2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/fs/pipe.c
Al Viro db3495099d [PATCH] AUDIT_FD_PAIR
Provide an audit record of the descriptor pair returned by pipe() and
socketpair().  Rewritten from the original posted to linux-audit by
John D. Ramsdell <ramsdell@mitre.org>

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2007-02-17 21:30:15 -05:00

1054 lines
22 KiB
C

/*
* linux/fs/pipe.c
*
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pipe_fs_i.h>
#include <linux/uio.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/audit.h>
#include <asm/uaccess.h>
#include <asm/ioctls.h>
/*
* We use a start+len construction, which provides full use of the
* allocated memory.
* -- Florian Coosmann (FGC)
*
* Reads with count = 0 should always return 0.
* -- Julian Bradfield 1999-06-07.
*
* FIFOs and Pipes now generate SIGIO for both readers and writers.
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
*
* pipe_read & write cleanup
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
*/
/* Drop the inode semaphore and wait for a pipe event, atomically */
void pipe_wait(struct pipe_inode_info *pipe)
{
DEFINE_WAIT(wait);
/*
* Pipes are system-local resources, so sleeping on them
* is considered a noninteractive wait:
*/
prepare_to_wait(&pipe->wait, &wait,
TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE);
if (pipe->inode)
mutex_unlock(&pipe->inode->i_mutex);
schedule();
finish_wait(&pipe->wait, &wait);
if (pipe->inode)
mutex_lock(&pipe->inode->i_mutex);
}
static int
pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
int atomic)
{
unsigned long copy;
while (len > 0) {
while (!iov->iov_len)
iov++;
copy = min_t(unsigned long, len, iov->iov_len);
if (atomic) {
if (__copy_from_user_inatomic(to, iov->iov_base, copy))
return -EFAULT;
} else {
if (copy_from_user(to, iov->iov_base, copy))
return -EFAULT;
}
to += copy;
len -= copy;
iov->iov_base += copy;
iov->iov_len -= copy;
}
return 0;
}
static int
pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
int atomic)
{
unsigned long copy;
while (len > 0) {
while (!iov->iov_len)
iov++;
copy = min_t(unsigned long, len, iov->iov_len);
if (atomic) {
if (__copy_to_user_inatomic(iov->iov_base, from, copy))
return -EFAULT;
} else {
if (copy_to_user(iov->iov_base, from, copy))
return -EFAULT;
}
from += copy;
len -= copy;
iov->iov_base += copy;
iov->iov_len -= copy;
}
return 0;
}
/*
* Attempt to pre-fault in the user memory, so we can use atomic copies.
* Returns the number of bytes not faulted in.
*/
static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
{
while (!iov->iov_len)
iov++;
while (len > 0) {
unsigned long this_len;
this_len = min_t(unsigned long, len, iov->iov_len);
if (fault_in_pages_writeable(iov->iov_base, this_len))
break;
len -= this_len;
iov++;
}
return len;
}
/*
* Pre-fault in the user memory, so we can use atomic copies.
*/
static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
{
while (!iov->iov_len)
iov++;
while (len > 0) {
unsigned long this_len;
this_len = min_t(unsigned long, len, iov->iov_len);
fault_in_pages_readable(iov->iov_base, this_len);
len -= this_len;
iov++;
}
}
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
/*
* If nobody else uses this page, and we don't already have a
* temporary page, let's keep track of it as a one-deep
* allocation cache. (Otherwise just release our reference to it)
*/
if (page_count(page) == 1 && !pipe->tmp_page)
pipe->tmp_page = page;
else
page_cache_release(page);
}
void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
struct pipe_buffer *buf, int atomic)
{
if (atomic) {
buf->flags |= PIPE_BUF_FLAG_ATOMIC;
return kmap_atomic(buf->page, KM_USER0);
}
return kmap(buf->page);
}
void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
struct pipe_buffer *buf, void *map_data)
{
if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
kunmap_atomic(map_data, KM_USER0);
} else
kunmap(buf->page);
}
int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
if (page_count(page) == 1) {
lock_page(page);
return 0;
}
return 1;
}
void generic_pipe_buf_get(struct pipe_inode_info *info, struct pipe_buffer *buf)
{
page_cache_get(buf->page);
}
int generic_pipe_buf_pin(struct pipe_inode_info *info, struct pipe_buffer *buf)
{
return 0;
}
static const struct pipe_buf_operations anon_pipe_buf_ops = {
.can_merge = 1,
