mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 18:24:23 +08:00
b5f2a8c026
__reserved_mem_reserve_reg() won't reserve memory if the base address is zero. This change removes the check for a base address of zero and allows it to be reserved. Allowing the first 4K of memory to be reserved will help solve a problem on some ARM systems where the the first 16K of memory is unused and becomes allocable memory. This will prevent this memory from being used for DMA by drivers like the USB OHCI driver which consider a physical address of zero to be illegal. Cc: stable@vger.kernel.org # 3.15+ Signed-off-by: Al Cooper <alcooperx@gmail.com> Signed-off-by: Grant Likely <grant.likely@linaro.org>
1103 lines
28 KiB
C
1103 lines
28 KiB
C
/*
|
|
* Functions for working with the Flattened Device Tree data format
|
|
*
|
|
* Copyright 2009 Benjamin Herrenschmidt, IBM Corp
|
|
* benh@kernel.crashing.org
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/serial_core.h>
|
|
|
|
#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* of_fdt_limit_memory - limit the number of regions in the /memory node
|
|
* @limit: maximum entries
|
|
*
|
|
* Adjust the flattened device tree to have at most 'limit' number of
|
|
* memory entries in the /memory node. This function may be called
|
|
* any time after initial_boot_param is set.
|
|
*/
|
|
void of_fdt_limit_memory(int limit)
|
|
{
|
|
int memory;
|
|
int len;
|
|
const void *val;
|
|
int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
const uint32_t *addr_prop;
|
|
const uint32_t *size_prop;
|
|
int root_offset;
|
|
int cell_size;
|
|
|
|
root_offset = fdt_path_offset(initial_boot_params, "/");
|
|
if (root_offset < 0)
|
|
return;
|
|
|
|
addr_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#address-cells", NULL);
|
|
if (addr_prop)
|
|
nr_address_cells = fdt32_to_cpu(*addr_prop);
|
|
|
|
size_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#size-cells", NULL);
|
|
if (size_prop)
|
|
nr_size_cells = fdt32_to_cpu(*size_prop);
|
|
|
|
cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
|
|
|
|
memory = fdt_path_offset(initial_boot_params, "/memory");
|
|
if (memory > 0) {
|
|
val = fdt_getprop(initial_boot_params, memory, "reg", &len);
|
|
if (len > limit*cell_size) {
|
|
len = limit*cell_size;
|
|
pr_debug("Limiting number of entries to %d\n", limit);
|
|
fdt_setprop(initial_boot_params, memory, "reg", val,
|
|
len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* of_fdt_is_compatible - Return true if given node from the given blob has
|
|
* compat in its compatible list
|
|
* @blob: A device tree blob
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*
|
|
* On match, returns a non-zero value with smaller values returned for more
|
|
* specific compatible values.
|
|
*/
|
|
int of_fdt_is_compatible(const void *blob,
|
|
unsigned long node, const char *compat)
|
|
{
|
|
const char *cp;
|
|
int cplen;
|
|
unsigned long l, score = 0;
|
|
|
|
cp = fdt_getprop(blob, node, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
score++;
|
|
if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
|
|
return score;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_fdt_match - Return true if node matches a list of compatible values
|
|
*/
|
|
int of_fdt_match(const void *blob, unsigned long node,
|
|
const char *const *compat)
|
|
{
|
|
unsigned int tmp, score = 0;
|
|
|
|
if (!compat)
|
|
return 0;
|
|
|
|
while (*compat) {
|
|
tmp = of_fdt_is_compatible(blob, node, *compat);
|
|
if (tmp && (score == 0 || (tmp < score)))
|
|
score = tmp;
|
|
compat++;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
static void *unflatten_dt_alloc(void **mem, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
void *res;
|
|
|
|
*mem = PTR_ALIGN(*mem, align);
|
|
res = *mem;
|
|
*mem += size;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* unflatten_dt_node - Alloc and populate a device_node from the flat tree
|
|
* @blob: The parent device tree blob
|
|
* @mem: Memory chunk to use for allocating device nodes and properties
|
|
* @p: pointer to node in flat tree
|
|
* @dad: Parent struct device_node
|
|
* @allnextpp: pointer to ->allnext from last allocated device_node
|
|
* @fpsize: Size of the node path up at the current depth.
