2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/edac/cpc925_edac.c
Greg Kroah-Hartman 9b3c6e85c2 Drivers: edac: remove __dev* attributes.
CONFIG_HOTPLUG is going away as an option.  As a result, the __dev*
markings need to be removed.

This change removes the use of __devinit, __devexit_p, and __devexit
from these drivers.

Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.

Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Doug Thompson <dougthompson@xmission.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Gross <mark.gross@intel.com>
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Cc: Mauro Carvalho Chehab <mchehab@redhat.com>
Cc: Tim Small <tim@buttersideup.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-03 15:57:03 -08:00

1098 lines
32 KiB
C

/*
* cpc925_edac.c, EDAC driver for IBM CPC925 Bridge and Memory Controller.
*
* Copyright (c) 2008 Wind River Systems, Inc.
*
* Authors: Cao Qingtao <qingtao.cao@windriver.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/edac.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/gfp.h>
#include "edac_core.h"
#include "edac_module.h"
#define CPC925_EDAC_REVISION " Ver: 1.0.0"
#define CPC925_EDAC_MOD_STR "cpc925_edac"
#define cpc925_printk(level, fmt, arg...) \
edac_printk(level, "CPC925", fmt, ##arg)
#define cpc925_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "CPC925", fmt, ##arg)
/*
* CPC925 registers are of 32 bits with bit0 defined at the
* most significant bit and bit31 at that of least significant.
*/
#define CPC925_BITS_PER_REG 32
#define CPC925_BIT(nr) (1UL << (CPC925_BITS_PER_REG - 1 - nr))
/*
* EDAC device names for the error detections of
* CPU Interface and Hypertransport Link.
*/
#define CPC925_CPU_ERR_DEV "cpu"
#define CPC925_HT_LINK_DEV "htlink"
/* Suppose DDR Refresh cycle is 15.6 microsecond */
#define CPC925_REF_FREQ 0xFA69
#define CPC925_SCRUB_BLOCK_SIZE 64 /* bytes */
#define CPC925_NR_CSROWS 8
/*
* All registers and bits definitions are taken from
* "CPC925 Bridge and Memory Controller User Manual, SA14-2761-02".
*/
/*
* CPU and Memory Controller Registers
*/
/************************************************************
* Processor Interface Exception Mask Register (APIMASK)
************************************************************/
#define REG_APIMASK_OFFSET 0x30070
enum apimask_bits {
APIMASK_DART = CPC925_BIT(0), /* DART Exception */
APIMASK_ADI0 = CPC925_BIT(1), /* Handshake Error on PI0_ADI */
APIMASK_ADI1 = CPC925_BIT(2), /* Handshake Error on PI1_ADI */
APIMASK_STAT = CPC925_BIT(3), /* Status Exception */
APIMASK_DERR = CPC925_BIT(4), /* Data Error Exception */
APIMASK_ADRS0 = CPC925_BIT(5), /* Addressing Exception on PI0 */
APIMASK_ADRS1 = CPC925_BIT(6), /* Addressing Exception on PI1 */
/* BIT(7) Reserved */
APIMASK_ECC_UE_H = CPC925_BIT(8), /* UECC upper */
APIMASK_ECC_CE_H = CPC925_BIT(9), /* CECC upper */
APIMASK_ECC_UE_L = CPC925_BIT(10), /* UECC lower */
APIMASK_ECC_CE_L = CPC925_BIT(11), /* CECC lower */
CPU_MASK_ENABLE = (APIMASK_DART | APIMASK_ADI0 | APIMASK_ADI1 |
APIMASK_STAT | APIMASK_DERR | APIMASK_ADRS0 |
APIMASK_ADRS1),
ECC_MASK_ENABLE = (APIMASK_ECC_UE_H | APIMASK_ECC_CE_H |
APIMASK_ECC_UE_L | APIMASK_ECC_CE_L),
};
#define APIMASK_ADI(n) CPC925_BIT(((n)+1))
/************************************************************
* Processor Interface Exception Register (APIEXCP)
************************************************************/
#define REG_APIEXCP_OFFSET 0x30060
enum apiexcp_bits {
APIEXCP_DART = CPC925_BIT(0), /* DART Exception */
APIEXCP_ADI0 = CPC925_BIT(1), /* Handshake Error on PI0_ADI */
APIEXCP_ADI1 = CPC925_BIT(2), /* Handshake Error on PI1_ADI */
APIEXCP_STAT = CPC925_BIT(3), /* Status Exception */
APIEXCP_DERR = CPC925_BIT(4), /* Data Error Exception */
APIEXCP_ADRS0 = CPC925_BIT(5), /* Addressing Exception on PI0 */
APIEXCP_ADRS1 = CPC925_BIT(6), /* Addressing Exception on PI1 */
