if (tp->tg3_flags & TG3_FLAG_MBOX_WRITE_REORDER)
tp->write32_rx_mbox = tg3_write_flush_reg32;
}
if (tp->tg3_flags2 & TG3_FLG2_ICH_WORKAROUND) {
tp->read32 = tg3_read_indirect_reg32;
tp->write32 = tg3_write_indirect_reg32;
tp->read32_mbox = tg3_read_indirect_mbox;
tp->write32_mbox = tg3_write_indirect_mbox;
tp->write32_tx_mbox = tg3_write_indirect_mbox;
tp->write32_rx_mbox = tg3_write_indirect_mbox;
iounmap(tp->regs);
tp->regs = NULL;
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_MEMORY;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
tp->read32_mbox = tg3_read32_mbox_5906;
tp->write32_mbox = tg3_write32_mbox_5906;
tp->write32_tx_mbox = tg3_write32_mbox_5906;
tp->write32_rx_mbox = tg3_write32_mbox_5906;
}
if (tp->write32 == tg3_write_indirect_reg32 ||
((tp->tg3_flags & TG3_FLAG_PCIX_MODE) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)))
tp->tg3_flags |= TG3_FLAG_SRAM_USE_CONFIG;
/* Get eeprom hw config before calling tg3_set_power_state().
* In particular, the TG3_FLG2_IS_NIC flag must be
* determined before calling tg3_set_power_state() so that
* we know whether or not to switch out of Vaux power.
* When the flag is set, it means that GPIO1 is used for eeprom
* write protect and also implies that it is a LOM where GPIOs
* are not used to switch power.
*/
tg3_get_eeprom_hw_cfg(tp);
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) {
/* Allow reads and writes to the
* APE register and memory space.
*/
pci_state_reg |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE,
pci_state_reg);
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
tp->tg3_flags |= TG3_FLAG_CPMU_PRESENT;
/* Set up tp->grc_local_ctrl before calling tg3_set_power_state().
* GPIO1 driven high will bring 5700's external PHY out of reset.
* It is also used as eeprom write protect on LOMs.
*/
tp->grc_local_ctrl = GRC_LCLCTRL_INT_ON_ATTN | GRC_LCLCTRL_AUTO_SEEPROM;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700) ||
(tp->tg3_flags & TG3_FLAG_EEPROM_WRITE_PROT))
tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1);
/* Unused GPIO3 must be driven as output on 5752 because there
* are no pull-up resistors on unused GPIO pins.
*/
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752)
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780)
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
/* Turn off the debug UART. */
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
if (tp->tg3_flags2 & TG3_FLG2_IS_NIC)
/* Keep VMain power. */
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OUTPUT0;
}
/* Force the chip into D0. */
err = tg3_set_power_state(tp, PCI_D0);
if (err) {
printk(KERN_ERR PFX "(%s) transition to D0 failed\n",
pci_name(tp->pdev));
return err;
}
/* Derive initial jumbo mode from MTU assigned in
* ether_setup() via the alloc_etherdev() call
*/
if (tp->dev->mtu > ETH_DATA_LEN &&
!(tp->tg3_flags2 & TG3_FLG2_5780_CLASS))
tp->tg3_flags |= TG3_FLAG_JUMBO_RING_ENABLE;
/* Determine WakeOnLan speed to use. */
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_A0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B0 ||
tp->pci_chip_rev_id == CHIPREV_ID_5701_B2) {
tp->tg3_flags &= ~(TG3_FLAG_WOL_SPEED_100MB);
} else {
tp->tg3_flags |= TG3_FLAG_WOL_SPEED_100MB;
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
tp->tg3_flags3 |= TG3_FLG3_PHY_IS_FET;
/* A few boards don't want Ethernet@WireSpeed phy feature */
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700) ||
((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705) &&
(tp->pci_chip_rev_id != CHIPREV_ID_5705_A0) &&
(tp->pci_chip_rev_id != CHIPREV_ID_5705_A1)) ||
(tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) ||
(tp->tg3_flags2 & TG3_FLG2_ANY_SERDES))
tp->tg3_flags2 |= TG3_FLG2_NO_ETH_WIRE_SPEED;
if (GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5703_AX ||
GET_CHIP_REV(tp->pci_chip_rev_id) == CHIPREV_5704_AX)
tp->tg3_flags2 |= TG3_FLG2_PHY_ADC_BUG;
if (tp->pci_chip_rev_id == CHIPREV_ID_5704_A0)
tp->tg3_flags2 |= TG3_FLG2_PHY_5704_A0_BUG;
if ((tp->tg3_flags2 & TG3_FLG2_5705_PLUS) &&
!(tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET) &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5785 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_57780 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5717) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5787 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761) {
if (tp->pdev->device != PCI_DEVICE_ID_TIGON3_5756 &&
tp->pdev->device != PCI_DEVICE_ID_TIGON3_5722)
tp->tg3_flags2 |= TG3_FLG2_PHY_JITTER_BUG;
if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5755M)
tp->tg3_flags2 |= TG3_FLG2_PHY_ADJUST_TRIM;
} else
tp->tg3_flags2 |= TG3_FLG2_PHY_BER_BUG;
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5784_AX) {
tp->phy_otp = tg3_read_otp_phycfg(tp);
if (tp->phy_otp == 0)
tp->phy_otp = TG3_OTP_DEFAULT;
}
if (tp->tg3_flags & TG3_FLAG_CPMU_PRESENT)
tp->mi_mode = MAC_MI_MODE_500KHZ_CONST;
else
tp->mi_mode = MAC_MI_MODE_BASE;
tp->coalesce_mode = 0;
if (GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5700_AX &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5700_BX)
tp->coalesce_mode |= HOSTCC_MODE_32BYTE;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780)
tp->tg3_flags3 |= TG3_FLG3_USE_PHYLIB;
if ((tp->pci_chip_rev_id == CHIPREV_ID_57780_A1 &&
tr32(RCVLPC_STATS_ENABLE) & RCVLPC_STATSENAB_ASF_FIX) ||
tp->pci_chip_rev_id == CHIPREV_ID_57780_A0)
tp->tg3_flags3 |= TG3_FLG3_TOGGLE_10_100_L1PLLPD;
err = tg3_mdio_init(tp);
if (err)
return err;
/* Initialize data/descriptor byte/word swapping. */
val = tr32(GRC_MODE);
val &= GRC_MODE_HOST_STACKUP;
tw32(GRC_MODE, val | tp->grc_mode);
tg3_switch_clocks(tp);
/* Clear this out for sanity. */
tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
&pci_state_reg);
if ((pci_state_reg & PCISTATE_CONV_PCI_MODE) == 0 &&
(tp->tg3_flags & TG3_FLAG_PCIX_TARGET_HWBUG) == 0) {
u32 chiprevid = GET_CHIP_REV_ID(tp->misc_host_ctrl);
if (chiprevid == CHIPREV_ID_5701_A0 ||
chiprevid == CHIPREV_ID_5701_B0 ||
chiprevid == CHIPREV_ID_5701_B2 ||
chiprevid == CHIPREV_ID_5701_B5) {
void __iomem *sram_base;
/* Write some dummy words into the SRAM status block
* area, see if it reads back correctly. If the return
* value is bad, force enable the PCIX workaround.
