2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 13:44:01 +08:00
linux-next/drivers/net/wireless/rtl818x/rtl8180/dev.c
Andrea Merello 79ee65659e rtl818x_pci: fix response rate may be incorrect.
Currently the allowed "respose rate" set (rates for HW generated frames
like ACKs) is the same as the basic rate set.

The HW will use the higher allowed response rate that is lower than the
rate of the received frame.

This is more or less what IEEE80211 mandates, but I missed the fact
that IEEE80211 also says that whenever it happens that for a modulation
class there is no any rate in the basic rates set, then the response rate
set shall include also all the mandatory rates for that modulation class.

This patch adds mandatory OFDM rates to the allowed response rate set if
no OFDM rate is included in the basic rate set.

Depending by the AP, I faced cases in which this patch seems to cause a
noticeable perfomance improvement.

- With my usual test AP there is no particular perfomance difference.
- With a prism54/hostapd AP this patch causes RX thoughput increase from
  about 5Mbps to about 20Mbps.

Hopefully this patch may help people that faced performance regression wrt
the old staging driver.

Signed-off-by: Andrea Merello <andrea.merello@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2014-10-07 14:48:37 -04:00

1991 lines
56 KiB
C

/* Linux device driver for RTL8180 / RTL8185 / RTL8187SE
*
* Copyright 2007 Michael Wu <flamingice@sourmilk.net>
* Copyright 2007,2014 Andrea Merello <andrea.merello@gmail.com>
*
* Based on the r8180 driver, which is:
* Copyright 2004-2005 Andrea Merello <andrea.merello@gmail.com>, et al.
*
* Thanks to Realtek for their support!
*
************************************************************************
*
* The driver was extended to the RTL8187SE in 2014 by
* Andrea Merello <andrea.merello@gmail.com>
*
* based also on:
* - portions of rtl8187se Linux staging driver, Copyright Realtek corp.
* (available in drivers/staging/rtl8187se directory of Linux 3.14)
* - other GPL, unpublished (until now), Linux driver code,
* Copyright Larry Finger <Larry.Finger@lwfinger.net>
*
* A huge thanks goes to Sara V. Nari who forgives me when I'm
* sitting in front of my laptop at evening, week-end, night...
*
* A special thanks goes to Antonio Cuni, who helped me with
* some python userspace stuff I used to debug RTL8187SE code, and who
* bought a laptop with an unsupported Wi-Fi card some years ago...
*
* Thanks to Larry Finger for writing some code for rtl8187se and for
* his suggestions.
*
* Thanks to Dan Carpenter for reviewing my initial patch and for his
* suggestions.
*
* Thanks to Bernhard Schiffner for his help in testing and for his
* suggestions.
*
************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/eeprom_93cx6.h>
#include <linux/module.h>
#include <net/mac80211.h>
#include "rtl8180.h"
#include "rtl8225.h"
#include "sa2400.h"
#include "max2820.h"
#include "grf5101.h"
#include "rtl8225se.h"
MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
MODULE_AUTHOR("Andrea Merello <andrea.merello@gmail.com>");
MODULE_DESCRIPTION("RTL8180 / RTL8185 / RTL8187SE PCI wireless driver");
MODULE_LICENSE("GPL");
static const struct pci_device_id rtl8180_table[] = {
/* rtl8187se */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8199) },
/* rtl8185 */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8185) },
{ PCI_DEVICE(PCI_VENDOR_ID_BELKIN, 0x700f) },
{ PCI_DEVICE(PCI_VENDOR_ID_BELKIN, 0x701f) },
/* rtl8180 */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8180) },
{ PCI_DEVICE(0x1799, 0x6001) },
{ PCI_DEVICE(0x1799, 0x6020) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x3300) },
{ PCI_DEVICE(0x1186, 0x3301) },
{ PCI_DEVICE(0x1432, 0x7106) },
{ }
};
MODULE_DEVICE_TABLE(pci, rtl8180_table);
static const struct ieee80211_rate rtl818x_rates[] = {
{ .bitrate = 10, .hw_value = 0, },
{ .bitrate = 20, .hw_value = 1, },
{ .bitrate = 55, .hw_value = 2, },
{ .bitrate = 110, .hw_value = 3, },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static const struct ieee80211_channel rtl818x_channels[] = {
{ .center_freq = 2412 },
{ .center_freq = 2417 },
{ .center_freq = 2422 },
{ .center_freq = 2427 },
{ .center_freq = 2432 },
{ .center_freq = 2437 },
{ .center_freq = 2442 },
{ .center_freq = 2447 },
{ .center_freq = 2452 },
{ .center_freq = 2457 },
{ .center_freq = 2462 },
{ .center_freq = 2467 },
{ .center_freq = 2472 },
{ .center_freq = 2484 },
};
/* Queues for rtl8187se card
*
* name | reg | queue
* BC | 7 | 6
* MG | 1 | 0
* HI | 6 | 1
* VO | 5 | 2
* VI | 4 | 3
* BE | 3 | 4
* BK | 2 | 5
*
* The complete map for DMA kick reg using use all queue is:
* static const int rtl8187se_queues_map[RTL8187SE_NR_TX_QUEUES] =
* {1, 6, 5, 4, 3, 2, 7};
*
* .. but.. Because for mac80211 4 queues are enough for QoS we use this
*
* name | reg | queue
* BC | 7 | 4 <- currently not used yet
* MG | 1 | x <- Not used
* HI | 6 | x <- Not used
* VO | 5 | 0 <- used
* VI | 4 | 1 <- used
* BE | 3 | 2 <- used
* BK | 2 | 3 <- used
*
* Beacon queue could be used, but this is not finished yet.
*
* I thougth about using the other two queues but I decided not to do this:
*
* - I'm unsure whether the mac80211 will ever try to use more than 4 queues
* by itself.
*
* - I could route MGMT frames (currently sent over VO queue) to the MGMT
* queue but since mac80211 will do not know about it, I will probably gain
* some HW priority whenever the VO queue is not empty, but this gain is
* limited by the fact that I had to stop the mac80211 queue whenever one of
* the VO or MGMT queues is full, stopping also submitting of MGMT frame
* to the driver.
*
* - I don't know how to set in the HW the contention window params for MGMT
* and HI-prio queues.
*/
static const int rtl8187se_queues_map[RTL8187SE_NR_TX_QUEUES] = {5, 4, 3, 2, 7};
/* Queues for rtl8180/rtl8185 cards
*
* name | reg | prio
* BC | 7 | 3
* HI | 6 | 0
* NO | 5 | 1
* LO | 4 | 2
*
* The complete map for DMA kick reg using all queue is:
* static const int rtl8180_queues_map[RTL8180_NR_TX_QUEUES] = {6, 5, 4, 7};
*
* .. but .. Because the mac80211 needs at least 4 queues for QoS or
* otherwise QoS can't be done, we use just one.
* Beacon queue could be used, but this is not finished yet.
* Actual map is:
*
* name | reg | prio
* BC | 7 | 1 <- currently not used yet.