|
|
*/
|
|
static void * unflatten_dt_node(void *blob,
|
|
void *mem,
|
|
int *poffset,
|
|
struct device_node *dad,
|
|
struct device_node ***allnextpp,
|
|
unsigned long fpsize)
|
|
{
|
|
const __be32 *p;
|
|
struct device_node *np;
|
|
struct property *pp, **prev_pp = NULL;
|
|
const char *pathp;
|
|
unsigned int l, allocl;
|
|
static int depth = 0;
|
|
int old_depth;
|
|
int offset;
|
|
int has_name = 0;
|
|
int new_format = 0;
|
|
|
|
pathp = fdt_get_name(blob, *poffset, &l);
|
|
if (!pathp)
|
|
return mem;
|
|
|
|
allocl = l++;
|
|
|
|
/* version 0x10 has a more compact unit name here instead of the full
|
|
* path. we accumulate the full path size using "fpsize", we'll rebuild
|
|
* it later. We detect this because the first character of the name is
|
|
* not '/'.
|
|
*/
|
|
if ((*pathp) != '/') {
|
|
new_format = 1;
|
|
if (fpsize == 0) {
|
|
/* root node: special case. fpsize accounts for path
|
|
* plus terminating zero. root node only has '/', so
|
|
* fpsize should be 2, but we want to avoid the first
|
|
* level nodes to have two '/' so we use fpsize 1 here
|
|
*/
|
|
fpsize = 1;
|
|
allocl = 2;
|
|
l = 1;
|
|
pathp = "";
|
|
} else {
|
|
/* account for '/' and path size minus terminal 0
|
|
* already in 'l'
|
|
*/
|
|
fpsize += l;
|
|
allocl = fpsize;
|
|
}
|
|
}
|
|
|
|
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
|
|
__alignof__(struct device_node));
|
|
if (allnextpp) {
|
|
char *fn;
|
|
of_node_init(np);
|
|
np->full_name = fn = ((char *)np) + sizeof(*np);
|
|
if (new_format) {
|
|
/* rebuild full path for new format */
|
|
if (dad && dad->parent) {
|
|
strcpy(fn, dad->full_name);
|
|
#ifdef DEBUG
|
|
if ((strlen(fn) + l + 1) != allocl) {
|
|
pr_debug("%s: p: %d, l: %d, a: %d\n",
|
|
pathp, (int)strlen(fn),
|
|
l, allocl);
|
|
}
|
|
#endif
|
|
fn += strlen(fn);
|
|
}
|
|
*(fn++) = '/';
|
|
}
|
|
memcpy(fn, pathp, l);
|
|
|
|
prev_pp = &np->properties;
|
|
**allnextpp = np;
|
|
*allnextpp = &np->allnext;
|
|
if (dad != NULL) {
|
|
np->parent = dad;
|
|
/* we temporarily use the next field as `last_child'*/
|
|
if (dad->next == NULL)
|
|
dad->child = np;
|
|
else
|
|
dad->next->sibling = np;
|
|
dad->next = np;
|
|
}
|
|
}
|
|
/* process properties */
|
|
for (offset = fdt_first_property_offset(blob, *poffset);
|
|
(offset >= 0);
|
|
(offset = fdt_next_property_offset(blob, offset))) {
|
|
const char *pname;
|
|
u32 sz;
|
|
|
|
if (!(p = fdt_getprop_by_offset(blob, offset, &pname, &sz))) {
|
|
offset = -FDT_ERR_INTERNAL;
|
|
break;
|
|
}
|
|
|
|
if (pname == NULL) {
|
|
pr_info("Can't find property name in list !\n");
|
|
break;
|
|
}
|
|
if (strcmp(pname, "name") == 0)
|
|
has_name = 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
/* We accept flattened tree phandles either in
|
|
* ePAPR-style "phandle" properties, or the
|
|
* legacy "linux,phandle" properties. If both
|
|
* appear and have different values, things
|
|
* will get weird. Don't do that. */
|
|
if ((strcmp(pname, "phandle") == 0) ||
|
|
(strcmp(pname, "linux,phandle") == 0)) {
|
|
if (np->phandle == 0)
|
|
np->phandle = be32_to_cpup(p);
|
|
}
|
|
/* And we process the "ibm,phandle" property
|
|
* used in pSeries dynamic device tree
|
|
* stuff */
|
|
if (strcmp(pname, "ibm,phandle") == 0)
|
|
np->phandle = be32_to_cpup(p);
|
|
pp->name = (char *)pname;
|
|
pp->length = sz;
|
|
pp->value = (__be32 *)p;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
}
|
|
}
|
|
/* with version 0x10 we may not have the name property, recreate
|
|
* it here from the unit name if absent