*/
sram_base = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_STATS_BLK;
writel(0x00000000, sram_base);
writel(0x00000000, sram_base + 4);
writel(0xffffffff, sram_base + 4);
if (readl(sram_base) != 0x00000000)
tp->tg3_flags |= TG3_FLAG_PCIX_TARGET_HWBUG;
}
}
udelay(50);
tg3_nvram_init(tp);
grc_misc_cfg = tr32(GRC_MISC_CFG);
grc_misc_cfg &= GRC_MISC_CFG_BOARD_ID_MASK;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705 &&
(grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788 ||
grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788M))
tp->tg3_flags2 |= TG3_FLG2_IS_5788;
if (!(tp->tg3_flags2 & TG3_FLG2_IS_5788) &&
(GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700))
tp->tg3_flags |= TG3_FLAG_TAGGED_STATUS;
if (tp->tg3_flags & TG3_FLAG_TAGGED_STATUS) {
tp->coalesce_mode |= (HOSTCC_MODE_CLRTICK_RXBD |
HOSTCC_MODE_CLRTICK_TXBD);
tp->misc_host_ctrl |= MISC_HOST_CTRL_TAGGED_STATUS;
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
}
/* Preserve the APE MAC_MODE bits */
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE)
tp->mac_mode = tr32(MAC_MODE) |
MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
else
tp->mac_mode = TG3_DEF_MAC_MODE;
/* these are limited to 10/100 only */
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 &&
(grc_misc_cfg == 0x8000 || grc_misc_cfg == 0x4000)) ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705 &&
tp->pdev->vendor == PCI_VENDOR_ID_BROADCOM &&
(tp->pdev->device == PCI_DEVICE_ID_TIGON3_5901 ||
tp->pdev->device == PCI_DEVICE_ID_TIGON3_5901_2 ||
tp->pdev->device == PCI_DEVICE_ID_TIGON3_5705F)) ||
(tp->pdev->vendor == PCI_VENDOR_ID_BROADCOM &&
(tp->pdev->device == PCI_DEVICE_ID_TIGON3_5751F ||
tp->pdev->device == PCI_DEVICE_ID_TIGON3_5753F ||
tp->pdev->device == PCI_DEVICE_ID_TIGON3_5787F)) ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790 ||
(tp->tg3_flags3 & TG3_FLG3_PHY_IS_FET))
tp->tg3_flags |= TG3_FLAG_10_100_ONLY;
err = tg3_phy_probe(tp);
if (err) {
printk(KERN_ERR PFX "(%s) phy probe failed, err %d\n",
pci_name(tp->pdev), err);
/* ... but do not return immediately ... */
tg3_mdio_fini(tp);
}
tg3_read_partno(tp);
tg3_read_fw_ver(tp);
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
tp->tg3_flags &= ~TG3_FLAG_USE_MI_INTERRUPT;
} else {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700)
tp->tg3_flags |= TG3_FLAG_USE_MI_INTERRUPT;
else
tp->tg3_flags &= ~TG3_FLAG_USE_MI_INTERRUPT;
}
/* 5700 {AX,BX} chips have a broken status block link
* change bit implementation, so we must use the
* status register in those cases.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700)
tp->tg3_flags |= TG3_FLAG_USE_LINKCHG_REG;
else
tp->tg3_flags &= ~TG3_FLAG_USE_LINKCHG_REG;
/* The led_ctrl is set during tg3_phy_probe, here we might
* have to force the link status polling mechanism based
* upon subsystem IDs.
