2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/drivers/media/dvb-frontends/itd1000.c
Mauro Carvalho Chehab 8393796dfa [media] dvb-frontends: Don't use dynamic static allocation
Dynamic static allocation is evil, as Kernel stack is too low, and
compilation complains about it on some archs:
	drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default]
	drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default]
Instead, let's enforce a limit for the buffer. Considering that I2C
transfers are generally limited, and that devices used on USB has a
max data length of 64 bytes for the control URBs.
So, it seem safe to use 64 bytes as the hard limit for all those devices.
 On most cases, the limit is a way lower than that, but this limit
is small enough to not affect the Kernel stack, and it is a no brain
limit, as using smaller ones would require to either carefully each
driver or to take a look on each datasheet.

Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-08 09:45:38 -02:00

411 lines
11 KiB
C

/*
* Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
*
* Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "itd1000.h"
#include "itd1000_priv.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define itd_dbg(args...) do { \
if (debug) { \
printk(KERN_DEBUG "ITD1000: " args);\
} \
} while (0)
#define itd_warn(args...) do { \
printk(KERN_WARNING "ITD1000: " args); \
} while (0)
#define itd_info(args...) do { \
printk(KERN_INFO "ITD1000: " args); \
} while (0)
/* don't write more than one byte with flexcop behind */
static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
{
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
};
if (1 + len > sizeof(buf)) {
printk(KERN_WARNING
"itd1000: i2c wr reg=%04x: len=%d is too big!\n",
reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], v, len);
/* itd_dbg("wr %02x: %02x\n", reg, v[0]); */
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "itd1000 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
{
u8 val;
struct i2c_msg msg[2] = {
{ .addr = state->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
};
/* ugly flexcop workaround */
itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
if (i2c_transfer(state->i2c, msg, 2) != 2) {
itd_warn("itd1000 I2C read failed\n");
return -EREMOTEIO;
}
return val;
}
static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
{
int ret = itd1000_write_regs(state, r, &v, 1);
state->shadow[r] = v;
return ret;
}
static struct {
u32 symbol_rate;
u8 pgaext : 4; /* PLLFH */
u8 bbgvmin : 4; /* BBGVMIN */
} itd1000_lpf_pga[] = {
{ 0, 0x8, 0x3 },
{ 5200000, 0x8, 0x3 },
{ 12200000, 0x4, 0x3 },
{ 15400000, 0x2, 0x3 },
{ 19800000, 0x2, 0x3 },
{ 21500000, 0x2, 0x3 },
{ 24500000, 0x2, 0x3 },
{ 28400000, 0x2, 0x3 },
{ 33400000, 0x2, 0x3 },
{ 34400000, 0x1, 0x4 },
{ 34400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 40400000, 0x1, 0x4 },
{ 45400000, 0x1, 0x4 },
};
static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
{
u8 i;
u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
u8 bw = itd1000_read_reg(state, BW) & 0xf0;
itd_dbg("symbol_rate = %d\n", symbol_rate);
/* not sure what is that ? - starting to download the table */
itd1000_write_reg(state, CON1, con1 | (1 << 1));
for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
itd1000_write_reg(state, BW, bw | (i & 0x0f));
break;
}
itd1000_write_reg(state, CON1, con1 | (0 << 1));
}
static struct {
u8 vcorg;
u32 fmax_rg;
} itd1000_vcorg[] = {
{ 1, 920000 },
{ 2, 971000 },
{ 3, 1031000 },
{ 4, 1091000 },
{ 5, 1171000 },
{ 6, 1281000 },
{ 7, 1381000 },
{ 8, 500000 }, /* this is intentional. */
{ 9, 1451000 },
{ 10, 1531000 },
{ 11, 1631000 },
{ 12, 1741000 },
{ 13, 1891000 },
{ 14, 2071000 },
{ 15, 2250000 },
};
static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
{
u8 i;
u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
u8 adcout;
/* reserved bit again (reset ?) */
itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
if (freq_khz < itd1000_vcorg[i].fmax_rg) {
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