|
|
*/
|
|
if (!has_name) {
|
|
const char *p1 = pathp, *ps = pathp, *pa = NULL;
|
|
int sz;
|
|
|
|
while (*p1) {
|
|
if ((*p1) == '@')
|
|
pa = p1;
|
|
if ((*p1) == '/')
|
|
ps = p1 + 1;
|
|
p1++;
|
|
}
|
|
if (pa < ps)
|
|
pa = p1;
|
|
sz = (pa - ps) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
pp->name = "name";
|
|
pp->length = sz;
|
|
pp->value = pp + 1;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
memcpy(pp->value, ps, sz - 1);
|
|
((char *)pp->value)[sz - 1] = 0;
|
|
pr_debug("fixed up name for %s -> %s\n", pathp,
|
|
(char *)pp->value);
|
|
}
|
|
}
|
|
if (allnextpp) {
|
|
*prev_pp = NULL;
|
|
np->name = of_get_property(np, "name", NULL);
|
|
np->type = of_get_property(np, "device_type", NULL);
|
|
|
|
if (!np->name)
|
|
np->name = "<NULL>";
|
|
if (!np->type)
|
|
np->type = "<NULL>";
|
|
}
|
|
|
|
old_depth = depth;
|
|
*poffset = fdt_next_node(blob, *poffset, &depth);
|
|
if (depth < 0)
|
|
depth = 0;
|
|
while (*poffset > 0 && depth > old_depth)
|
|
mem = unflatten_dt_node(blob, mem, poffset, np, allnextpp,
|
|
fpsize);
|
|
|
|
if (*poffset < 0 && *poffset != -FDT_ERR_NOTFOUND)
|
|
pr_err("unflatten: error %d processing FDT\n", *poffset);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/**
|
|
* __unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens a device-tree, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
* @blob: The blob to expand
|
|
* @mynodes: The device_node tree created by the call
|
|
* @dt_alloc: An allocator that provides a virtual address to memory
|
|
* for the resulting tree
|
|
*/
|
|
static void __unflatten_device_tree(void *blob,
|
|
struct device_node **mynodes,
|
|
void * (*dt_alloc)(u64 size, u64 align))
|
|
{
|
|
unsigned long size;
|
|
int start;
|
|
void *mem;
|
|
struct device_node **allnextp = mynodes;
|
|
|
|
pr_debug(" -> unflatten_device_tree()\n");
|
|
|
|
if (!blob) {
|
|
pr_debug("No device tree pointer\n");
|
|
return;
|
|
}
|
|
|
|
pr_debug("Unflattening device tree:\n");
|
|
pr_debug("magic: %08x\n", fdt_magic(blob));
|
|
pr_debug("size: %08x\n", fdt_totalsize(blob));
|
|
pr_debug("version: %08x\n", fdt_version(blob));
|
|
|
|
if (fdt_check_header(blob)) {
|
|
pr_err("Invalid device tree blob header\n");
|
|
return;
|
|
}
|
|
|
|
/* First pass, scan for size */
|
|
start = 0;
|
|
size = (unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0);
|
|
size = ALIGN(size, 4);
|
|
|
|
pr_debug(" size is %lx, allocating...\n", size);
|
|
|
|
/* Allocate memory for the expanded device tree */
|
|
mem = dt_alloc(size + 4, __alignof__(struct device_node));
|
|
memset(mem, 0, size);
|
|
|
|
*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
|
|
|
|
pr_debug(" unflattening %p...\n", mem);
|
|
|
|
/* Second pass, do actual unflattening */
|
|
start = 0;
|
|
unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
|
|
if (be32_to_cpup(mem + size) != 0xdeadbeef)
|
|
pr_warning("End of tree marker overwritten: %08x\n",
|
|
be32_to_cpup(mem + size));
|
|
*allnextp = NULL;
|
|
|
|
pr_debug(" <- unflatten_device_tree()\n");
|
|
}
|
|
|
|
static void *kernel_tree_alloc(u64 size, u64 align)
|
|
{
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
/**
|
|
* of_fdt_unflatten_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*/
|
|
void of_fdt_unflatten_tree(unsigned long *blob,
|
|
struct device_node **mynodes)
|
|
{
|
|
__unflatten_device_tree(blob, mynodes, &kernel_tree_alloc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
|
|
|
|
/* Everything below here references initial_boot_params directly. */