*/
if (tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL &&
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701 &&
!(tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)) {
tp->tg3_flags |= (TG3_FLAG_USE_MI_INTERRUPT |
TG3_FLAG_USE_LINKCHG_REG);
}
/* For all SERDES we poll the MAC status register. */
if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)
tp->tg3_flags |= TG3_FLAG_POLL_SERDES;
else
tp->tg3_flags &= ~TG3_FLAG_POLL_SERDES;
tp->rx_offset = NET_IP_ALIGN;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701 &&
(tp->tg3_flags & TG3_FLAG_PCIX_MODE) != 0)
tp->rx_offset = 0;
tp->rx_std_max_post = TG3_RX_RING_SIZE;
/* Increment the rx prod index on the rx std ring by at most
* 8 for these chips to workaround hw errata.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755)
tp->rx_std_max_post = 8;
if (tp->tg3_flags & TG3_FLAG_ASPM_WORKAROUND)
tp->pwrmgmt_thresh = tr32(PCIE_PWR_MGMT_THRESH) &
PCIE_PWR_MGMT_L1_THRESH_MSK;
return err;
}
#ifdef CONFIG_SPARC
static int __devinit tg3_get_macaddr_sparc(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
struct pci_dev *pdev = tp->pdev;
struct device_node *dp = pci_device_to_OF_node(pdev);
const unsigned char *addr;
int len;
addr = of_get_property(dp, "local-mac-address", &len);
if (addr && len == 6) {
memcpy(dev->dev_addr, addr, 6);
memcpy(dev->perm_addr, dev->dev_addr, 6);
return 0;
}
return -ENODEV;
}
static int __devinit tg3_get_default_macaddr_sparc(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
memcpy(dev->perm_addr, idprom->id_ethaddr, 6);
return 0;
}
#endif
static int __devinit tg3_get_device_address(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
u32 hi, lo, mac_offset;
int addr_ok = 0;
#ifdef CONFIG_SPARC
if (!tg3_get_macaddr_sparc(tp))
return 0;
#endif
mac_offset = 0x7c;
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) ||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) {
if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
mac_offset = 0xcc;
if (tg3_nvram_lock(tp))
tw32_f(NVRAM_CMD, NVRAM_CMD_RESET);
else
tg3_nvram_unlock(tp);
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717) {
if (tr32(TG3_CPMU_STATUS) & TG3_CPMU_STATUS_PCIE_FUNC)
mac_offset = 0xcc;
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
mac_offset = 0x10;
/* First try to get it from MAC address mailbox. */
tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_HIGH_MBOX, &hi);
if ((hi >> 16) == 0x484b) {
dev->dev_addr[0] = (hi >> 8) & 0xff;
dev->dev_addr[1] = (hi >> 0) & 0xff;
tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_LOW_MBOX, &lo);
dev->dev_addr[2] = (lo >> 24) & 0xff;
dev->dev_addr[3] = (lo >> 16) & 0xff;
dev->dev_addr[4] = (lo >> 8) & 0xff;
dev->dev_addr[5] = (lo >> 0) & 0xff;
/* Some old bootcode may report a 0 MAC address in SRAM */
addr_ok = is_valid_ether_addr(&dev->dev_addr[0]);
}
if (!addr_ok) {
/* Next, try NVRAM. */
if (!(tp->tg3_flags3 & TG3_FLG3_NO_NVRAM) &&
!tg3_nvram_read_be32(tp, mac_offset + 0, &hi) &&
!tg3_nvram_read_be32(tp, mac_offset + 4, &lo)) {
memcpy(&dev->dev_addr[0], ((char *)&hi) + 2, 2);
memcpy(&dev->dev_addr[2], (char *)&lo, sizeof(lo));
}
/* Finally just fetch it out of the MAC control regs. */
else {
hi = tr32(MAC_ADDR_0_HIGH);
lo = tr32(MAC_ADDR_0_LOW);
dev->dev_addr[5] = lo & 0xff;
dev->dev_addr[4] = (lo >> 8) & 0xff;
dev->dev_addr[3] = (lo >> 16) & 0xff;
dev->dev_addr[2] = (lo >> 24) & 0xff;
dev->dev_addr[1] = hi & 0xff;
dev->dev_addr[0] = (hi >> 8) & 0xff;
}
}
if (!is_valid_ether_addr(&dev->dev_addr[0])) {
#ifdef CONFIG_SPARC
if (!tg3_get_default_macaddr_sparc(tp))
return 0;
#endif
return -EINVAL;
}
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
return 0;
}
#define BOUNDARY_SINGLE_CACHELINE 1
#define BOUNDARY_MULTI_CACHELINE 2
static u32 __devinit tg3_calc_dma_bndry(struct tg3 *tp, u32 val)
{
int cacheline_size;
u8 byte;
int goal;
pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, &byte);
if (byte == 0)
cacheline_size = 1024;
else
cacheline_size = (int) byte * 4;
/* On 5703 and later chips, the boundary bits have no
* effect.
*/
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701 &&
!(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS))
goto out;
#if defined(CONFIG_PPC64) || defined(CONFIG_IA64) || defined(CONFIG_PARISC)
goal = BOUNDARY_MULTI_CACHELINE;
#else
#if defined(CONFIG_SPARC64) || defined(CONFIG_ALPHA)
goal = BOUNDARY_SINGLE_CACHELINE;
#else
goal = 0;
#endif
#endif
if (!goal)
goto out;
/* PCI controllers on most RISC systems tend to disconnect
* when a device tries to burst across a cache-line boundary.
* Therefore, letting tg3 do so just wastes PCI bandwidth.
*
* Unfortunately, for PCI-E there are only limited
* write-side controls for this, and thus for reads
* we will still get the disconnects. We'll also waste
* these PCI cycles for both read and write for chips
* other than 5700 and 5701 which do not implement the
* boundary bits.
*/
if ((tp->tg3_flags & TG3_FLAG_PCIX_MODE) &&
!(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS)) {
switch (cacheline_size) {
case 16:
case 32:
case 64:
case 128:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_128_PCIX |
DMA_RWCTRL_WRITE_BNDRY_128_PCIX);
} else {
val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
}
break;
case 256:
val |= (DMA_RWCTRL_READ_BNDRY_256_PCIX |
DMA_RWCTRL_WRITE_BNDRY_256_PCIX);
break;
default:
val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
break;
}
} else if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
switch (cacheline_size) {
case 16:
case 32:
case 64:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
val |= DMA_RWCTRL_WRITE_BNDRY_64_PCIE;
break;
}
/* fallthrough */
case 128:
default:
val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
val |= DMA_RWCTRL_WRITE_BNDRY_128_PCIE;
break;
}
} else {
switch (cacheline_size) {
case 16:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_16 |
DMA_RWCTRL_WRITE_BNDRY_16);
break;
}
/* fallthrough */
case 32:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_32 |
DMA_RWCTRL_WRITE_BNDRY_32);
break;
}
/* fallthrough */
case 64:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_64 |
DMA_RWCTRL_WRITE_BNDRY_64);
break;
}
/* fallthrough */
case 128:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_128 |
DMA_RWCTRL_WRITE_BNDRY_128);
break;
}
/* fallthrough */
case 256:
val |= (DMA_RWCTRL_READ_BNDRY_256 |
DMA_RWCTRL_WRITE_BNDRY_256);
break;
case 512:
val |= (DMA_RWCTRL_READ_BNDRY_512 |
DMA_RWCTRL_WRITE_BNDRY_512);
break;
case 1024:
default:
val |= (DMA_RWCTRL_READ_BNDRY_1024 |
DMA_RWCTRL_WRITE_BNDRY_1024);
break;
}
}
out:
return val;
}
static int __devinit tg3_do_test_dma(struct tg3 *tp, u32 *buf, dma_addr_t buf_dma, int size, int to_device)
{
struct tg3_internal_buffer_desc test_desc;
u32 sram_dma_descs;
int i, ret;
sram_dma_descs = NIC_SRAM_DMA_DESC_POOL_BASE;
tw32(FTQ_RCVBD_COMP_FIFO_ENQDEQ, 0);
tw32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ, 0);
tw32(RDMAC_STATUS, 0);
tw32(WDMAC_STATUS, 0);
tw32(BUFMGR_MODE, 0);
tw32(FTQ_RESET, 0);
test_desc.addr_hi = ((u64) buf_dma) >> 32;
test_desc.addr_lo = buf_dma & 0xffffffff;
test_desc.nic_mbuf = 0x00002100;
test_desc.len = size;
/*
* HP ZX1 was seeing test failures for 5701 cards running at 33Mhz
* the *second* time the tg3 driver was getting loaded after an
* initial scan.