* HI | 6 | x <- not used
* NO | 5 | x <- not used
* LO | 4 | 0 <- used
*/
static const int rtl8180_queues_map[RTL8180_NR_TX_QUEUES] = {4, 7};
/* LNA gain table for rtl8187se */
static const u8 rtl8187se_lna_gain[4] = {02, 17, 29, 39};
void rtl8180_write_phy(struct ieee80211_hw *dev, u8 addr, u32 data)
{
struct rtl8180_priv *priv = dev->priv;
int i = 10;
u32 buf;
buf = (data << 8) | addr;
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->PHY[0], buf | 0x80);
while (i--) {
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->PHY[0], buf);
if (rtl818x_ioread8(priv, &priv->map->PHY[2]) == (data & 0xFF))
return;
}
}
static void rtl8180_handle_rx(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl818x_rx_cmd_desc *cmd_desc;
unsigned int count = 32;
u8 agc, sq;
s8 signal = 1;
dma_addr_t mapping;
while (count--) {
void *entry = priv->rx_ring + priv->rx_idx * priv->rx_ring_sz;
struct sk_buff *skb = priv->rx_buf[priv->rx_idx];
u32 flags, flags2, flags3 = 0;
u64 tsft;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
struct rtl8187se_rx_desc *desc = entry;
flags = le32_to_cpu(desc->flags);
/* if ownership flag is set, then we can trust the
* HW has written other fields. We must not trust
* other descriptor data read before we checked (read)
* the ownership flag
*/
rmb();
flags3 = le32_to_cpu(desc->flags3);
flags2 = le32_to_cpu(desc->flags2);
tsft = le64_to_cpu(desc->tsft);
} else {
struct rtl8180_rx_desc *desc = entry;
flags = le32_to_cpu(desc->flags);
/* same as above */
rmb();
flags2 = le32_to_cpu(desc->flags2);
tsft = le64_to_cpu(desc->tsft);
}
if (flags & RTL818X_RX_DESC_FLAG_OWN)
return;
if (unlikely(flags & (RTL818X_RX_DESC_FLAG_DMA_FAIL |
RTL818X_RX_DESC_FLAG_FOF |
RTL818X_RX_DESC_FLAG_RX_ERR)))
goto done;
else {
struct ieee80211_rx_status rx_status = {0};
struct sk_buff *new_skb = dev_alloc_skb(MAX_RX_SIZE);
if (unlikely(!new_skb))
goto done;
mapping = pci_map_single(priv->pdev,
skb_tail_pointer(new_skb),
MAX_RX_SIZE, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(priv->pdev, mapping)) {
kfree_skb(new_skb);
dev_err(&priv->pdev->dev, "RX DMA map error\n");
goto done;
}
pci_unmap_single(priv->pdev,
*((dma_addr_t *)skb->cb),
MAX_RX_SIZE, PCI_DMA_FROMDEVICE);
skb_put(skb, flags & 0xFFF);
rx_status.antenna = (flags2 >> 15) & 1;
rx_status.rate_idx = (flags >> 20) & 0xF;
agc = (flags2 >> 17) & 0x7F;
switch (priv->chip_family) {
case RTL818X_CHIP_FAMILY_RTL8185:
if (rx_status.rate_idx > 3)
signal = -clamp_t(u8, agc, 25, 90) - 9;
else
signal = -clamp_t(u8, agc, 30, 95);
break;
case RTL818X_CHIP_FAMILY_RTL8180:
sq = flags2 & 0xff;
signal = priv->rf->calc_rssi(agc, sq);
break;
case RTL818X_CHIP_FAMILY_RTL8187SE:
/* OFDM measure reported by HW is signed,
* in 0.5dBm unit, with zero centered @ -41dBm
* input signal.
*/
if (rx_status.rate_idx > 3) {
signal = (s8)((flags3 >> 16) & 0xff);
signal = signal / 2 - 41;
} else {
int idx, bb;
idx = (agc & 0x60) >> 5;
bb = (agc & 0x1F) * 2;
/* bias + BB gain + LNA gain */
signal = 4 - bb - rtl8187se_lna_gain[idx];
}
break;
}
rx_status.signal = signal;
rx_status.freq = dev->conf.chandef.chan->center_freq;
rx_status.band = dev->conf.chandef.chan->band;
rx_status.mactime = tsft;
rx_status.flag |= RX_FLAG_MACTIME_START;
if (flags & RTL818X_RX_DESC_FLAG_SPLCP)
rx_status.flag |= RX_FLAG_SHORTPRE;
if (flags & RTL818X_RX_DESC_FLAG_CRC32_ERR)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(dev, skb);
skb = new_skb;
priv->rx_buf[priv->rx_idx] = skb;
*((dma_addr_t *) skb->cb) = mapping;
}
done:
cmd_desc = entry;
cmd_desc->rx_buf = cpu_to_le32(*((dma_addr_t *)skb->cb));
cmd_desc->flags = cpu_to_le32(RTL818X_RX_DESC_FLAG_OWN |
MAX_RX_SIZE);
if (priv->rx_idx == 31)
cmd_desc->flags |=
cpu_to_le32(RTL818X_RX_DESC_FLAG_EOR);
priv->rx_idx = (priv->rx_idx + 1) % 32;
}
}
static void rtl8180_handle_tx(struct ieee80211_hw *dev, unsigned int prio)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring = &priv->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl8180_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 flags = le32_to_cpu(entry->flags);
if (flags & RTL818X_TX_DESC_FLAG_OWN)
return;
ring->idx = (ring->idx + 1) % ring->entries;
skb = __skb_dequeue(&ring->queue);
pci_unmap_single(priv->pdev, le32_to_cpu(entry->tx_buf),
skb->len, PCI_DMA_TODEVICE);
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
(flags & RTL818X_TX_DESC_FLAG_TX_OK))
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.rates[0].count = (flags & 0xFF) + 1;
ieee80211_tx_status_irqsafe(dev, skb);
if (ring->entries - skb_queue_len(&ring->queue) == 2)
ieee80211_wake_queue(dev, prio);
}
}
static irqreturn_t rtl8187se_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct rtl8180_priv *priv = dev->priv;
u32 reg;
unsigned long flags;
static int desc_err;
spin_lock_irqsave(&priv->lock, flags);
/* Note: 32-bit interrupt status */
reg = rtl818x_ioread32(priv, &priv->map->INT_STATUS_SE);
if (unlikely(reg == 0xFFFFFFFF)) {
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
rtl818x_iowrite32(priv, &priv->map->INT_STATUS_SE, reg);
if (reg & IMR_TIMEOUT1)
rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0);
if (reg & (IMR_TBDOK | IMR_TBDER))
rtl8180_handle_tx(dev, 4);
if (reg & (IMR_TVODOK | IMR_TVODER))
rtl8180_handle_tx(dev, 0);
if (reg & (IMR_TVIDOK | IMR_TVIDER))
rtl8180_handle_tx(dev, 1);
if (reg & (IMR_TBEDOK | IMR_TBEDER))
rtl8180_handle_tx(dev, 2);
if (reg & (IMR_TBKDOK | IMR_TBKDER))
rtl8180_handle_tx(dev, 3);
if (reg & (IMR_ROK | IMR_RER | RTL818X_INT_SE_RX_DU | IMR_RQOSOK))
rtl8180_handle_rx(dev);
/* The interface sometimes generates several RX DMA descriptor errors
* at startup. Do not report these.