|
|
int __initdata dt_root_addr_cells;
|
|
int __initdata dt_root_size_cells;
|
|
|
|
void *initial_boot_params;
|
|
|
|
#ifdef CONFIG_OF_EARLY_FLATTREE
|
|
|
|
/**
|
|
* res_mem_reserve_reg() - reserve all memory described in 'reg' property
|
|
*/
|
|
static int __init __reserved_mem_reserve_reg(unsigned long node,
|
|
const char *uname)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
phys_addr_t base, size;
|
|
int len;
|
|
const __be32 *prop;
|
|
int nomap, first = 1;
|
|
|
|
prop = of_get_flat_dt_prop(node, "reg", &len);
|
|
if (!prop)
|
|
return -ENOENT;
|
|
|
|
if (len && len % t_len != 0) {
|
|
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
while (len >= t_len) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
if (size &&
|
|
early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
|
|
pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
else
|
|
pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
|
|
len -= t_len;
|
|
if (first) {
|
|
fdt_reserved_mem_save_node(node, uname, base, size);
|
|
first = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __reserved_mem_check_root() - check if #size-cells, #address-cells provided
|
|
* in /reserved-memory matches the values supported by the current implementation,
|
|
* also check if ranges property has been provided
|
|
*/
|
|
static int __init __reserved_mem_check_root(unsigned long node)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "ranges", NULL);
|
|
if (!prop)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
|
|
*/
|
|
static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
static int found;
|
|
const char *status;
|
|
int err;
|
|
|
|
if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
|
|
if (__reserved_mem_check_root(node) != 0) {
|
|
pr_err("Reserved memory: unsupported node format, ignoring\n");
|
|
/* break scan */
|
|
return 1;
|
|
}
|
|
found = 1;
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (!found) {
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (found && depth < 2) {
|
|
/* scanning of /reserved-memory has been finished */
|
|
return 1;
|
|
}
|
|
|
|
status = of_get_flat_dt_prop(node, "status", NULL);
|
|
if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
|
|
return 0;
|
|
|
|
err = __reserved_mem_reserve_reg(node, uname);
|
|
if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
|
|
fdt_reserved_mem_save_node(node, uname, 0, 0);
|
|
|
|
/* scan next node */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* early_init_fdt_scan_reserved_mem() - create reserved memory regions
|
|
*
|
|
* This function grabs memory from early allocator for device exclusive use
|
|
* defined in device tree structures. It should be called by arch specific code
|
|
* once the early allocator (i.e. memblock) has been fully activated.
|
|
*/
|
|
void __init early_init_fdt_scan_reserved_mem(void)
|
|
{
|
|
int n;
|
|
u64 base, size;
|
|
|
|
if (!initial_boot_params)
|
|
return;
|
|
|
|
/* Reserve the dtb region */
|
|
early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
|
|
fdt_totalsize(initial_boot_params),
|
|
0);
|
|
|
|
/* Process header /memreserve/ fields */
|
|
for (n = 0; ; n++) {
|
|
fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
|
|
if (!size)
|
|
break;
|
|
early_init_dt_reserve_memory_arch(base, size, 0);
|
|
}
|
|
|
|
of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
|
|
fdt_init_reserved_mem();
|
|
}
|
|
|
|
/**
|
|
* of_scan_flat_dt - scan flattened tree blob and call callback on each.