*
* Broadcom tells me:
* ...the DMA engine is connected to the GRC block and a DMA
* reset may affect the GRC block in some unpredictable way...
* The behavior of resets to individual blocks has not been tested.
*
* Broadcom noted the GRC reset will also reset all sub-components.
*/
if (to_device) {
test_desc.cqid_sqid = (13 << 8) | 2;
tw32_f(RDMAC_MODE, RDMAC_MODE_ENABLE);
udelay(40);
} else {
test_desc.cqid_sqid = (16 << 8) | 7;
tw32_f(WDMAC_MODE, WDMAC_MODE_ENABLE);
udelay(40);
}
test_desc.flags = 0x00000005;
for (i = 0; i < (sizeof(test_desc) / sizeof(u32)); i++) {
u32 val;
val = *(((u32 *)&test_desc) + i);
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR,
sram_dma_descs + (i * sizeof(u32)));
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
}
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
if (to_device) {
tw32(FTQ_DMA_HIGH_READ_FIFO_ENQDEQ, sram_dma_descs);
} else {
tw32(FTQ_DMA_HIGH_WRITE_FIFO_ENQDEQ, sram_dma_descs);
}
ret = -ENODEV;
for (i = 0; i < 40; i++) {
u32 val;
if (to_device)
val = tr32(FTQ_RCVBD_COMP_FIFO_ENQDEQ);
else
val = tr32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ);
if ((val & 0xffff) == sram_dma_descs) {
ret = 0;
break;
}
udelay(100);
}
return ret;
}
#define TEST_BUFFER_SIZE 0x2000
static int __devinit tg3_test_dma(struct tg3 *tp)
{
dma_addr_t buf_dma;
u32 *buf, saved_dma_rwctrl;
int ret;
buf = pci_alloc_consistent(tp->pdev, TEST_BUFFER_SIZE, &buf_dma);
if (!buf) {
ret = -ENOMEM;
goto out_nofree;
}
tp->dma_rwctrl = ((0x7 << DMA_RWCTRL_PCI_WRITE_CMD_SHIFT) |
(0x6 << DMA_RWCTRL_PCI_READ_CMD_SHIFT));
tp->dma_rwctrl = tg3_calc_dma_bndry(tp, tp->dma_rwctrl);
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
/* DMA read watermark not used on PCIE */
tp->dma_rwctrl |= 0x00180000;
} else if (!(tp->tg3_flags & TG3_FLAG_PCIX_MODE)) {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5750)
tp->dma_rwctrl |= 0x003f0000;
else
tp->dma_rwctrl |= 0x003f000f;
} else {
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) {
u32 ccval = (tr32(TG3PCI_CLOCK_CTRL) & 0x1f);
u32 read_water = 0x7;
/* If the 5704 is behind the EPB bridge, we can
* do the less restrictive ONE_DMA workaround for
* better performance.
*/
if ((tp->tg3_flags & TG3_FLAG_40BIT_DMA_BUG) &&
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704)
tp->dma_rwctrl |= 0x8000;
else if (ccval == 0x6 || ccval == 0x7)
tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703)
read_water = 4;
/* Set bit 23 to enable PCIX hw bug fix */
tp->dma_rwctrl |=
(read_water << DMA_RWCTRL_READ_WATER_SHIFT) |
(0x3 << DMA_RWCTRL_WRITE_WATER_SHIFT) |
(1 << 23);
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5780) {
/* 5780 always in PCIX mode */
tp->dma_rwctrl |= 0x00144000;
} else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5714) {
/* 5714 always in PCIX mode */
tp->dma_rwctrl |= 0x00148000;
} else {
tp->dma_rwctrl |= 0x001b000f;
}
}
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704)
tp->dma_rwctrl &= 0xfffffff0;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701) {
/* Remove this if it causes problems for some boards. */
tp->dma_rwctrl |= DMA_RWCTRL_USE_MEM_READ_MULT;
/* On 5700/5701 chips, we need to set this bit.
* Otherwise the chip will issue cacheline transactions
* to streamable DMA memory with not all the byte
* enables turned on. This is an error on several
* RISC PCI controllers, in particular sparc64.
*
* On 5703/5704 chips, this bit has been reassigned
* a different meaning. In particular, it is used
* on those chips to enable a PCI-X workaround.
*/
tp->dma_rwctrl |= DMA_RWCTRL_ASSERT_ALL_BE;
}
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
#if 0
/* Unneeded, already done by tg3_get_invariants. */
tg3_switch_clocks(tp);
#endif
ret = 0;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5700 &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5701)
goto out;
/* It is best to perform DMA test with maximum write burst size
* to expose the 5700/5701 write DMA bug.