*/
if ((reg & RTL818X_INT_SE_RX_DU) && desc_err++ > 2)
if (net_ratelimit())
wiphy_err(dev->wiphy, "No RX DMA Descriptor avail\n");
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t rtl8180_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct rtl8180_priv *priv = dev->priv;
u16 reg;
spin_lock(&priv->lock);
reg = rtl818x_ioread16(priv, &priv->map->INT_STATUS);
if (unlikely(reg == 0xFFFF)) {
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
rtl818x_iowrite16(priv, &priv->map->INT_STATUS, reg);
if (reg & (RTL818X_INT_TXB_OK | RTL818X_INT_TXB_ERR))
rtl8180_handle_tx(dev, 1);
if (reg & (RTL818X_INT_TXL_OK | RTL818X_INT_TXL_ERR))
rtl8180_handle_tx(dev, 0);
if (reg & (RTL818X_INT_RX_OK | RTL818X_INT_RX_ERR))
rtl8180_handle_rx(dev);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static void rtl8180_tx(struct ieee80211_hw *dev,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring;
struct rtl8180_tx_desc *entry;
unsigned long flags;
unsigned int idx, prio, hw_prio;
dma_addr_t mapping;
u32 tx_flags;
u8 rc_flags;
u16 plcp_len = 0;
__le16 rts_duration = 0;
/* do arithmetic and then convert to le16 */
u16 frame_duration = 0;
prio = skb_get_queue_mapping(skb);
ring = &priv->tx_ring[prio];
mapping = pci_map_single(priv->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, mapping)) {
kfree_skb(skb);
dev_err(&priv->pdev->dev, "TX DMA mapping error\n");
return;
}
tx_flags = RTL818X_TX_DESC_FLAG_OWN | RTL818X_TX_DESC_FLAG_FS |
RTL818X_TX_DESC_FLAG_LS |
(ieee80211_get_tx_rate(dev, info)->hw_value << 24) |
skb->len;
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
tx_flags |= RTL818X_TX_DESC_FLAG_DMA |
RTL818X_TX_DESC_FLAG_NO_ENC;
rc_flags = info->control.rates[0].flags;
/* HW will perform RTS-CTS when only RTS flags is set.
* HW will perform CTS-to-self when both RTS and CTS flags are set.
* RTS rate and RTS duration will be used also for CTS-to-self.
*/
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
tx_flags |= RTL818X_TX_DESC_FLAG_RTS;
tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
rts_duration = ieee80211_rts_duration(dev, priv->vif,
skb->len, info);
} else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
tx_flags |= RTL818X_TX_DESC_FLAG_RTS | RTL818X_TX_DESC_FLAG_CTS;
tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
rts_duration = ieee80211_ctstoself_duration(dev, priv->vif,
skb->len, info);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
unsigned int remainder;
plcp_len = DIV_ROUND_UP(16 * (skb->len + 4),
(ieee80211_get_tx_rate(dev, info)->bitrate * 2) / 10);
remainder = (16 * (skb->len + 4)) %
((ieee80211_get_tx_rate(dev, info)->bitrate * 2) / 10);
if (remainder <= 6)
plcp_len |= 1 << 15;
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
__le16 duration;
/* SIFS time (required by HW) is already included by
* ieee80211_generic_frame_duration
*/
duration = ieee80211_generic_frame_duration(dev, priv->vif,
IEEE80211_BAND_2GHZ, skb->len,
ieee80211_get_tx_rate(dev, info));
frame_duration = priv->ack_time + le16_to_cpu(duration);
}
spin_lock_irqsave(&priv->lock, flags);
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
priv->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
}
idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries;
entry = &ring->desc[idx];
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
entry->frame_duration = cpu_to_le16(frame_duration);
entry->frame_len_se = cpu_to_le16(skb->len);
/* tpc polarity */
entry->flags3 = cpu_to_le16(1<<4);
} else
entry->frame_len = cpu_to_le32(skb->len);
entry->rts_duration = rts_duration;
entry->plcp_len = cpu_to_le16(plcp_len);
entry->tx_buf = cpu_to_le32(mapping);
entry->retry_limit = info->control.rates[0].count - 1;
/* We must be sure that tx_flags is written last because the HW
* looks at it to check if the rest of data is valid or not
*/
wmb();
entry->flags = cpu_to_le32(tx_flags);
/* We must be sure this has been written before followings HW
* register write, because this write will made the HW attempts
* to DMA the just-written data
*/
wmb();
__skb_queue_tail(&ring->queue, skb);
if (ring->entries - skb_queue_len(&ring->queue) < 2)
ieee80211_stop_queue(dev, prio);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
/* just poll: rings are stopped with TPPollStop reg */
hw_prio = rtl8187se_queues_map[prio];
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1 << hw_prio));
} else {
hw_prio = rtl8180_queues_map[prio];
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1 << hw_prio) | /* ring to poll */
(1<<1) | (1<<2));/* stopped rings */
}
}
static void rtl8180_set_anaparam3(struct rtl8180_priv *priv, u16 anaparam3)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite16(priv, &priv->map->ANAPARAM3, anaparam3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
void rtl8180_set_anaparam2(struct rtl8180_priv *priv, u32 anaparam2)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM2, anaparam2);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
void rtl8180_set_anaparam(struct rtl8180_priv *priv, u32 anaparam)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM, anaparam);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
}
static void rtl8187se_mac_config(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u8 reg;
rtl818x_iowrite32(priv, REG_ADDR4(0x1F0), 0);
rtl818x_ioread32(priv, REG_ADDR4(0x1F0));
rtl818x_iowrite32(priv, REG_ADDR4(0x1F4), 0);
rtl818x_ioread32(priv, REG_ADDR4(0x1F4));
rtl818x_iowrite8(priv, REG_ADDR1(0x1F8), 0);
rtl818x_ioread8(priv, REG_ADDR1(0x1F8));
/* Enable DA10 TX power saving */
reg = rtl818x_ioread8(priv, &priv->map->PHY_PR);
rtl818x_iowrite8(priv, &priv->map->PHY_PR, reg | 0x04);
/* Power */
rtl818x_iowrite16(priv, PI_DATA_REG, 0x1000);
rtl818x_iowrite16(priv, SI_DATA_REG, 0x1000);
/* AFE - default to power ON */
rtl818x_iowrite16(priv, REG_ADDR2(0x370), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x372), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x374), 0x0DA4);
rtl818x_iowrite16(priv, REG_ADDR2(0x376), 0x0DA4);
rtl818x_iowrite16(priv, REG_ADDR2(0x378), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x37A), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x37C), 0x00EC);
rtl818x_iowrite16(priv, REG_ADDR2(0x37E), 0x00EC);
rtl818x_iowrite8(priv, REG_ADDR1(0x24E), 0x01);
/* unknown, needed for suspend to RAM resume */
rtl818x_iowrite8(priv, REG_ADDR1(0x0A), 0x72);
}
static void rtl8187se_set_antenna_config(struct ieee80211_hw *dev, u8 def_ant,
bool diversity)
{
struct rtl8180_priv *priv = dev->priv;
rtl8225_write_phy_cck(dev, 0x0C, 0x09);
if (diversity) {
if (def_ant == 1) {
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x00);
rtl8225_write_phy_cck(dev, 0x11, 0xBB);
rtl8225_write_phy_cck(dev, 0x01, 0xC7);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x54);
rtl8225_write_phy_ofdm(dev, 0x18, 0xB2);
} else { /* main antenna */
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x03);
rtl8225_write_phy_cck(dev, 0x11, 0x9B);
rtl8225_write_phy_cck(dev, 0x01, 0xC7);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x5C);
rtl8225_write_phy_ofdm(dev, 0x18, 0xB2);
}
} else { /* disable antenna diversity */
if (def_ant == 1) {
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x00);
rtl8225_write_phy_cck(dev, 0x11, 0xBB);
rtl8225_write_phy_cck(dev, 0x01, 0x47);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x54);
rtl8225_write_phy_ofdm(dev, 0x18, 0x32);
} else { /* main antenna */
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x03);
rtl8225_write_phy_cck(dev, 0x11, 0x9B);
rtl8225_write_phy_cck(dev, 0x01, 0x47);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x5C);
rtl8225_write_phy_ofdm(dev, 0x18, 0x32);
}
}
/* priv->curr_ant = def_ant; */
}
static void rtl8180_int_enable(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->IMR,
IMR_TBDER | IMR_TBDOK |
IMR_TVODER | IMR_TVODOK |
IMR_TVIDER | IMR_TVIDOK |
IMR_TBEDER | IMR_TBEDOK |
IMR_TBKDER | IMR_TBKDOK |
IMR_RDU | IMR_RER |
IMR_ROK | IMR_RQOSOK);
} else {
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF);
}
}
static void rtl8180_int_disable(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->IMR, 0);
} else {
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0);
}
}
static void rtl8180_conf_basic_rates(struct ieee80211_hw *dev,
u32 basic_mask)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg;
u32 resp_mask;
u8 basic_max;
u8 resp_max, resp_min;
resp_mask = basic_mask;
/* IEEE80211 says the response rate should be equal to the highest basic
* rate that is not faster than received frame. But it says also that if
* the basic rate set does not contains any rate for the current
* modulation class then mandatory rate set must be used for that
* modulation class. Eventually add OFDM mandatory rates..