.map = generic_pipe_buf_map,
.unmap = generic_pipe_buf_unmap,
.pin = generic_pipe_buf_pin,
.release = anon_pipe_buf_release,
.steal = generic_pipe_buf_steal,
.get = generic_pipe_buf_get,
};
static ssize_t
pipe_read(struct kiocb *iocb, const struct iovec *_iov,
unsigned long nr_segs, loff_t pos)
{
struct file *filp = iocb->ki_filp;
struct inode *inode = filp->f_path.dentry->d_inode;
struct pipe_inode_info *pipe;
int do_wakeup;
ssize_t ret;
struct iovec *iov = (struct iovec *)_iov;
size_t total_len;
total_len = iov_length(iov, nr_segs);
/* Null read succeeds. */
if (unlikely(total_len == 0))
return 0;
do_wakeup = 0;
ret = 0;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
for (;;) {
int bufs = pipe->nrbufs;
if (bufs) {
int curbuf = pipe->curbuf;
struct pipe_buffer *buf = pipe->bufs + curbuf;
const struct pipe_buf_operations *ops = buf->ops;
void *addr;
size_t chars = buf->len;
int error, atomic;
if (chars > total_len)
chars = total_len;
error = ops->pin(pipe, buf);
if (error) {
if (!ret)
error = ret;
break;
}
atomic = !iov_fault_in_pages_write(iov, chars);
redo:
addr = ops->map(pipe, buf, atomic);
error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
ops->unmap(pipe, buf, addr);
if (unlikely(error)) {
/*
* Just retry with the slow path if we failed.
*/
if (atomic) {
atomic = 0;
goto redo;
}
if (!ret)
ret = error;
break;
}
ret += chars;
buf->offset += chars;
buf->len -= chars;
if (!buf->len) {
buf->ops = NULL;
ops->release(pipe, buf);
curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
pipe->curbuf = curbuf;
pipe->nrbufs = --bufs;
do_wakeup = 1;
}
total_len -= chars;
if (!total_len)
break; /* common path: read succeeded */
}
if (bufs) /* More to do? */
continue;
if (!pipe->writers)
break;
if (!pipe->waiting_writers) {
/* syscall merging: Usually we must not sleep
* if O_NONBLOCK is set, or if we got some data.
* But if a writer sleeps in kernel space, then
* we can wait for that data without violating POSIX.
*/
if (ret)
break;
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync(&pipe->wait);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
pipe_wait(pipe);
}
mutex_unlock(&inode->i_mutex);
/* Signal writers asynchronously that there is more room. */
if (do_wakeup) {
wake_up_interruptible(&pipe->wait);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
if (ret > 0)
file_accessed(filp);
return ret;
}
static ssize_t
pipe_write(struct kiocb *iocb, const struct iovec *_iov,
unsigned long nr_segs, loff_t ppos)
{
struct file *filp = iocb->ki_filp;
struct inode *inode = filp->f_path.dentry->d_inode;
struct pipe_inode_info *pipe;
ssize_t ret;
int do_wakeup;
struct iovec *iov = (struct iovec *)_iov;
size_t total_len;
ssize_t chars;
total_len = iov_length(iov, nr_segs);
/* Null write succeeds. */
if (unlikely(total_len == 0))
return 0;
do_wakeup = 0;
ret = 0;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
goto out;
}
/* We try to merge small writes */
chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
if (pipe->nrbufs && chars != 0) {
int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
(PIPE_BUFFERS-1);
struct pipe_buffer *buf = pipe->bufs + lastbuf;
const struct pipe_buf_operations *ops = buf->ops;
int offset = buf->offset + buf->len;
if (ops->can_merge && offset + chars <= PAGE_SIZE) {
int error, atomic = 1;
void *addr;
error = ops->pin(pipe, buf);
if (error)
goto out;
iov_fault_in_pages_read(iov, chars);
redo1:
addr = ops->map(pipe, buf, atomic);
error = pipe_iov_copy_from_user(offset + addr, iov,
chars, atomic);
ops->unmap(pipe, buf, addr);
ret = error;
do_wakeup = 1;
if (error) {
if (atomic) {
atomic = 0;
goto redo1;
}
goto out;
}
buf->len += chars;
total_len -= chars;
ret = chars;
if (!total_len)
goto out;
}
}
for (;;) {
int bufs;
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
if (!ret)
ret = -EPIPE;
break;
}
bufs = pipe->nrbufs;
if (bufs < PIPE_BUFFERS) {
int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
struct pipe_buffer *buf = pipe->bufs + newbuf;
struct page *page = pipe->tmp_page;
char *src;
int error, atomic = 1;
if (!page) {
page = alloc_page(GFP_HIGHUSER);
if (unlikely(!page)) {
ret = ret ? : -ENOMEM;
break;
}
pipe->tmp_page = page;
}
/* Always wake up, even if the copy fails. Otherwise
* we lock up (O_NONBLOCK-)readers that sleep due to
* syscall merging.