*/
saved_dma_rwctrl = tp->dma_rwctrl;
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
while (1) {
u32 *p = buf, i;
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++)
p[i] = i;
/* Send the buffer to the chip. */
ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, 1);
if (ret) {
printk(KERN_ERR "tg3_test_dma() Write the buffer failed %d\n", ret);
break;
}
#if 0
/* validate data reached card RAM correctly. */
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) {
u32 val;
tg3_read_mem(tp, 0x2100 + (i*4), &val);
if (le32_to_cpu(val) != p[i]) {
printk(KERN_ERR " tg3_test_dma() Card buffer corrupted on write! (%d != %d)\n", val, i);
/* ret = -ENODEV here? */
}
p[i] = 0;
}
#endif
/* Now read it back. */
ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, 0);
if (ret) {
printk(KERN_ERR "tg3_test_dma() Read the buffer failed %d\n", ret);
break;
}
/* Verify it. */
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) {
if (p[i] == i)
continue;
if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
DMA_RWCTRL_WRITE_BNDRY_16) {
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
break;
} else {
printk(KERN_ERR "tg3_test_dma() buffer corrupted on read back! (%d != %d)\n", p[i], i);
ret = -ENODEV;
goto out;
}
}
if (i == (TEST_BUFFER_SIZE / sizeof(u32))) {
/* Success. */
ret = 0;
break;
}
}
if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
DMA_RWCTRL_WRITE_BNDRY_16) {
static struct pci_device_id dma_wait_state_chipsets[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE,
PCI_DEVICE_ID_APPLE_UNI_N_PCI15) },
{ },
};
/* DMA test passed without adjusting DMA boundary,
* now look for chipsets that are known to expose the
* DMA bug without failing the test.
*/
if (pci_dev_present(dma_wait_state_chipsets)) {
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
}
else
/* Safe to use the calculated DMA boundary. */
tp->dma_rwctrl = saved_dma_rwctrl;
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
}
out:
pci_free_consistent(tp->pdev, TEST_BUFFER_SIZE, buf, buf_dma);
out_nofree:
return ret;
}
static void __devinit tg3_init_link_config(struct tg3 *tp)
{
tp->link_config.advertising =
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full |
ADVERTISED_Autoneg | ADVERTISED_MII);
tp->link_config.speed = SPEED_INVALID;
tp->link_config.duplex = DUPLEX_INVALID;
tp->link_config.autoneg = AUTONEG_ENABLE;
tp->link_config.active_speed = SPEED_INVALID;
tp->link_config.active_duplex = DUPLEX_INVALID;
tp->link_config.phy_is_low_power = 0;
tp->link_config.orig_speed = SPEED_INVALID;
tp->link_config.orig_duplex = DUPLEX_INVALID;
tp->link_config.orig_autoneg = AUTONEG_INVALID;
}
static void __devinit tg3_init_bufmgr_config(struct tg3 *tp)
{
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS &&
GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5717) {
tp->bufmgr_config.mbuf_read_dma_low_water =
DEFAULT_MB_RDMA_LOW_WATER_5705;
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER_5705;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER_5705;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) {
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER_5906;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER_5906;
}
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
DEFAULT_MB_RDMA_LOW_WATER_JUMBO_5780;
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
DEFAULT_MB_MACRX_LOW_WATER_JUMBO_5780;
tp->bufmgr_config.mbuf_high_water_jumbo =
DEFAULT_MB_HIGH_WATER_JUMBO_5780;
} else {
tp->bufmgr_config.mbuf_read_dma_low_water =
DEFAULT_MB_RDMA_LOW_WATER;
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER;
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
DEFAULT_MB_RDMA_LOW_WATER_JUMBO;
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
DEFAULT_MB_MACRX_LOW_WATER_JUMBO;
tp->bufmgr_config.mbuf_high_water_jumbo =
DEFAULT_MB_HIGH_WATER_JUMBO;
}
tp->bufmgr_config.dma_low_water = DEFAULT_DMA_LOW_WATER;
tp->bufmgr_config.dma_high_water = DEFAULT_DMA_HIGH_WATER;
}
static char * __devinit tg3_phy_string(struct tg3 *tp)
{
switch (tp->phy_id & PHY_ID_MASK) {
case PHY_ID_BCM5400: return "5400";
case PHY_ID_BCM5401: return "5401";
case PHY_ID_BCM5411: return "5411";
case PHY_ID_BCM5701: return "5701";
case PHY_ID_BCM5703: return "5703";
case PHY_ID_BCM5704: return "5704";
case PHY_ID_BCM5705: return "5705";
case PHY_ID_BCM5750: return "5750";
case PHY_ID_BCM5752: return "5752";
case PHY_ID_BCM5714: return "5714";
case PHY_ID_BCM5780: return "5780";
case PHY_ID_BCM5755: return "5755";
case PHY_ID_BCM5787: return "5787";
case PHY_ID_BCM5784: return "5784";
case PHY_ID_BCM5756: return "5722/5756";
case PHY_ID_BCM5906: return "5906";
case PHY_ID_BCM5761: return "5761";
case PHY_ID_BCM8002: return "8002/serdes";
case 0: return "serdes";
default: return "unknown";
}
}
static char * __devinit tg3_bus_string(struct tg3 *tp, char *str)
{
if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
strcpy(str, "PCI Express");
return str;
} else if (tp->tg3_flags & TG3_FLAG_PCIX_MODE) {
u32 clock_ctrl = tr32(TG3PCI_CLOCK_CTRL) & 0x1f;
strcpy(str, "PCIX:");
if ((clock_ctrl == 7) ||
((tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK) ==
GRC_MISC_CFG_BOARD_ID_5704CIOBE))
strcat(str, "133MHz");
else if (clock_ctrl == 0)
strcat(str, "33MHz");
else if (clock_ctrl == 2)
strcat(str, "50MHz");
else if (clock_ctrl == 4)
strcat(str, "66MHz");
else if (clock_ctrl == 6)
strcat(str, "100MHz");
} else {
strcpy(str, "PCI:");
if (tp->tg3_flags & TG3_FLAG_PCI_HIGH_SPEED)
strcat(str, "66MHz");
else
strcat(str, "33MHz");
}
if (tp->tg3_flags & TG3_FLAG_PCI_32BIT)
strcat(str, ":32-bit");
else
strcat(str, ":64-bit");
return str;
}
static struct pci_dev * __devinit tg3_find_peer(struct tg3 *tp)
{
struct pci_dev *peer;
unsigned int func, devnr = tp->pdev->devfn & ~7;
for (func = 0; func < 8; func++) {
peer = pci_get_slot(tp->pdev->bus, devnr | func);
if (peer && peer != tp->pdev)
break;
pci_dev_put(peer);
}
/* 5704 can be configured in single-port mode, set peer to
* tp->pdev in that case.