*/
if ((resp_mask & 0xf) == resp_mask)
resp_mask |= 0x150; /* 6, 12, 24Mbps */
switch (priv->chip_family) {
case RTL818X_CHIP_FAMILY_RTL8180:
/* in 8180 this is NOT a BITMAP */
basic_max = fls(basic_mask) - 1;
reg = rtl818x_ioread16(priv, &priv->map->BRSR);
reg &= ~3;
reg |= basic_max;
rtl818x_iowrite16(priv, &priv->map->BRSR, reg);
break;
case RTL818X_CHIP_FAMILY_RTL8185:
resp_max = fls(resp_mask) - 1;
resp_min = ffs(resp_mask) - 1;
/* in 8185 this is a BITMAP */
rtl818x_iowrite16(priv, &priv->map->BRSR, basic_mask);
rtl818x_iowrite8(priv, &priv->map->RESP_RATE, (resp_max << 4) |
resp_min);
break;
case RTL818X_CHIP_FAMILY_RTL8187SE:
/* in 8187se this is a BITMAP. BRSR reg actually sets
* response rates.
*/
rtl818x_iowrite16(priv, &priv->map->BRSR_8187SE, resp_mask);
break;
}
}
static void rtl8180_config_cardbus(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg16;
u8 reg8;
reg8 = rtl818x_ioread8(priv, &priv->map->CONFIG3);
reg8 |= 1 << 1;
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg8);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite16(priv, FEMR_SE, 0xffff);
} else {
reg16 = rtl818x_ioread16(priv, &priv->map->FEMR);
reg16 |= (1 << 15) | (1 << 14) | (1 << 4);
rtl818x_iowrite16(priv, &priv->map->FEMR, reg16);
}
}
static int rtl8180_init_hw(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg;
u32 reg32;
rtl818x_iowrite8(priv, &priv->map->CMD, 0);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(10);
/* reset */
rtl8180_int_disable(dev);
rtl818x_ioread8(priv, &priv->map->CMD);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= (1 << 1);
reg |= RTL818X_CMD_RESET;
rtl818x_iowrite8(priv, &priv->map->CMD, RTL818X_CMD_RESET);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(200);
/* check success of reset */
if (rtl818x_ioread8(priv, &priv->map->CMD) & RTL818X_CMD_RESET) {
wiphy_err(dev->wiphy, "reset timeout!\n");
return -ETIMEDOUT;
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_LOAD);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(200);
if (rtl818x_ioread8(priv, &priv->map->CONFIG3) & (1 << 3)) {
rtl8180_config_cardbus(dev);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl818x_iowrite8(priv, &priv->map->MSR, RTL818X_MSR_ENEDCA);
else
rtl818x_iowrite8(priv, &priv->map->MSR, 0);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
rtl8180_set_anaparam(priv, priv->anaparam);
rtl818x_iowrite32(priv, &priv->map->RDSAR, priv->rx_ring_dma);
/* mac80211 queue have higher prio for lower index. The last queue
* (that mac80211 is not aware of) is reserved for beacons (and have
* the highest priority on the NIC)
*/
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->TBDA,
priv->tx_ring[1].dma);
rtl818x_iowrite32(priv, &priv->map->TLPDA,
priv->tx_ring[0].dma);
} else {
rtl818x_iowrite32(priv, &priv->map->TBDA,
priv->tx_ring[4].dma);
rtl818x_iowrite32(priv, &priv->map->TVODA,
priv->tx_ring[0].dma);
rtl818x_iowrite32(priv, &priv->map->TVIDA,
priv->tx_ring[1].dma);
rtl818x_iowrite32(priv, &priv->map->TBEDA,
priv->tx_ring[2].dma);
rtl818x_iowrite32(priv, &priv->map->TBKDA,
priv->tx_ring[3].dma);
}
/* TODO: necessary? specs indicate not */
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG2);
rtl818x_iowrite8(priv, &priv->map->CONFIG2, reg & ~(1 << 3));
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
reg = rtl818x_ioread8(priv, &priv->map->CONFIG2);
rtl818x_iowrite8(priv, &priv->map->CONFIG2, reg | (1 << 4));
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
/* TODO: set CONFIG5 for calibrating AGC on rtl8180 + philips radio? */
/* TODO: turn off hw wep on rtl8180 */
rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0);
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0);
rtl818x_iowrite8(priv, &priv->map->RATE_FALLBACK, 0);
} else {
rtl818x_iowrite8(priv, &priv->map->SECURITY, 0);
rtl818x_iowrite8(priv, &priv->map->PHY_DELAY, 0x6);
rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER, 0x4C);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
/* TODO: set ClkRun enable? necessary? */
reg = rtl818x_ioread8(priv, &priv->map->GP_ENABLE);
rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, reg & ~(1 << 6));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg | (1 << 2));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
/* fix eccessive IFS after CTS-to-self */
if (priv->map_pio) {
u8 reg;
reg = rtl818x_ioread8(priv, &priv->map->PGSELECT);
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1);
rtl818x_iowrite8(priv, REG_ADDR1(0xff), 0x35);
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg);
} else
rtl818x_iowrite8(priv, REG_ADDR1(0x1ff), 0x35);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
/* the set auto rate fallback bitmask from 1M to 54 Mb/s */
rtl818x_iowrite16(priv, ARFR, 0xFFF);
rtl818x_ioread16(priv, ARFR);
/* stop unused queus (no dma alloc) */
rtl818x_iowrite8(priv, &priv->map->TPPOLL_STOP,
RTL818x_TPPOLL_STOP_MG | RTL818x_TPPOLL_STOP_HI);
rtl818x_iowrite8(priv, &priv->map->ACM_CONTROL, 0x00);
rtl818x_iowrite16(priv, &priv->map->TID_AC_MAP, 0xFA50);
rtl818x_iowrite16(priv, &priv->map->INT_MIG, 0);
/* some black magic here.. */
rtl8187se_mac_config(dev);
rtl818x_iowrite16(priv, RFSW_CTRL, 0x569A);
rtl818x_ioread16(priv, RFSW_CTRL);
rtl8180_set_anaparam(priv, RTL8225SE_ANAPARAM_ON);
rtl8180_set_anaparam2(priv, RTL8225SE_ANAPARAM2_ON);
rtl8180_set_anaparam3(priv, RTL8225SE_ANAPARAM3);
rtl818x_iowrite8(priv, &priv->map->CONFIG5,
rtl818x_ioread8(priv, &priv->map->CONFIG5) & 0x7F);
/*probably this switch led on */
rtl818x_iowrite8(priv, &priv->map->PGSELECT,
rtl818x_ioread8(priv, &priv->map->PGSELECT) | 0x08);
rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x0480);
rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1BFF);
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x2488);
rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x4003);
/* the reference code mac hardcode table write
* this reg by doing byte-wide accesses.