/* BIT(7) Reserved */
APIEXCP_ECC_UE_H = CPC925_BIT(8), /* UECC upper */
APIEXCP_ECC_CE_H = CPC925_BIT(9), /* CECC upper */
APIEXCP_ECC_UE_L = CPC925_BIT(10), /* UECC lower */
APIEXCP_ECC_CE_L = CPC925_BIT(11), /* CECC lower */
CPU_EXCP_DETECTED = (APIEXCP_DART | APIEXCP_ADI0 | APIEXCP_ADI1 |
APIEXCP_STAT | APIEXCP_DERR | APIEXCP_ADRS0 |
APIEXCP_ADRS1),
UECC_EXCP_DETECTED = (APIEXCP_ECC_UE_H | APIEXCP_ECC_UE_L),
CECC_EXCP_DETECTED = (APIEXCP_ECC_CE_H | APIEXCP_ECC_CE_L),
ECC_EXCP_DETECTED = (UECC_EXCP_DETECTED | CECC_EXCP_DETECTED),
};
/************************************************************
* Memory Bus Configuration Register (MBCR)
************************************************************/
#define REG_MBCR_OFFSET 0x2190
#define MBCR_64BITCFG_SHIFT 23
#define MBCR_64BITCFG_MASK (1UL << MBCR_64BITCFG_SHIFT)
#define MBCR_64BITBUS_SHIFT 22
#define MBCR_64BITBUS_MASK (1UL << MBCR_64BITBUS_SHIFT)
/************************************************************
* Memory Bank Mode Register (MBMR)
************************************************************/
#define REG_MBMR_OFFSET 0x21C0
#define MBMR_MODE_MAX_VALUE 0xF
#define MBMR_MODE_SHIFT 25
#define MBMR_MODE_MASK (MBMR_MODE_MAX_VALUE << MBMR_MODE_SHIFT)
#define MBMR_BBA_SHIFT 24
#define MBMR_BBA_MASK (1UL << MBMR_BBA_SHIFT)
/************************************************************
* Memory Bank Boundary Address Register (MBBAR)
************************************************************/
#define REG_MBBAR_OFFSET 0x21D0
#define MBBAR_BBA_MAX_VALUE 0xFF
#define MBBAR_BBA_SHIFT 24
#define MBBAR_BBA_MASK (MBBAR_BBA_MAX_VALUE << MBBAR_BBA_SHIFT)
/************************************************************
* Memory Scrub Control Register (MSCR)
************************************************************/
#define REG_MSCR_OFFSET 0x2400
#define MSCR_SCRUB_MOD_MASK 0xC0000000 /* scrub_mod - bit0:1*/
#define MSCR_BACKGR_SCRUB 0x40000000 /* 01 */
#define MSCR_SI_SHIFT 16 /* si - bit8:15*/
#define MSCR_SI_MAX_VALUE 0xFF
#define MSCR_SI_MASK (MSCR_SI_MAX_VALUE << MSCR_SI_SHIFT)
/************************************************************
* Memory Scrub Range Start Register (MSRSR)
************************************************************/
#define REG_MSRSR_OFFSET 0x2410
/************************************************************
* Memory Scrub Range End Register (MSRER)
************************************************************/
#define REG_MSRER_OFFSET 0x2420
/************************************************************
* Memory Scrub Pattern Register (MSPR)
************************************************************/
#define REG_MSPR_OFFSET 0x2430
/************************************************************
* Memory Check Control Register (MCCR)
************************************************************/
#define REG_MCCR_OFFSET 0x2440
enum mccr_bits {
MCCR_ECC_EN = CPC925_BIT(0), /* ECC high and low check */
};
/************************************************************
* Memory Check Range End Register (MCRER)
************************************************************/
#define REG_MCRER_OFFSET 0x2450
/************************************************************
* Memory Error Address Register (MEAR)
************************************************************/
#define REG_MEAR_OFFSET 0x2460
#define MEAR_BCNT_MAX_VALUE 0x3
#define MEAR_BCNT_SHIFT 30
#define MEAR_BCNT_MASK (MEAR_BCNT_MAX_VALUE << MEAR_BCNT_SHIFT)
#define MEAR_RANK_MAX_VALUE 0x7
#define MEAR_RANK_SHIFT 27
#define MEAR_RANK_MASK (MEAR_RANK_MAX_VALUE << MEAR_RANK_SHIFT)
#define MEAR_COL_MAX_VALUE 0x7FF
#define MEAR_COL_SHIFT 16
#define MEAR_COL_MASK (MEAR_COL_MAX_VALUE << MEAR_COL_SHIFT)
#define MEAR_BANK_MAX_VALUE 0x3
#define MEAR_BANK_SHIFT 14
#define MEAR_BANK_MASK (MEAR_BANK_MAX_VALUE << MEAR_BANK_SHIFT)
#define MEAR_ROW_MASK 0x00003FFF
/************************************************************