*/
if (!peer) {
peer = tp->pdev;
return peer;
}
/*
* We don't need to keep the refcount elevated; there's no way
* to remove one half of this device without removing the other
*/
pci_dev_put(peer);
return peer;
}
static void __devinit tg3_init_coal(struct tg3 *tp)
{
struct ethtool_coalesce *ec = &tp->coal;
memset(ec, 0, sizeof(*ec));
ec->cmd = ETHTOOL_GCOALESCE;
ec->rx_coalesce_usecs = LOW_RXCOL_TICKS;
ec->tx_coalesce_usecs = LOW_TXCOL_TICKS;
ec->rx_max_coalesced_frames = LOW_RXMAX_FRAMES;
ec->tx_max_coalesced_frames = LOW_TXMAX_FRAMES;
ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT;
ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT;
ec->rx_max_coalesced_frames_irq = DEFAULT_RXCOAL_MAXF_INT;
ec->tx_max_coalesced_frames_irq = DEFAULT_TXCOAL_MAXF_INT;
ec->stats_block_coalesce_usecs = DEFAULT_STAT_COAL_TICKS;
if (tp->coalesce_mode & (HOSTCC_MODE_CLRTICK_RXBD |
HOSTCC_MODE_CLRTICK_TXBD)) {
ec->rx_coalesce_usecs = LOW_RXCOL_TICKS_CLRTCKS;
ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT_CLRTCKS;
ec->tx_coalesce_usecs = LOW_TXCOL_TICKS_CLRTCKS;
ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT_CLRTCKS;
}
if (tp->tg3_flags2 & TG3_FLG2_5705_PLUS) {
ec->rx_coalesce_usecs_irq = 0;
ec->tx_coalesce_usecs_irq = 0;
ec->stats_block_coalesce_usecs = 0;
}
}
static const struct net_device_ops tg3_netdev_ops = {
.ndo_open = tg3_open,
.ndo_stop = tg3_close,
.ndo_start_xmit = tg3_start_xmit,
.ndo_get_stats = tg3_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_multicast_list = tg3_set_rx_mode,
.ndo_set_mac_address = tg3_set_mac_addr,
.ndo_do_ioctl = tg3_ioctl,
.ndo_tx_timeout = tg3_tx_timeout,
.ndo_change_mtu = tg3_change_mtu,
#if TG3_VLAN_TAG_USED
.ndo_vlan_rx_register = tg3_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tg3_poll_controller,
#endif
};
static const struct net_device_ops tg3_netdev_ops_dma_bug = {
.ndo_open = tg3_open,
.ndo_stop = tg3_close,
.ndo_start_xmit = tg3_start_xmit_dma_bug,
.ndo_get_stats = tg3_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_multicast_list = tg3_set_rx_mode,
.ndo_set_mac_address = tg3_set_mac_addr,
.ndo_do_ioctl = tg3_ioctl,
.ndo_tx_timeout = tg3_tx_timeout,
.ndo_change_mtu = tg3_change_mtu,
#if TG3_VLAN_TAG_USED
.ndo_vlan_rx_register = tg3_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tg3_poll_controller,
#endif
};
static int __devinit tg3_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int tg3_version_printed = 0;
struct net_device *dev;
struct tg3 *tp;
int i, err, pm_cap;
u32 sndmbx, rcvmbx, intmbx;
char str[40];
u64 dma_mask, persist_dma_mask;
if (tg3_version_printed++ == 0)
printk(KERN_INFO "%s", version);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "Cannot enable PCI device, "
"aborting.\n");
return err;
}
err = pci_request_regions(pdev, DRV_MODULE_NAME);
if (err) {
printk(KERN_ERR PFX "Cannot obtain PCI resources, "
"aborting.\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
/* Find power-management capability. */
pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pm_cap == 0) {
printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
"aborting.\n");
err = -EIO;
goto err_out_free_res;
}
dev = alloc_etherdev_mq(sizeof(*tp), TG3_IRQ_MAX_VECS);
if (!dev) {
printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out_free_res;
}
SET_NETDEV_DEV(dev, &pdev->dev);
#if TG3_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
#endif
tp = netdev_priv(dev);
tp->pdev = pdev;
tp->dev = dev;
tp->pm_cap = pm_cap;
tp->rx_mode = TG3_DEF_RX_MODE;
tp->tx_mode = TG3_DEF_TX_MODE;
if (tg3_debug > 0)
tp->msg_enable = tg3_debug;
else
tp->msg_enable = TG3_DEF_MSG_ENABLE;
/* The word/byte swap controls here control register access byte
* swapping. DMA data byte swapping is controlled in the GRC_MODE
* setting below.
*/
tp->misc_host_ctrl =
MISC_HOST_CTRL_MASK_PCI_INT |
MISC_HOST_CTRL_WORD_SWAP |
MISC_HOST_CTRL_INDIR_ACCESS |
MISC_HOST_CTRL_PCISTATE_RW;
/* The NONFRM (non-frame) byte/word swap controls take effect
* on descriptor entries, anything which isn't packet data.
*
* The StrongARM chips on the board (one for tx, one for rx)
* are running in big-endian mode.