msleep(1);
adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
if (adcout > 13) {
if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
} else if (adcout < 2) {
if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
}
break;
}
}
}
static const struct {
u32 freq;
u8 values[10]; /* RFTR, RFST1 - RFST9 */
} itd1000_fre_values[] = {
{ 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
{ 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
};
#define FREF 16
static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
{
int i, j;
u32 plln, pllf;
u64 tmp;
plln = (freq_khz * 1000) / 2 / FREF;
/* Compute the factional part times 1000 */
tmp = plln % 1000000;
plln /= 1000000;
tmp *= 1048576;
do_div(tmp, 1000000);
pllf = (u32) tmp;
state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */
itd1000_write_reg(state, PLLNL, plln & 0xff);
itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
if (freq_khz <= itd1000_fre_values[i].freq) {
itd_dbg("fre_values: %d\n", i);
itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
for (j = 0; j < 9; j++)
itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
break;
}
}
itd1000_set_vco(state, freq_khz);
}
static int itd1000_set_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct itd1000_state *state = fe->tuner_priv;
u8 pllcon1;
itd1000_set_lo(state, c->frequency);
itd1000_set_lpf_bw(state, c->symbol_rate);
pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
itd1000_write_reg(state, PLLCON1, pllcon1);
return 0;
}
static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct itd1000_state *state = fe->tuner_priv;
*frequency = state->frequency;
return 0;
}
static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
return 0;
}
static u8 itd1000_init_tab[][2] = {
{ PLLCON1, 0x65 }, /* Register does not change */
{ PLLNH, 0x80 }, /* Bits [7:6] do not change */
{ RESERVED_0X6D, 0x3b },
{ VCO_CHP2_I2C, 0x12 },
{ 0x72, 0xf9 }, /* No such regsister defined */
{ RESERVED_0X73, 0xff },
{ RESERVED_0X74, 0xb2 },
{ RESERVED_0X75, 0xc7 },
{ EXTGVBBRF, 0xf0 },
{ DIVAGCCK, 0x80 },
{ BBTR, 0xa0 },
{ RESERVED_0X7E, 0x4f },
{ 0x82, 0x88 }, /* No such regsister defined */
{ 0x83, 0x80 }, /* No such regsister defined */
{ 0x84, 0x80 }, /* No such regsister defined */
{ RESERVED_0X85, 0x74 },
{ RESERVED_0X86, 0xff },
{ RESERVED_0X88, 0x02 },
{ RESERVED_0X89, 0x16 },
{ RFST0, 0x1f },
{ RESERVED_0X94, 0x66 },
{ RESERVED_0X95, 0x66 },
{ RESERVED_0X96, 0x77 },
{ RESERVED_0X97, 0x99 },
{ RESERVED_0X98, 0xff },
{ RESERVED_0X99, 0xfc },
{ RESERVED_0X9A, 0xba },
{ RESERVED_0X9B, 0xaa },
};
static u8 itd1000_reinit_tab[][2] = {
{ VCO_CHP1_I2C, 0x8a },
{ BW, 0x87 },
{ GVBB_I2C, 0x03 },
{ BBGVMIN, 0x03 },
{ CON1, 0x2e },
};
static int itd1000_init(struct dvb_frontend *fe)
{
struct itd1000_state *state = fe->tuner_priv;
int i;
for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
return 0;
}
static int itd1000_sleep(struct dvb_frontend *fe)
{
return 0;
}
static int itd1000_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops itd1000_tuner_ops = {
.info = {
.name = "Integrant ITD1000",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 125, /* kHz for QPSK frontends */
},
.release = itd1000_release,
.init = itd1000_init,
.sleep = itd1000_sleep,
.set_params = itd1000_set_parameters,
.get_frequency = itd1000_get_frequency,
.get_bandwidth = itd1000_get_bandwidth
};
struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
{
struct itd1000_state *state = NULL;
u8 i = 0;
state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
if (state == NULL)
return NULL;
state->cfg = cfg;
state->i2c = i2c;
i = itd1000_read_reg(state, 0);
if (i != 0) {
kfree(state);
return NULL;
}
itd_info("successfully identified (ID: %d)\n", i);
memset(state->shadow, 0xff, sizeof(state->shadow));
for (i = 0x65; i < 0x9c; i++)
state->shadow[i] = itd1000_read_reg(state, i);
memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL(itd1000_attach);
MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
MODULE_DESCRIPTION("Integrant ITD1000 driver");
MODULE_LICENSE("GPL");