* It does it just for lowest and highest byte..
*/
reg32 = rtl818x_ioread32(priv, &priv->map->RF_PARA);
reg32 &= 0x00ffff00;
reg32 |= 0xb8000054;
rtl818x_iowrite32(priv, &priv->map->RF_PARA, reg32);
} else
/* stop unused queus (no dma alloc) */
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1<<1) | (1<<2));
priv->rf->init(dev);
/* default basic rates are 1,2 Mbps for rtl8180. 1,2,6,9,12,18,24 Mbps
* otherwise. bitmask 0x3 and 0x01f3 respectively.
* NOTE: currenty rtl8225 RF code changes basic rates, so we need to do
* this after rf init.
* TODO: try to find out whether RF code really needs to do this..
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
rtl8180_conf_basic_rates(dev, 0x3);
else
rtl8180_conf_basic_rates(dev, 0x1f3);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl8187se_set_antenna_config(dev,
priv->antenna_diversity_default,
priv->antenna_diversity_en);
return 0;
}
static int rtl8180_init_rx_ring(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl818x_rx_cmd_desc *entry;
int i;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
priv->rx_ring_sz = sizeof(struct rtl8187se_rx_desc);
else
priv->rx_ring_sz = sizeof(struct rtl8180_rx_desc);
priv->rx_ring = pci_zalloc_consistent(priv->pdev, priv->rx_ring_sz * 32,
&priv->rx_ring_dma);
if (!priv->rx_ring || (unsigned long)priv->rx_ring & 0xFF) {
wiphy_err(dev->wiphy, "Cannot allocate RX ring\n");
return -ENOMEM;
}
priv->rx_idx = 0;
for (i = 0; i < 32; i++) {
struct sk_buff *skb = dev_alloc_skb(MAX_RX_SIZE);
dma_addr_t *mapping;
entry = priv->rx_ring + priv->rx_ring_sz*i;
if (!skb) {
wiphy_err(dev->wiphy, "Cannot allocate RX skb\n");
return -ENOMEM;
}
priv->rx_buf[i] = skb;
mapping = (dma_addr_t *)skb->cb;
*mapping = pci_map_single(priv->pdev, skb_tail_pointer(skb),
MAX_RX_SIZE, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(priv->pdev, *mapping)) {
kfree_skb(skb);
wiphy_err(dev->wiphy, "Cannot map DMA for RX skb\n");
return -ENOMEM;
}
entry->rx_buf = cpu_to_le32(*mapping);
entry->flags = cpu_to_le32(RTL818X_RX_DESC_FLAG_OWN |
MAX_RX_SIZE);
}
entry->flags |= cpu_to_le32(RTL818X_RX_DESC_FLAG_EOR);
return 0;
}
static void rtl8180_free_rx_ring(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
int i;
for (i = 0; i < 32; i++) {
struct sk_buff *skb = priv->rx_buf[i];
if (!skb)
continue;
pci_unmap_single(priv->pdev,
*((dma_addr_t *)skb->cb),
MAX_RX_SIZE, PCI_DMA_FROMDEVICE);
kfree_skb(skb);
}
pci_free_consistent(priv->pdev, priv->rx_ring_sz * 32,
priv->rx_ring, priv->rx_ring_dma);
priv->rx_ring = NULL;
}
static int rtl8180_init_tx_ring(struct ieee80211_hw *dev,
unsigned int prio, unsigned int entries)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_desc *ring;
dma_addr_t dma;
int i;
ring = pci_zalloc_consistent(priv->pdev, sizeof(*ring) * entries,
&dma);
if (!ring || (unsigned long)ring & 0xFF) {
wiphy_err(dev->wiphy, "Cannot allocate TX ring (prio = %d)\n",
prio);
return -ENOMEM;
}
priv->tx_ring[prio].desc = ring;
priv->tx_ring[prio].dma = dma;
priv->tx_ring[prio].idx = 0;
priv->tx_ring[prio].entries = entries;
skb_queue_head_init(&priv->tx_ring[prio].queue);
for (i = 0; i < entries; i++)
ring[i].next_tx_desc =
cpu_to_le32((u32)dma + ((i + 1) % entries) * sizeof(*ring));
return 0;
}
static void rtl8180_free_tx_ring(struct ieee80211_hw *dev, unsigned int prio)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring = &priv->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl8180_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
pci_unmap_single(priv->pdev, le32_to_cpu(entry->tx_buf),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
pci_free_consistent(priv->pdev, sizeof(*ring->desc)*ring->entries,
ring->desc, ring->dma);
ring->desc = NULL;
}
static int rtl8180_start(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
int ret, i;
u32 reg;
ret = rtl8180_init_rx_ring(dev);
if (ret)
return ret;
for (i = 0; i < (dev->queues + 1); i++)
if ((ret = rtl8180_init_tx_ring(dev, i, 16)))
goto err_free_rings;
ret = rtl8180_init_hw(dev);
if (ret)
goto err_free_rings;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
ret = request_irq(priv->pdev->irq, rtl8187se_interrupt,
IRQF_SHARED, KBUILD_MODNAME, dev);
} else {
ret = request_irq(priv->pdev->irq, rtl8180_interrupt,
IRQF_SHARED, KBUILD_MODNAME, dev);
}
if (ret) {
wiphy_err(dev->wiphy, "failed to register IRQ handler\n");
goto err_free_rings;
}
rtl8180_int_enable(dev);
/* in rtl8187se at MAR regs offset there is the management
* TX descriptor DMA addres..
*/
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->MAR[0], ~0);
rtl818x_iowrite32(priv, &priv->map->MAR[1], ~0);
}
reg = RTL818X_RX_CONF_ONLYERLPKT |
RTL818X_RX_CONF_RX_AUTORESETPHY |
RTL818X_RX_CONF_MGMT |
RTL818X_RX_CONF_DATA |
(7 << 8 /* MAX RX DMA */) |
RTL818X_RX_CONF_BROADCAST |
RTL818X_RX_CONF_NICMAC;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185)
reg |= RTL818X_RX_CONF_CSDM1 | RTL818X_RX_CONF_CSDM2;
else if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
reg |= (priv->rfparam & RF_PARAM_CARRIERSENSE1)
? RTL818X_RX_CONF_CSDM1 : 0;
reg |= (priv->rfparam & RF_PARAM_CARRIERSENSE2)
? RTL818X_RX_CONF_CSDM2 : 0;
} else {
reg &= ~(RTL818X_RX_CONF_CSDM1 | RTL818X_RX_CONF_CSDM2);
}
priv->rx_conf = reg;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg);
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
reg = rtl818x_ioread8(priv, &priv->map->CW_CONF);
/* CW is not on per-packet basis.
* in rtl8185 the CW_VALUE reg is used.
* in rtl8187se the AC param regs are used.
*/
reg &= ~RTL818X_CW_CONF_PERPACKET_CW;
/* retry limit IS on per-packet basis.