*/
tp->grc_mode = (GRC_MODE_WSWAP_DATA | GRC_MODE_BSWAP_DATA |
GRC_MODE_WSWAP_NONFRM_DATA);
#ifdef __BIG_ENDIAN
tp->grc_mode |= GRC_MODE_BSWAP_NONFRM_DATA;
#endif
spin_lock_init(&tp->lock);
spin_lock_init(&tp->indirect_lock);
INIT_WORK(&tp->reset_task, tg3_reset_task);
tp->regs = pci_ioremap_bar(pdev, BAR_0);
if (!tp->regs) {
printk(KERN_ERR PFX "Cannot map device registers, "
"aborting.\n");
err = -ENOMEM;
goto err_out_free_dev;
}
tg3_init_link_config(tp);
tp->rx_pending = TG3_DEF_RX_RING_PENDING;
tp->rx_jumbo_pending = TG3_DEF_RX_JUMBO_RING_PENDING;
intmbx = MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW;
rcvmbx = MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW;
sndmbx = MAILBOX_SNDHOST_PROD_IDX_0 + TG3_64BIT_REG_LOW;
for (i = 0; i < TG3_IRQ_MAX_VECS; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tnapi->tp = tp;
tnapi->tx_pending = TG3_DEF_TX_RING_PENDING;
tnapi->int_mbox = intmbx;
if (i < 4)
intmbx += 0x8;
else
intmbx += 0x4;
tnapi->consmbox = rcvmbx;
tnapi->prodmbox = sndmbx;
if (i)
tnapi->coal_now = HOSTCC_MODE_COAL_VEC1_NOW << (i - 1);
else
tnapi->coal_now = HOSTCC_MODE_NOW;
if (!(tp->tg3_flags & TG3_FLAG_SUPPORT_MSIX))
break;
/*
* If we support MSIX, we'll be using RSS. If we're using
* RSS, the first vector only handles link interrupts and the
* remaining vectors handle rx and tx interrupts. Reuse the
* mailbox values for the next iteration. The values we setup
* above are still useful for the single vectored mode.
*/
if (!i)
continue;
rcvmbx += 0x8;
if (sndmbx & 0x4)
sndmbx -= 0x4;
else
sndmbx += 0xc;
}
netif_napi_add(dev, &tp->napi[0].napi, tg3_poll, 64);
dev->ethtool_ops = &tg3_ethtool_ops;
dev->watchdog_timeo = TG3_TX_TIMEOUT;
dev->irq = pdev->irq;
err = tg3_get_invariants(tp);
if (err) {
printk(KERN_ERR PFX "Problem fetching invariants of chip, "
"aborting.\n");
goto err_out_iounmap;
}
if ((tp->tg3_flags3 & TG3_FLG3_5755_PLUS) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906)
dev->netdev_ops = &tg3_netdev_ops;
else
dev->netdev_ops = &tg3_netdev_ops_dma_bug;
/* The EPB bridge inside 5714, 5715, and 5780 and any
* device behind the EPB cannot support DMA addresses > 40-bit.
* On 64-bit systems with IOMMU, use 40-bit dma_mask.
* On 64-bit systems without IOMMU, use 64-bit dma_mask and
* do DMA address check in tg3_start_xmit().
*/
if (tp->tg3_flags2 & TG3_FLG2_IS_5788)
persist_dma_mask = dma_mask = DMA_BIT_MASK(32);
else if (tp->tg3_flags & TG3_FLAG_40BIT_DMA_BUG) {
persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
#ifdef CONFIG_HIGHMEM
dma_mask = DMA_BIT_MASK(64);
#endif
} else
persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
/* Configure DMA attributes. */
if (dma_mask > DMA_BIT_MASK(32)) {
err = pci_set_dma_mask(pdev, dma_mask);
if (!err) {
dev->features |= NETIF_F_HIGHDMA;
err = pci_set_consistent_dma_mask(pdev,
persist_dma_mask);
if (err < 0) {
printk(KERN_ERR PFX "Unable to obtain 64 bit "
"DMA for consistent allocations\n");
goto err_out_iounmap;
}
}
}
if (err || dma_mask == DMA_BIT_MASK(32)) {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
printk(KERN_ERR PFX "No usable DMA configuration, "
"aborting.\n");
goto err_out_iounmap;
}
}
tg3_init_bufmgr_config(tp);
if (tp->pci_chip_rev_id == CHIPREV_ID_5701_A0)
tp->fw_needed = FIRMWARE_TG3;
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO) {
tp->tg3_flags2 |= TG3_FLG2_TSO_CAPABLE;
}
else if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701 ||
tp->pci_chip_rev_id == CHIPREV_ID_5705_A0 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906 ||
(tp->tg3_flags & TG3_FLAG_ENABLE_ASF) != 0) {
tp->tg3_flags2 &= ~TG3_FLG2_TSO_CAPABLE;
} else {
tp->tg3_flags2 |= TG3_FLG2_TSO_CAPABLE | TG3_FLG2_TSO_BUG;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5705)
tp->fw_needed = FIRMWARE_TG3TSO5;
else
tp->fw_needed = FIRMWARE_TG3TSO;
}
/* TSO is on by default on chips that support hardware TSO.
* Firmware TSO on older chips gives lower performance, so it
* is off by default, but can be enabled using ethtool.
*/
if (tp->tg3_flags2 & TG3_FLG2_HW_TSO) {
if (dev->features & NETIF_F_IP_CSUM)
dev->features |= NETIF_F_TSO;
if ((dev->features & NETIF_F_IPV6_CSUM) &&
(tp->tg3_flags2 & TG3_FLG2_HW_TSO_2))
dev->features |= NETIF_F_TSO6;
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5761 ||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5784 &&
GET_CHIP_REV(tp->pci_chip_rev_id) != CHIPREV_5784_AX) ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5785 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_57780 ||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5717)
dev->features |= NETIF_F_TSO_ECN;
}
if (tp->pci_chip_rev_id == CHIPREV_ID_5705_A1 &&
!(tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE) &&
!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH)) {
tp->tg3_flags2 |= TG3_FLG2_MAX_RXPEND_64;
tp->rx_pending = 63;
}
err = tg3_get_device_address(tp);
if (err) {
printk(KERN_ERR PFX "Could not obtain valid ethernet address, "
"aborting.\n");
goto err_out_fw;
}
if (tp->tg3_flags3 & TG3_FLG3_ENABLE_APE) {
tp->aperegs = pci_ioremap_bar(pdev, BAR_2);
if (!tp->aperegs) {
printk(KERN_ERR PFX "Cannot map APE registers, "
"aborting.\n");
err = -ENOMEM;
goto err_out_fw;
}
tg3_ape_lock_init(tp);
if (tp->tg3_flags & TG3_FLAG_ENABLE_ASF)
tg3_read_dash_ver(tp);
}
/*
* Reset chip in case UNDI or EFI driver did not shutdown
* DMA self test will enable WDMAC and we'll see (spurious)
* pending DMA on the PCI bus at that point.