|
|
* @it: callback function
|
|
* @data: context data pointer
|
|
*
|
|
* This function is used to scan the flattened device-tree, it is
|
|
* used to extract the memory information at boot before we can
|
|
* unflatten the tree
|
|
*/
|
|
int __init of_scan_flat_dt(int (*it)(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
const void *blob = initial_boot_params;
|
|
const char *pathp;
|
|
int offset, rc = 0, depth = -1;
|
|
|
|
for (offset = fdt_next_node(blob, -1, &depth);
|
|
offset >= 0 && depth >= 0 && !rc;
|
|
offset = fdt_next_node(blob, offset, &depth)) {
|
|
|
|
pathp = fdt_get_name(blob, offset, NULL);
|
|
if (*pathp == '/')
|
|
pathp = kbasename(pathp);
|
|
rc = it(offset, pathp, depth, data);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_root - find the root node in the flat blob
|
|
*/
|
|
unsigned long __init of_get_flat_dt_root(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_size - Return the total size of the FDT
|
|
*/
|
|
int __init of_get_flat_dt_size(void)
|
|
{
|
|
return fdt_totalsize(initial_boot_params);
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
|
|
*
|
|
* This function can be used within scan_flattened_dt callback to get
|
|
* access to properties
|
|
*/
|
|
const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
|
|
int *size)
|
|
{
|
|
return fdt_getprop(initial_boot_params, node, name, size);
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_is_compatible - Return true if given node has compat in compatible list
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*/
|
|
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
|
|
{
|
|
return of_fdt_is_compatible(initial_boot_params, node, compat);
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match - Return true if node matches a list of compatible values
|
|
*/
|
|
int __init of_flat_dt_match(unsigned long node, const char *const *compat)
|
|
{
|
|
return of_fdt_match(initial_boot_params, node, compat);
|
|
}
|
|
|
|
struct fdt_scan_status {
|
|
const char *name;
|
|
int namelen;
|
|
int depth;
|
|
int found;
|
|
int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
|
|
void *data;
|
|
};
|
|
|
|
const char * __init of_flat_dt_get_machine_name(void)
|
|
{
|
|
const char *name;
|
|
unsigned long dt_root = of_get_flat_dt_root();
|
|
|
|
name = of_get_flat_dt_prop(dt_root, "model", NULL);
|
|
if (!name)
|
|
name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match_machine - Iterate match tables to find matching machine.
|
|
*
|
|
* @default_match: A machine specific ptr to return in case of no match.
|
|
* @get_next_compat: callback function to return next compatible match table.
|
|
*
|
|
* Iterate through machine match tables to find the best match for the machine
|
|
* compatible string in the FDT.
|
|
*/
|
|
const void * __init of_flat_dt_match_machine(const void *default_match,
|
|
const void * (*get_next_compat)(const char * const**))
|
|
{
|
|
const void *data = NULL;
|
|
const void *best_data = default_match;
|
|
const char *const *compat;
|
|
unsigned long dt_root;
|
|
unsigned int best_score = ~1, score = 0;
|
|
|
|
dt_root = of_get_flat_dt_root();
|
|
while ((data = get_next_compat(&compat))) {
|
|
score = of_flat_dt_match(dt_root, compat);
|
|
if (score > 0 && score < best_score) {
|
|
best_data = data;
|
|
best_score = score;
|
|
}
|
|
}
|
|
if (!best_data) {
|
|
const char *prop;
|
|
int size;
|
|
|
|
pr_err("\n unrecognized device tree list:\n[ ");
|
|
|
|
prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
|
|
if (prop) {
|
|
while (size > 0) {
|
|
printk("'%s' ", prop);
|
|
size -= strlen(prop) + 1;
|
|
prop += strlen(prop) + 1;
|
|
}
|
|
}
|
|
printk("]\n\n");
|
|
return NULL;
|
|
}
|
|
|
|
pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
|
|
|
|
return best_data;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/**
|
|
* early_init_dt_check_for_initrd - Decode initrd location from flat tree
|
|
* @node: reference to node containing initrd location ('chosen')
|
|
*/
|
|
static void __init early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
u64 start, end;
|
|
int len;
|
|
const __be32 *prop;
|
|
|
|
pr_debug("Looking for initrd properties... ");