* the short and long retry limit in TX_CONF
* reg are ignored
*/
reg |= RTL818X_CW_CONF_PERPACKET_RETRY;
rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL);
/* TX antenna and TX gain are not on per-packet basis.
* TX Antenna is selected by ANTSEL reg (RX in BB regs).
* TX gain is selected with CCK_TX_AGC and OFDM_TX_AGC regs
*/
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_GAIN;
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL;
reg |= RTL818X_TX_AGC_CTL_FEEDBACK_ANT;
rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg);
/* disable early TX */
rtl818x_iowrite8(priv, (u8 __iomem *)priv->map + 0xec, 0x3f);
}
reg = rtl818x_ioread32(priv, &priv->map->TX_CONF);
reg |= (6 << 21 /* MAX TX DMA */) |
RTL818X_TX_CONF_NO_ICV;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
reg |= 1<<30; /* "duration procedure mode" */
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
reg &= ~RTL818X_TX_CONF_PROBE_DTS;
else
reg &= ~RTL818X_TX_CONF_HW_SEQNUM;
reg &= ~RTL818X_TX_CONF_DISCW;
/* different meaning, same value on both rtl8185 and rtl8180 */
reg &= ~RTL818X_TX_CONF_SAT_HWPLCP;
rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg |= RTL818X_CMD_RX_ENABLE;
reg |= RTL818X_CMD_TX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
return 0;
err_free_rings:
rtl8180_free_rx_ring(dev);
for (i = 0; i < (dev->queues + 1); i++)
if (priv->tx_ring[i].desc)
rtl8180_free_tx_ring(dev, i);
return ret;
}
static void rtl8180_stop(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u8 reg;
int i;
rtl8180_int_disable(dev);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= ~RTL818X_CMD_TX_ENABLE;
reg &= ~RTL818X_CMD_RX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
priv->rf->stop(dev);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG4);
rtl818x_iowrite8(priv, &priv->map->CONFIG4, reg | RTL818X_CONFIG4_VCOOFF);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
free_irq(priv->pdev->irq, dev);
rtl8180_free_rx_ring(dev);
for (i = 0; i < (dev->queues + 1); i++)
rtl8180_free_tx_ring(dev, i);
}
static u64 rtl8180_get_tsf(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
return rtl818x_ioread32(priv, &priv->map->TSFT[0]) |
(u64)(rtl818x_ioread32(priv, &priv->map->TSFT[1])) << 32;
}
static void rtl8180_beacon_work(struct work_struct *work)
{
struct rtl8180_vif *vif_priv =
container_of(work, struct rtl8180_vif, beacon_work.work);
struct ieee80211_vif *vif =
container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
struct ieee80211_hw *dev = vif_priv->dev;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
/* don't overflow the tx ring */
if (ieee80211_queue_stopped(dev, 0))
goto resched;
/* grab a fresh beacon */
skb = ieee80211_beacon_get(dev, vif);
if (!skb)
goto resched;
/*
* update beacon timestamp w/ TSF value
* TODO: make hardware update beacon timestamp
*/
mgmt = (struct ieee80211_mgmt *)skb->data;
mgmt->u.beacon.timestamp = cpu_to_le64(rtl8180_get_tsf(dev, vif));
/* TODO: use actual beacon queue */
skb_set_queue_mapping(skb, 0);
rtl8180_tx(dev, NULL, skb);
resched:
/*
* schedule next beacon
* TODO: use hardware support for beacon timing
*/
schedule_delayed_work(&vif_priv->beacon_work,
usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
}
static int rtl8180_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_vif *vif_priv;
/*
* We only support one active interface at a time.
*/
if (priv->vif)
return -EBUSY;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
break;
default:
return -EOPNOTSUPP;
}
priv->vif = vif;
/* Initialize driver private area */
vif_priv = (struct rtl8180_vif *)&vif->drv_priv;
vif_priv->dev = dev;
INIT_DELAYED_WORK(&vif_priv->beacon_work, rtl8180_beacon_work);
vif_priv->enable_beacon = false;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->MAC[0],
le32_to_cpu(*(__le32 *)vif->addr));
rtl818x_iowrite16(priv, (__le16 __iomem *)&priv->map->MAC[4],
le16_to_cpu(*(__le16 *)(vif->addr + 4)));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
return 0;
}
static void rtl8180_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
priv->vif = NULL;
}
static int rtl8180_config(struct ieee80211_hw *dev, u32 changed)
{
struct rtl8180_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
priv->rf->set_chan(dev, conf);
return 0;
}
static void rtl8187se_conf_ac_parm(struct ieee80211_hw *dev, u8 queue)
{
const struct ieee80211_tx_queue_params *params;
struct rtl8180_priv *priv = dev->priv;
/* hw value */
u32 ac_param;
u8 aifs;
u8 txop;
u8 cw_min, cw_max;
params = &priv->queue_param[queue];
cw_min = fls(params->cw_min);
cw_max = fls(params->cw_max);
aifs = 10 + params->aifs * priv->slot_time;
/* TODO: check if txop HW is in us (mult by 32) */
txop = params->txop;
ac_param = txop << AC_PARAM_TXOP_LIMIT_SHIFT |
cw_max << AC_PARAM_ECW_MAX_SHIFT |
cw_min << AC_PARAM_ECW_MIN_SHIFT |
aifs << AC_PARAM_AIFS_SHIFT;
switch (queue) {
case IEEE80211_AC_BK:
rtl818x_iowrite32(priv, &priv->map->AC_BK_PARAM, ac_param);
break;
case IEEE80211_AC_BE:
rtl818x_iowrite32(priv, &priv->map->AC_BE_PARAM, ac_param);
break;
case IEEE80211_AC_VI:
rtl818x_iowrite32(priv, &priv->map->AC_VI_PARAM, ac_param);
break;
case IEEE80211_AC_VO:
rtl818x_iowrite32(priv, &priv->map->AC_VO_PARAM, ac_param);
break;
}
}
static int rtl8180_conf_tx(struct ieee80211_hw *dev,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct rtl8180_priv *priv = dev->priv;
u8 cw_min, cw_max;
/* nothing to do ? */
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
return 0;
cw_min = fls(params->cw_min);
cw_max = fls(params->cw_max);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
priv->queue_param[queue] = *params;
rtl8187se_conf_ac_parm(dev, queue);
} else
rtl818x_iowrite8(priv, &priv->map->CW_VAL,
(cw_max << 4) | cw_min);
return 0;
}
static void rtl8180_conf_erp(struct ieee80211_hw *dev,
struct ieee80211_bss_conf *info)
{
struct rtl8180_priv *priv = dev->priv;
u8 sifs, difs;
int eifs;
u8 hw_eifs;
/* TODO: should we do something ? */
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
return;
/* I _hope_ this means 10uS for the HW.
* In reference code it is 0x22 for
* both rtl8187L and rtl8187SE
*/
sifs = 0x22;
if (info->use_short_slot)
priv->slot_time = 9;
else
priv->slot_time = 20;
/* 10 is SIFS time in uS */
difs = 10 + 2 * priv->slot_time;
eifs = 10 + difs + priv->ack_time;
/* HW should use 4uS units for EIFS (I'm sure for rtl8185)*/
hw_eifs = DIV_ROUND_UP(eifs, 4);
rtl818x_iowrite8(priv, &priv->map->SLOT, priv->slot_time);
rtl818x_iowrite8(priv, &priv->map->SIFS, sifs);
rtl818x_iowrite8(priv, &priv->map->DIFS, difs);
/* from reference code. set ack timeout reg = eifs reg */
rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER, hw_eifs);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl818x_iowrite8(priv, &priv->map->EIFS_8187SE, hw_eifs);
else if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
/* rtl8187/rtl8185 HW bug. After EIFS is elapsed,
* the HW still wait for DIFS.