* FIXME! Is this really true?
*/
do_wakeup = 1;
chars = PAGE_SIZE;
if (chars > total_len)
chars = total_len;
iov_fault_in_pages_read(iov, chars);
redo2:
if (atomic)
src = kmap_atomic(page, KM_USER0);
else
src = kmap(page);
error = pipe_iov_copy_from_user(src, iov, chars,
atomic);
if (atomic)
kunmap_atomic(src, KM_USER0);
else
kunmap(page);
if (unlikely(error)) {
if (atomic) {
atomic = 0;
goto redo2;
}
if (!ret)
ret = error;
break;
}
ret += chars;
/* Insert it into the buffer array */
buf->page = page;
buf->ops = &anon_pipe_buf_ops;
buf->offset = 0;
buf->len = chars;
pipe->nrbufs = ++bufs;
pipe->tmp_page = NULL;
total_len -= chars;
if (!total_len)
break;
}
if (bufs < PIPE_BUFFERS)
continue;
if (filp->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync(&pipe->wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
do_wakeup = 0;
}
pipe->waiting_writers++;
pipe_wait(pipe);
pipe->waiting_writers--;
}
out:
mutex_unlock(&inode->i_mutex);
if (do_wakeup) {
wake_up_interruptible(&pipe->wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
}
if (ret > 0)
file_update_time(filp);
return ret;
}
static ssize_t
bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
{
return -EBADF;
}
static ssize_t
bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
loff_t *ppos)
{
return -EBADF;
}
static int
pipe_ioctl(struct inode *pino, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct pipe_inode_info *pipe;
int count, buf, nrbufs;
switch (cmd) {
case FIONREAD:
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
count = 0;
buf = pipe->curbuf;
nrbufs = pipe->nrbufs;
while (--nrbufs >= 0) {
count += pipe->bufs[buf].len;
buf = (buf+1) & (PIPE_BUFFERS-1);
}
mutex_unlock(&inode->i_mutex);
return put_user(count, (int __user *)arg);
default:
return -EINVAL;
}
}
/* No kernel lock held - fine */
static unsigned int
pipe_poll(struct file *filp, poll_table *wait)
{
unsigned int mask;
struct inode *inode = filp->f_path.dentry->d_inode;
struct pipe_inode_info *pipe = inode->i_pipe;
int nrbufs;
poll_wait(filp, &pipe->wait, wait);
/* Reading only -- no need for acquiring the semaphore. */
nrbufs = pipe->nrbufs;
mask = 0;
if (filp->f_mode & FMODE_READ) {
mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
if (!pipe->writers && filp->f_version != pipe->w_counter)
mask |= POLLHUP;
}
if (filp->f_mode & FMODE_WRITE) {
mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
/*
* Most Unices do not set POLLERR for FIFOs but on Linux they
* behave exactly like pipes for poll().