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
|
|
if (!prop)
|
|
return;
|
|
start = of_read_number(prop, len/4);
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
|
|
if (!prop)
|
|
return;
|
|
end = of_read_number(prop, len/4);
|
|
|
|
initrd_start = (unsigned long)__va(start);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_below_start_ok = 1;
|
|
|
|
pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
|
|
(unsigned long long)start, (unsigned long long)end);
|
|
}
|
|
#else
|
|
static inline void early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
#ifdef CONFIG_SERIAL_EARLYCON
|
|
extern struct of_device_id __earlycon_of_table[];
|
|
|
|
int __init early_init_dt_scan_chosen_serial(void)
|
|
{
|
|
int offset;
|
|
const char *p;
|
|
int l;
|
|
const struct of_device_id *match = __earlycon_of_table;
|
|
const void *fdt = initial_boot_params;
|
|
|
|
offset = fdt_path_offset(fdt, "/chosen");
|
|
if (offset < 0)
|
|
offset = fdt_path_offset(fdt, "/chosen@0");
|
|
if (offset < 0)
|
|
return -ENOENT;
|
|
|
|
p = fdt_getprop(fdt, offset, "stdout-path", &l);
|
|
if (!p)
|
|
p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
|
|
if (!p || !l)
|
|
return -ENOENT;
|
|
|
|
/* Get the node specified by stdout-path */
|
|
offset = fdt_path_offset(fdt, p);
|
|
if (offset < 0)
|
|
return -ENODEV;
|
|
|
|
while (match->compatible) {
|
|
unsigned long addr;
|
|
if (fdt_node_check_compatible(fdt, offset, match->compatible)) {
|
|
match++;
|
|
continue;
|
|
}
|
|
|
|
addr = fdt_translate_address(fdt, offset);
|
|
if (!addr)
|
|
return -ENXIO;
|
|
|
|
of_setup_earlycon(addr, match->data);
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __init setup_of_earlycon(char *buf)
|
|
{
|
|
if (buf)
|
|
return 0;
|
|
|
|
return early_init_dt_scan_chosen_serial();
|
|
}
|
|
early_param("earlycon", setup_of_earlycon);
|
|
#endif
|
|
|
|
/**
|
|
* early_init_dt_scan_root - fetch the top level address and size cells
|
|
*/
|
|
int __init early_init_dt_scan_root(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
if (depth != 0)
|
|
return 0;
|
|
|
|
dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (prop)
|
|
dt_root_size_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (prop)
|
|
dt_root_addr_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
|
|
{
|
|
const __be32 *p = *cellp;
|
|
|
|
*cellp = p + s;
|
|
return of_read_number(p, s);
|
|
}
|
|
|
|
/**
|
|
* early_init_dt_scan_memory - Look for an parse memory nodes
|
|
*/
|
|
int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
const __be32 *reg, *endp;
|
|
int l;
|
|
|
|
/* We are scanning "memory" nodes only */
|
|
if (type == NULL) {
|
|
/*
|
|
* The longtrail doesn't have a device_type on the
|
|
* /memory node, so look for the node called /memory@0.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
|
|
return 0;
|
|
} else if (strcmp(type, "memory") != 0)
|
|
return 0;
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
|
|
if (reg == NULL)
|
|
reg = of_get_flat_dt_prop(node, "reg", &l);
|
|
if (reg == NULL)
|
|
return 0;
|
|
|
|
endp = reg + (l / sizeof(__be32));
|
|
|
|
pr_debug("memory scan node %s, reg size %d, data: %x %x %x %x,\n",
|
|
uname, l, reg[0], reg[1], reg[2], reg[3]);
|
|
|
|
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
|
|
u64 base, size;
|
|
|
|
base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
pr_debug(" - %llx , %llx\n", (unsigned long long)base,
|
|
(unsigned long long)size);
|
|
|
|
early_init_dt_add_memory_arch(base, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
int l;
|
|
const char *p;
|
|
|
|
pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
|
|
|
|
if (depth != 1 || !data ||
|
|
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
|
|
return 0;
|
|
|
|
early_init_dt_check_for_initrd(node);
|
|
|
|
/* Retrieve command line */
|
|
p = of_get_flat_dt_prop(node, "bootargs", &l);
|
|
if (p != NULL && l > 0)
|
|
strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
|
|
|
|
/*
|
|
* CONFIG_CMDLINE is meant to be a default in case nothing else
|
|
* managed to set the command line, unless CONFIG_CMDLINE_FORCE
|
|
* is set in which case we override whatever was found earlier.