* HW uses 4uS units for EIFS.
*/
hw_eifs = DIV_ROUND_UP(eifs - difs, 4);
rtl818x_iowrite8(priv, &priv->map->EIFS, hw_eifs);
}
}
static void rtl8180_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_vif *vif_priv;
int i;
u8 reg;
vif_priv = (struct rtl8180_vif *)&vif->drv_priv;
if (changed & BSS_CHANGED_BSSID) {
rtl818x_iowrite16(priv, (__le16 __iomem *)&priv->map->BSSID[0],
le16_to_cpu(*(__le16 *)info->bssid));
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->BSSID[2],
le32_to_cpu(*(__le32 *)(info->bssid + 2)));
if (is_valid_ether_addr(info->bssid)) {
if (vif->type == NL80211_IFTYPE_ADHOC)
reg = RTL818X_MSR_ADHOC;
else
reg = RTL818X_MSR_INFRA;
} else
reg = RTL818X_MSR_NO_LINK;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
reg |= RTL818X_MSR_ENEDCA;
rtl818x_iowrite8(priv, &priv->map->MSR, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES)
rtl8180_conf_basic_rates(dev, info->basic_rates);
if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
/* when preamble changes, acktime duration changes, and erp must
* be recalculated. ACK time is calculated at lowest rate.
* Since mac80211 include SIFS time we remove it (-10)
*/
priv->ack_time =
le16_to_cpu(ieee80211_generic_frame_duration(dev,
priv->vif,
IEEE80211_BAND_2GHZ, 10,
&priv->rates[0])) - 10;
rtl8180_conf_erp(dev, info);
/* mac80211 supplies aifs_n to driver and calls
* conf_tx callback whether aifs_n changes, NOT
* when aifs changes.
* Aifs should be recalculated if slot changes.
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
for (i = 0; i < 4; i++)
rtl8187se_conf_ac_parm(dev, i);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
vif_priv->enable_beacon = info->enable_beacon;
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
cancel_delayed_work_sync(&vif_priv->beacon_work);
if (vif_priv->enable_beacon)
schedule_work(&vif_priv->beacon_work.work);
}
}
static u64 rtl8180_prepare_multicast(struct ieee80211_hw *dev,
struct netdev_hw_addr_list *mc_list)
{
return netdev_hw_addr_list_count(mc_list);
}
static void rtl8180_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct rtl8180_priv *priv = dev->priv;
if (changed_flags & FIF_FCSFAIL)
priv->rx_conf ^= RTL818X_RX_CONF_FCS;
if (changed_flags & FIF_CONTROL)
priv->rx_conf ^= RTL818X_RX_CONF_CTRL;
if (changed_flags & FIF_OTHER_BSS)
priv->rx_conf ^= RTL818X_RX_CONF_MONITOR;
if (*total_flags & FIF_ALLMULTI || multicast > 0)
priv->rx_conf |= RTL818X_RX_CONF_MULTICAST;
else
priv->rx_conf &= ~RTL818X_RX_CONF_MULTICAST;
*total_flags = 0;
if (priv->rx_conf & RTL818X_RX_CONF_FCS)
*total_flags |= FIF_FCSFAIL;
if (priv->rx_conf & RTL818X_RX_CONF_CTRL)
*total_flags |= FIF_CONTROL;
if (priv->rx_conf & RTL818X_RX_CONF_MONITOR)
*total_flags |= FIF_OTHER_BSS;
if (priv->rx_conf & RTL818X_RX_CONF_MULTICAST)
*total_flags |= FIF_ALLMULTI;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, priv->rx_conf);
}
static const struct ieee80211_ops rtl8180_ops = {
.tx = rtl8180_tx,
.start = rtl8180_start,
.stop = rtl8180_stop,
.add_interface = rtl8180_add_interface,
.remove_interface = rtl8180_remove_interface,
.config = rtl8180_config,
.bss_info_changed = rtl8180_bss_info_changed,
.conf_tx = rtl8180_conf_tx,
.prepare_multicast = rtl8180_prepare_multicast,
.configure_filter = rtl8180_configure_filter,
.get_tsf = rtl8180_get_tsf,
};
static void rtl8180_eeprom_register_read(struct eeprom_93cx6 *eeprom)
{
struct rtl8180_priv *priv = eeprom->data;
u8 reg = rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
eeprom->reg_data_in = reg & RTL818X_EEPROM_CMD_WRITE;
eeprom->reg_data_out = reg & RTL818X_EEPROM_CMD_READ;
eeprom->reg_data_clock = reg & RTL818X_EEPROM_CMD_CK;
eeprom->reg_chip_select = reg & RTL818X_EEPROM_CMD_CS;
}
static void rtl8180_eeprom_register_write(struct eeprom_93cx6 *eeprom)
{
struct rtl8180_priv *priv = eeprom->data;
u8 reg = 2 << 6;
if (eeprom->reg_data_in)
reg |= RTL818X_EEPROM_CMD_WRITE;
if (eeprom->reg_data_out)
reg |= RTL818X_EEPROM_CMD_READ;
if (eeprom->reg_data_clock)
reg |= RTL818X_EEPROM_CMD_CK;
if (eeprom->reg_chip_select)
reg |= RTL818X_EEPROM_CMD_CS;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, reg);
rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
udelay(10);
}
static void rtl8180_eeprom_read(struct rtl8180_priv *priv)
{
struct eeprom_93cx6 eeprom;
int eeprom_cck_table_adr;
u16 eeprom_val;
int i;
eeprom.data = priv;
eeprom.register_read = rtl8180_eeprom_register_read;
eeprom.register_write = rtl8180_eeprom_register_write;
if (rtl818x_ioread32(priv, &priv->map->RX_CONF) & (1 << 6))
eeprom.width = PCI_EEPROM_WIDTH_93C66;
else
eeprom.width = PCI_EEPROM_WIDTH_93C46;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_PROGRAM);
rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
udelay(10);
eeprom_93cx6_read(&eeprom, 0x06, &eeprom_val);
eeprom_val &= 0xFF;
priv->rf_type = eeprom_val;
eeprom_93cx6_read(&eeprom, 0x17, &eeprom_val);
priv->csthreshold = eeprom_val >> 8;
eeprom_93cx6_multiread(&eeprom, 0x7, (__le16 *)priv->mac_addr, 3);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
eeprom_cck_table_adr = 0x30;
else
eeprom_cck_table_adr = 0x10;
/* CCK TX power */
for (i = 0; i < 14; i += 2) {
u16 txpwr;
eeprom_93cx6_read(&eeprom, eeprom_cck_table_adr + (i >> 1),
&txpwr);
priv->channels[i].hw_value = txpwr & 0xFF;
priv->channels[i + 1].hw_value = txpwr >> 8;
}
/* OFDM TX power */
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
for (i = 0; i < 14; i += 2) {
u16 txpwr;
eeprom_93cx6_read(&eeprom, 0x20 + (i >> 1), &txpwr);
priv->channels[i].hw_value |= (txpwr & 0xFF) << 8;
priv->channels[i + 1].hw_value |= txpwr & 0xFF00;
}
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
__le32 anaparam;
eeprom_93cx6_multiread(&eeprom, 0xD, (__le16 *)&anaparam, 2);
priv->anaparam = le32_to_cpu(anaparam);
eeprom_93cx6_read(&eeprom, 0x19, &priv->rfparam);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
eeprom_93cx6_read(&eeprom, 0x3F, &eeprom_val);
priv->antenna_diversity_en = !!(eeprom_val & 0x100);
priv->antenna_diversity_default = (eeprom_val & 0xC00) == 0x400;
eeprom_93cx6_read(&eeprom, 0x7C, &eeprom_val);
priv->xtal_out = eeprom_val & 0xF;
priv->xtal_in = (eeprom_val & 0xF0) >> 4;
priv->xtal_cal = !!(eeprom_val & 0x1000);