*/
if (!pipe->readers)
mask |= POLLERR;
}
return mask;
}
static int
pipe_release(struct inode *inode, int decr, int decw)
{
struct pipe_inode_info *pipe;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
pipe->readers -= decr;
pipe->writers -= decw;
if (!pipe->readers && !pipe->writers) {
free_pipe_info(inode);
} else {
wake_up_interruptible(&pipe->wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
mutex_unlock(&inode->i_mutex);
return 0;
}
static int
pipe_read_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = filp->f_path.dentry->d_inode;
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
mutex_unlock(&inode->i_mutex);
if (retval < 0)
return retval;
return 0;
}
static int
pipe_write_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = filp->f_path.dentry->d_inode;
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
mutex_unlock(&inode->i_mutex);
if (retval < 0)
return retval;
return 0;
}
static int
pipe_rdwr_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct pipe_inode_info *pipe = inode->i_pipe;
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
if (retval >= 0)
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
mutex_unlock(&inode->i_mutex);
if (retval < 0)
return retval;
return 0;
}
static int
pipe_read_release(struct inode *inode, struct file *filp)
{
pipe_read_fasync(-1, filp, 0);
return pipe_release(inode, 1, 0);
}
static int
pipe_write_release(struct inode *inode, struct file *filp)
{
pipe_write_fasync(-1, filp, 0);
return pipe_release(inode, 0, 1);
}
static int
pipe_rdwr_release(struct inode *inode, struct file *filp)
{
int decr, decw;
pipe_rdwr_fasync(-1, filp, 0);
decr = (filp->f_mode & FMODE_READ) != 0;
decw = (filp->f_mode & FMODE_WRITE) != 0;
return pipe_release(inode, decr, decw);
}
static int
pipe_read_open(struct inode *inode, struct file *filp)
{
/* We could have perhaps used atomic_t, but this and friends
below are the only places. So it doesn't seem worthwhile. */
mutex_lock(&inode->i_mutex);
inode->i_pipe->readers++;
mutex_unlock(&inode->i_mutex);
return 0;
}
static int
pipe_write_open(struct inode *inode, struct file *filp)
{
mutex_lock(&inode->i_mutex);
inode->i_pipe->writers++;
mutex_unlock(&inode->i_mutex);
return 0;
}
static int
pipe_rdwr_open(struct inode *inode, struct file *filp)
{
mutex_lock(&inode->i_mutex);
if (filp->f_mode & FMODE_READ)
inode->i_pipe->readers++;
if (filp->f_mode & FMODE_WRITE)
inode->i_pipe->writers++;
mutex_unlock(&inode->i_mutex);
return 0;
}
/*
* The file_operations structs are not static because they
* are also used in linux/fs/fifo.c to do operations on FIFOs.
*/
const struct file_operations read_fifo_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = bad_pipe_w,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_read_open,
.release = pipe_read_release,
.fasync = pipe_read_fasync,
};
const struct file_operations write_fifo_fops = {
.llseek = no_llseek,
.read = bad_pipe_r,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_write_open,
.release = pipe_write_release,
.fasync = pipe_write_fasync,
};
const struct file_operations rdwr_fifo_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_rdwr_open,
.release = pipe_rdwr_release,
.fasync = pipe_rdwr_fasync,
};
static const struct file_operations read_pipe_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = bad_pipe_w,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_read_open,
.release = pipe_read_release,
.fasync = pipe_read_fasync,
};
static const struct file_operations write_pipe_fops = {
.llseek = no_llseek,
.read = bad_pipe_r,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_write_open,
.release = pipe_write_release,
.fasync = pipe_write_fasync,
};
static const struct file_operations rdwr_pipe_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.ioctl = pipe_ioctl,
.open = pipe_rdwr_open,
.release = pipe_rdwr_release,
.fasync = pipe_rdwr_fasync,
};
struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
{
struct pipe_inode_info *pipe;
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
if (pipe) {
init_waitqueue_head(&pipe->wait);
pipe->r_counter = pipe->w_counter = 1;
pipe->inode = inode;
}
return pipe;
}
void __free_pipe_info(struct pipe_inode_info *pipe)
{
int i;
for (i = 0; i < PIPE_BUFFERS; i++) {
struct pipe_buffer *buf = pipe->bufs + i;
if (buf->ops)
buf->ops->release(pipe, buf);
}
if (pipe->tmp_page)
__free_page(pipe->tmp_page);
kfree(pipe);
}
void free_pipe_info(struct inode *inode)
{
__free_pipe_info(inode->i_pipe);
inode->i_pipe = NULL;
}
static struct vfsmount *pipe_mnt __read_mostly;
static int pipefs_delete_dentry(struct dentry *dentry)
{
/*
* At creation time, we pretended this dentry was hashed
* (by clearing DCACHE_UNHASHED bit in d_flags)
* At delete time, we restore the truth : not hashed.