|
|
*/
|
|
#ifdef CONFIG_CMDLINE
|
|
#ifndef CONFIG_CMDLINE_FORCE
|
|
if (!((char *)data)[0])
|
|
#endif
|
|
strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#endif /* CONFIG_CMDLINE */
|
|
|
|
pr_debug("Command line is: %s\n", (char*)data);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK
|
|
#define MAX_PHYS_ADDR ((phys_addr_t)~0)
|
|
|
|
void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
|
|
{
|
|
const u64 phys_offset = __pa(PAGE_OFFSET);
|
|
base &= PAGE_MASK;
|
|
size &= PAGE_MASK;
|
|
|
|
if (base > MAX_PHYS_ADDR) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
|
|
if (base + size > MAX_PHYS_ADDR) {
|
|
pr_warning("Ignoring memory range 0x%lx - 0x%llx\n",
|
|
ULONG_MAX, base + size);
|
|
size = MAX_PHYS_ADDR - base;
|
|
}
|
|
|
|
if (base + size < phys_offset) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
if (base < phys_offset) {
|
|
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
|
|
base, phys_offset);
|
|
size -= phys_offset - base;
|
|
base = phys_offset;
|
|
}
|
|
memblock_add(base, size);
|
|
}
|
|
|
|
int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
if (memblock_is_region_reserved(base, size))
|
|
return -EBUSY;
|
|
if (nomap)
|
|
return memblock_remove(base, size);
|
|
return memblock_reserve(base, size);
|
|
}
|
|
|
|
/*
|
|
* called from unflatten_device_tree() to bootstrap devicetree itself
|
|
* Architectures can override this definition if memblock isn't used
|
|
*/
|
|
void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
|
|
{
|
|
return __va(memblock_alloc(size, align));
|
|
}
|
|
#else
|
|
int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
pr_err("Reserved memory not supported, ignoring range 0x%pa - 0x%pa%s\n",
|
|
&base, &size, nomap ? " (nomap)" : "");
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
bool __init early_init_dt_verify(void *params)
|
|
{
|
|
if (!params)
|
|
return false;
|
|
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
|
|
/* check device tree validity */
|
|
if (fdt_check_header(params)) {
|
|
initial_boot_params = NULL;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void __init early_init_dt_scan_nodes(void)
|
|
{
|
|
/* Retrieve various information from the /chosen node */
|
|
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
|
|
|
|
/* Initialize {size,address}-cells info */
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
|
|
/* Setup memory, calling early_init_dt_add_memory_arch */
|
|
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
|
|
}
|
|
|
|
bool __init early_init_dt_scan(void *params)
|
|
{
|
|
bool status;
|
|
|
|
status = early_init_dt_verify(params);
|
|
if (!status)
|
|
return false;
|
|
|
|
early_init_dt_scan_nodes();
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*/
|
|
void __init unflatten_device_tree(void)
|
|
{
|
|
__unflatten_device_tree(initial_boot_params, &of_allnodes,
|
|
early_init_dt_alloc_memory_arch);
|
|
|
|
/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
|
|
of_alias_scan(early_init_dt_alloc_memory_arch);
|
|
}
|
|
|
|
/**
|
|
* unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
|
|
*
|
|
* Copies and unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used. This should only be used when the FDT memory has not been
|
|
* reserved such is the case when the FDT is built-in to the kernel init
|
|
* section. If the FDT memory is reserved already then unflatten_device_tree
|
|
* should be used instead.
|
|
*/
|
|
void __init unflatten_and_copy_device_tree(void)
|
|
{
|
|
int size;
|
|
void *dt;
|
|
|
|
if (!initial_boot_params) {
|
|
pr_warn("No valid device tree found, continuing without\n");
|
|
return;
|
|
}
|
|
|
|
size = fdt_totalsize(initial_boot_params);
|
|
dt = early_init_dt_alloc_memory_arch(size,
|
|
roundup_pow_of_two(FDT_V17_SIZE));
|
|
|
|
if (dt) {
|
|
memcpy(dt, initial_boot_params, size);
|
|
initial_boot_params = dt;
|
|
}
|
|
unflatten_device_tree();
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
|
|
static struct debugfs_blob_wrapper flat_dt_blob;
|
|
|
|
static int __init of_flat_dt_debugfs_export_fdt(void)
|
|
{
|
|
struct dentry *d = debugfs_create_dir("device-tree", NULL);
|
|
|
|
if (!d)
|
|
return -ENOENT;
|
|
|
|
flat_dt_blob.data = initial_boot_params;
|
|
flat_dt_blob.size = fdt_totalsize(initial_boot_params);
|
|
|
|
d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
|
|
d, &flat_dt_blob);
|
|
if (!d)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
module_init(of_flat_dt_debugfs_export_fdt);
|
|
#endif
|
|
|
|
#endif /* CONFIG_OF_EARLY_FLATTREE */
|