priv->thermal_meter_val = (eeprom_val & 0xF00) >> 8;
priv->thermal_meter_en = !!(eeprom_val & 0x2000);
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
static int rtl8180_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *dev;
struct rtl8180_priv *priv;
unsigned long mem_addr, mem_len;
unsigned int io_addr, io_len;
int err;
const char *chip_name, *rf_name = NULL;
u32 reg;
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot enable new PCI device\n",
pci_name(pdev));
return err;
}
err = pci_request_regions(pdev, KBUILD_MODNAME);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot obtain PCI resources\n",
pci_name(pdev));
return err;
}
io_addr = pci_resource_start(pdev, 0);
io_len = pci_resource_len(pdev, 0);
mem_addr = pci_resource_start(pdev, 1);
mem_len = pci_resource_len(pdev, 1);
if (mem_len < sizeof(struct rtl818x_csr) ||
io_len < sizeof(struct rtl818x_csr)) {
printk(KERN_ERR "%s (rtl8180): Too short PCI resources\n",
pci_name(pdev));
err = -ENOMEM;
goto err_free_reg;
}
if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
printk(KERN_ERR "%s (rtl8180): No suitable DMA available\n",
pci_name(pdev));
goto err_free_reg;
}
pci_set_master(pdev);
dev = ieee80211_alloc_hw(sizeof(*priv), &rtl8180_ops);
if (!dev) {
printk(KERN_ERR "%s (rtl8180): ieee80211 alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto err_free_reg;
}
priv = dev->priv;
priv->pdev = pdev;
dev->max_rates = 1;
SET_IEEE80211_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
priv->map_pio = false;
priv->map = pci_iomap(pdev, 1, mem_len);
if (!priv->map) {
priv->map = pci_iomap(pdev, 0, io_len);
priv->map_pio = true;
}
if (!priv->map) {
dev_err(&pdev->dev, "Cannot map device memory/PIO\n");
err = -ENOMEM;
goto err_free_dev;
}
BUILD_BUG_ON(sizeof(priv->channels) != sizeof(rtl818x_channels));
BUILD_BUG_ON(sizeof(priv->rates) != sizeof(rtl818x_rates));
memcpy(priv->channels, rtl818x_channels, sizeof(rtl818x_channels));
memcpy(priv->rates, rtl818x_rates, sizeof(rtl818x_rates));
priv->band.band = IEEE80211_BAND_2GHZ;
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(rtl818x_channels);
priv->band.bitrates = priv->rates;
priv->band.n_bitrates = 4;
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_RX_INCLUDES_FCS;
dev->vif_data_size = sizeof(struct rtl8180_vif);
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
dev->max_signal = 65;
reg = rtl818x_ioread32(priv, &priv->map->TX_CONF);
reg &= RTL818X_TX_CONF_HWVER_MASK;
switch (reg) {
case RTL818X_TX_CONF_R8180_ABCD:
chip_name = "RTL8180";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8180;
break;
case RTL818X_TX_CONF_R8180_F:
chip_name = "RTL8180vF";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8180;
break;
case RTL818X_TX_CONF_R8185_ABC:
chip_name = "RTL8185";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8185;
break;
case RTL818X_TX_CONF_R8185_D:
chip_name = "RTL8185vD";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8185;
break;
case RTL818X_TX_CONF_RTL8187SE:
chip_name = "RTL8187SE";
if (priv->map_pio) {
dev_err(&pdev->dev,
"MMIO failed. PIO not supported on RTL8187SE\n");
err = -ENOMEM;
goto err_iounmap;
}
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8187SE;
break;
default:
printk(KERN_ERR "%s (rtl8180): Unknown chip! (0x%x)\n",
pci_name(pdev), reg >> 25);
err = -ENODEV;
goto err_iounmap;
}
/* we declare to MAC80211 all the queues except for beacon queue
* that will be eventually handled by DRV.
* TX rings are arranged in such a way that lower is the IDX,
* higher is the priority, in order to achieve direct mapping
* with mac80211, however the beacon queue is an exception and it
* is mapped on the highst tx ring IDX.
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
dev->queues = RTL8187SE_NR_TX_QUEUES - 1;
else
dev->queues = RTL8180_NR_TX_QUEUES - 1;
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
priv->band.n_bitrates = ARRAY_SIZE(rtl818x_rates);
pci_try_set_mwi(pdev);
}
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
dev->flags |= IEEE80211_HW_SIGNAL_DBM;
else
dev->flags |= IEEE80211_HW_SIGNAL_UNSPEC;
rtl8180_eeprom_read(priv);
switch (priv->rf_type) {
case 1: rf_name = "Intersil";
break;
case 2: rf_name = "RFMD";
break;
case 3: priv->rf = &sa2400_rf_ops;
break;
case 4: priv->rf = &max2820_rf_ops;
break;
case 5: priv->rf = &grf5101_rf_ops;
break;
case 9:
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
priv->rf = rtl8187se_detect_rf(dev);
else
priv->rf = rtl8180_detect_rf(dev);
break;
case 10:
rf_name = "RTL8255";
break;
default:
printk(KERN_ERR "%s (rtl8180): Unknown RF! (0x%x)\n",
pci_name(pdev), priv->rf_type);
err = -ENODEV;
goto err_iounmap;
}
if (!priv->rf) {
printk(KERN_ERR "%s (rtl8180): %s RF frontend not supported!\n",
pci_name(pdev), rf_name);
err = -ENODEV;
goto err_iounmap;
}
if (!is_valid_ether_addr(priv->mac_addr)) {
printk(KERN_WARNING "%s (rtl8180): Invalid hwaddr! Using"
" randomly generated MAC addr\n", pci_name(pdev));
eth_random_addr(priv->mac_addr);
}
SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
spin_lock_init(&priv->lock);
err = ieee80211_register_hw(dev);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot register device\n",
pci_name(pdev));
goto err_iounmap;
}
wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
priv->mac_addr, chip_name, priv->rf->name);
return 0;
err_iounmap:
pci_iounmap(pdev, priv->map);
err_free_dev:
ieee80211_free_hw(dev);
err_free_reg:
pci_release_regions(pdev);
pci_disable_device(pdev);
return err;
}
static void rtl8180_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
struct rtl8180_priv *priv;
if (!dev)
return;
ieee80211_unregister_hw(dev);
priv = dev->priv;
pci_iounmap(pdev, priv->map);
pci_release_regions(pdev);
pci_disable_device(pdev);
ieee80211_free_hw(dev);
}
#ifdef CONFIG_PM
static int rtl8180_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int rtl8180_resume(struct pci_dev *pdev)
{
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver rtl8180_driver = {
.name = KBUILD_MODNAME,
.id_table = rtl8180_table,
.probe = rtl8180_probe,
.remove = rtl8180_remove,
#ifdef CONFIG_PM
.suspend = rtl8180_suspend,
.resume = rtl8180_resume,
#endif /* CONFIG_PM */
};
module_pci_driver(rtl8180_driver);