* (so that dput() can proceed correctly)
*/
dentry->d_flags |= DCACHE_UNHASHED;
return 0;
}
static struct dentry_operations pipefs_dentry_operations = {
.d_delete = pipefs_delete_dentry,
};
static struct inode * get_pipe_inode(void)
{
struct inode *inode = new_inode(pipe_mnt->mnt_sb);
struct pipe_inode_info *pipe;
if (!inode)
goto fail_inode;
pipe = alloc_pipe_info(inode);
if (!pipe)
goto fail_iput;
inode->i_pipe = pipe;
pipe->readers = pipe->writers = 1;
inode->i_fop = &rdwr_pipe_fops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because "mark_inode_dirty()" will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
return inode;
fail_iput:
iput(inode);
fail_inode:
return NULL;
}
struct file *create_write_pipe(void)
{
int err;
struct inode *inode;
struct file *f;
struct dentry *dentry;
char name[32];
struct qstr this;
f = get_empty_filp();
if (!f)
return ERR_PTR(-ENFILE);
err = -ENFILE;
inode = get_pipe_inode();
if (!inode)
goto err_file;
this.len = sprintf(name, "[%lu]", inode->i_ino);
this.name = name;
this.hash = 0;
err = -ENOMEM;
dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &this);
if (!dentry)
goto err_inode;
dentry->d_op = &pipefs_dentry_operations;
/*
* We dont want to publish this dentry into global dentry hash table.
* We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
* This permits a working /proc/$pid/fd/XXX on pipes
*/
dentry->d_flags &= ~DCACHE_UNHASHED;
d_instantiate(dentry, inode);
f->f_path.mnt = mntget(pipe_mnt);
f->f_path.dentry = dentry;
f->f_mapping = inode->i_mapping;
f->f_flags = O_WRONLY;
f->f_op = &write_pipe_fops;
f->f_mode = FMODE_WRITE;
f->f_version = 0;
return f;
err_inode:
free_pipe_info(inode);
iput(inode);
err_file:
put_filp(f);
return ERR_PTR(err);
}
void free_write_pipe(struct file *f)
{
free_pipe_info(f->f_dentry->d_inode);
dput(f->f_path.dentry);
mntput(f->f_path.mnt);
put_filp(f);
}
struct file *create_read_pipe(struct file *wrf)
{
struct file *f = get_empty_filp();
if (!f)
return ERR_PTR(-ENFILE);
/* Grab pipe from the writer */
f->f_path.mnt = mntget(wrf->f_path.mnt);
f->f_path.dentry = dget(wrf->f_path.dentry);
f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
f->f_pos = 0;
f->f_flags = O_RDONLY;
f->f_op = &read_pipe_fops;
f->f_mode = FMODE_READ;
f->f_version = 0;
return f;
}
int do_pipe(int *fd)
{
struct file *fw, *fr;
int error;
int fdw, fdr;
fw = create_write_pipe();
if (IS_ERR(fw))
return PTR_ERR(fw);
fr = create_read_pipe(fw);
error = PTR_ERR(fr);
if (IS_ERR(fr))
goto err_write_pipe;
error = get_unused_fd();
if (error < 0)
goto err_read_pipe;
fdr = error;
error = get_unused_fd();
if (error < 0)
goto err_fdr;
fdw = error;
error = audit_fd_pair(fdr, fdw);
if (error < 0)
goto err_fdw;
fd_install(fdr, fr);
fd_install(fdw, fw);
fd[0] = fdr;
fd[1] = fdw;
return 0;
err_fdw:
put_unused_fd(fdw);
err_fdr:
put_unused_fd(fdr);
err_read_pipe:
dput(fr->f_dentry);
mntput(fr->f_vfsmnt);
put_filp(fr);
err_write_pipe:
free_write_pipe(fw);
return error;
}
/*
* pipefs should _never_ be mounted by userland - too much of security hassle,
* no real gain from having the whole whorehouse mounted. So we don't need
* any operations on the root directory. However, we need a non-trivial
* d_name - pipe: will go nicely and kill the special-casing in procfs.
*/
static int pipefs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
struct vfsmount *mnt)
{
return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
}
static struct file_system_type pipe_fs_type = {
.name = "pipefs",
.get_sb = pipefs_get_sb,
.kill_sb = kill_anon_super,
};
static int __init init_pipe_fs(void)
{
int err = register_filesystem(&pipe_fs_type);
if (!err) {
pipe_mnt = kern_mount(&pipe_fs_type);
if (IS_ERR(pipe_mnt)) {
err = PTR_ERR(pipe_mnt);
unregister_filesystem(&pipe_fs_type);
}
}
return err;
}
static void __exit exit_pipe_fs(void)
{
unregister_filesystem(&pipe_fs_type);
mntput(pipe_mnt);
}
fs_initcall(init_pipe_fs);
module_exit(exit_pipe_fs);