*/
if ((tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE) ||
(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
tw32(MEMARB_MODE, MEMARB_MODE_ENABLE);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
}
err = tg3_test_dma(tp);
if (err) {
printk(KERN_ERR PFX "DMA engine test failed, aborting.\n");
goto err_out_apeunmap;
}
/* flow control autonegotiation is default behavior */
tp->tg3_flags |= TG3_FLAG_PAUSE_AUTONEG;
tp->link_config.flowctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
tg3_init_coal(tp);
pci_set_drvdata(pdev, dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR PFX "Cannot register net device, "
"aborting.\n");
goto err_out_apeunmap;
}
printk(KERN_INFO "%s: Tigon3 [partno(%s) rev %04x] (%s) MAC address %pM\n",
dev->name,
tp->board_part_number,
tp->pci_chip_rev_id,
tg3_bus_string(tp, str),
dev->dev_addr);
if (tp->tg3_flags3 & TG3_FLG3_PHY_CONNECTED)
printk(KERN_INFO
"%s: attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
tp->dev->name,
tp->mdio_bus->phy_map[PHY_ADDR]->drv->name,
dev_name(&tp->mdio_bus->phy_map[PHY_ADDR]->dev));
else
printk(KERN_INFO
"%s: attached PHY is %s (%s Ethernet) (WireSpeed[%d])\n",
tp->dev->name, tg3_phy_string(tp),
((tp->tg3_flags & TG3_FLAG_10_100_ONLY) ? "10/100Base-TX" :
((tp->tg3_flags2 & TG3_FLG2_ANY_SERDES) ? "1000Base-SX" :
"10/100/1000Base-T")),
(tp->tg3_flags2 & TG3_FLG2_NO_ETH_WIRE_SPEED) == 0);
printk(KERN_INFO "%s: RXcsums[%d] LinkChgREG[%d] MIirq[%d] ASF[%d] TSOcap[%d]\n",
dev->name,
(tp->tg3_flags & TG3_FLAG_RX_CHECKSUMS) != 0,
(tp->tg3_flags & TG3_FLAG_USE_LINKCHG_REG) != 0,
(tp->tg3_flags & TG3_FLAG_USE_MI_INTERRUPT) != 0,
(tp->tg3_flags & TG3_FLAG_ENABLE_ASF) != 0,
(tp->tg3_flags2 & TG3_FLG2_TSO_CAPABLE) != 0);
printk(KERN_INFO "%s: dma_rwctrl[%08x] dma_mask[%d-bit]\n",
dev->name, tp->dma_rwctrl,
(pdev->dma_mask == DMA_BIT_MASK(32)) ? 32 :
(((u64) pdev->dma_mask == DMA_BIT_MASK(40)) ? 40 : 64));
return 0;
err_out_apeunmap:
if (tp->aperegs) {
iounmap(tp->aperegs);
tp->aperegs = NULL;
}
err_out_fw:
if (tp->fw)
release_firmware(tp->fw);
err_out_iounmap:
if (tp->regs) {
iounmap(tp->regs);
tp->regs = NULL;
}
err_out_free_dev:
free_netdev(dev);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void __devexit tg3_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct tg3 *tp = netdev_priv(dev);
if (tp->fw)
release_firmware(tp->fw);
flush_scheduled_work();
if (tp->tg3_flags3 & TG3_FLG3_USE_PHYLIB) {
tg3_phy_fini(tp);
tg3_mdio_fini(tp);
}
unregister_netdev(dev);
if (tp->aperegs) {
iounmap(tp->aperegs);
tp->aperegs = NULL;
}
if (tp->regs) {
iounmap(tp->regs);
tp->regs = NULL;
}
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static int tg3_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(dev);
pci_power_t target_state;
int err;
/* PCI register 4 needs to be saved whether netif_running() or not.
* MSI address and data need to be saved if using MSI and
* netif_running().
*/
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
flush_scheduled_work();
tg3_phy_stop(tp);
tg3_netif_stop(tp);
del_timer_sync(&tp->timer);
tg3_full_lock(tp, 1);
tg3_disable_ints(tp);
tg3_full_unlock(tp);
netif_device_detach(dev);
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tp->tg3_flags &= ~TG3_FLAG_INIT_COMPLETE;
tg3_full_unlock(tp);
target_state = pdev->pm_cap ? pci_target_state(pdev) : PCI_D3hot;
err = tg3_set_power_state(tp, target_state);
if (err) {
int err2;
tg3_full_lock(tp, 0);
tp->tg3_flags |= TG3_FLAG_INIT_COMPLETE;
err2 = tg3_restart_hw(tp, 1);
if (err2)
goto out;
tp->timer.expires = jiffies + tp->timer_offset;
add_timer(&tp->timer);
netif_device_attach(dev);
tg3_netif_start(tp);
out:
tg3_full_unlock(tp);
if (!err2)
tg3_phy_start(tp);
}
return err;
}
static int tg3_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(dev);
int err;
pci_restore_state(tp->pdev);
if (!netif_running(dev))
return 0;
err = tg3_set_power_state(tp, PCI_D0);
if (err)
return err;
netif_device_attach(dev);
tg3_full_lock(tp, 0);
tp->tg3_flags |= TG3_FLAG_INIT_COMPLETE;
err = tg3_restart_hw(tp, 1);
if (err)
goto out;
tp->timer.expires = jiffies + tp->timer_offset;
add_timer(&tp->timer);
tg3_netif_start(tp);
out:
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
return err;
}
static struct pci_driver tg3_driver = {
.name = DRV_MODULE_NAME,
.id_table = tg3_pci_tbl,
.probe = tg3_init_one,
.remove = __devexit_p(tg3_remove_one),
.suspend = tg3_suspend,
.resume = tg3_resume
};
static int __init tg3_init(void)
{
return pci_register_driver(&tg3_driver);
}
static void __exit tg3_cleanup(void)
{
pci_unregister_driver(&tg3_driver);
}
module_init(tg3_init);
module_exit(tg3_cleanup);