* Memory Error Syndrome Register (MESR)
************************************************************/
#define REG_MESR_OFFSET 0x2470
#define MESR_ECC_SYN_H_MASK 0xFF00
#define MESR_ECC_SYN_L_MASK 0x00FF
/************************************************************
* Memory Mode Control Register (MMCR)
************************************************************/
#define REG_MMCR_OFFSET 0x2500
enum mmcr_bits {
MMCR_REG_DIMM_MODE = CPC925_BIT(3),
};
/*
* HyperTransport Link Registers
*/
/************************************************************
* Error Handling/Enumeration Scratch Pad Register (ERRCTRL)
************************************************************/
#define REG_ERRCTRL_OFFSET 0x70140
enum errctrl_bits { /* nonfatal interrupts for */
ERRCTRL_SERR_NF = CPC925_BIT(0), /* system error */
ERRCTRL_CRC_NF = CPC925_BIT(1), /* CRC error */
ERRCTRL_RSP_NF = CPC925_BIT(2), /* Response error */
ERRCTRL_EOC_NF = CPC925_BIT(3), /* End-Of-Chain error */
ERRCTRL_OVF_NF = CPC925_BIT(4), /* Overflow error */
ERRCTRL_PROT_NF = CPC925_BIT(5), /* Protocol error */
ERRCTRL_RSP_ERR = CPC925_BIT(6), /* Response error received */
ERRCTRL_CHN_FAL = CPC925_BIT(7), /* Sync flooding detected */
HT_ERRCTRL_ENABLE = (ERRCTRL_SERR_NF | ERRCTRL_CRC_NF |
ERRCTRL_RSP_NF | ERRCTRL_EOC_NF |
ERRCTRL_OVF_NF | ERRCTRL_PROT_NF),
HT_ERRCTRL_DETECTED = (ERRCTRL_RSP_ERR | ERRCTRL_CHN_FAL),
};
/************************************************************
* Link Configuration and Link Control Register (LINKCTRL)
************************************************************/
#define REG_LINKCTRL_OFFSET 0x70110
enum linkctrl_bits {
LINKCTRL_CRC_ERR = (CPC925_BIT(22) | CPC925_BIT(23)),
LINKCTRL_LINK_FAIL = CPC925_BIT(27),
HT_LINKCTRL_DETECTED = (LINKCTRL_CRC_ERR | LINKCTRL_LINK_FAIL),
};
/************************************************************
* Link FreqCap/Error/Freq/Revision ID Register (LINKERR)
************************************************************/
#define REG_LINKERR_OFFSET 0x70120
enum linkerr_bits {
LINKERR_EOC_ERR = CPC925_BIT(17), /* End-Of-Chain error */
LINKERR_OVF_ERR = CPC925_BIT(18), /* Receive Buffer Overflow */
LINKERR_PROT_ERR = CPC925_BIT(19), /* Protocol error */
HT_LINKERR_DETECTED = (LINKERR_EOC_ERR | LINKERR_OVF_ERR |
LINKERR_PROT_ERR),
};
/************************************************************
* Bridge Control Register (BRGCTRL)
************************************************************/
#define REG_BRGCTRL_OFFSET 0x70300
enum brgctrl_bits {
BRGCTRL_DETSERR = CPC925_BIT(0), /* SERR on Secondary Bus */
BRGCTRL_SECBUSRESET = CPC925_BIT(9), /* Secondary Bus Reset */
};
/* Private structure for edac memory controller */
struct cpc925_mc_pdata {
void __iomem *vbase;
unsigned long total_mem;
const char *name;
int edac_idx;
};
/* Private structure for common edac device */
struct cpc925_dev_info {
void __iomem *vbase;
struct platform_device *pdev;
char *ctl_name;
int edac_idx;
struct edac_device_ctl_info *edac_dev;
void (*init)(struct cpc925_dev_info *dev_info);
void (*exit)(struct cpc925_dev_info *dev_info);
void (*check)(struct edac_device_ctl_info *edac_dev);
};
/* Get total memory size from Open Firmware DTB */
static void get_total_mem(struct cpc925_mc_pdata *pdata)
{
struct device_node *np = NULL;
const unsigned int *reg, *reg_end;
int len, sw, aw;
unsigned long start, size;
np = of_find_node_by_type(NULL, "memory");
if (!np)
return;
aw = of_n_addr_cells(np);
sw = of_n_size_cells(np);
reg = (const unsigned int *)of_get_property(np, "reg", &len);
reg_end = reg + len/4;
pdata->total_mem = 0;
do {
start = of_read_number(reg, aw);
reg += aw;
size = of_read_number(reg, sw);
reg += sw;
edac_dbg(1, "start 0x%lx, size 0x%lx\n", start, size);
pdata->total_mem += size;
} while (reg < reg_end);
of_node_put(np);
edac_dbg(0, "total_mem 0x%lx\n", pdata->total_mem);
}
static void cpc925_init_csrows(struct mem_ctl_info *mci)
{
struct cpc925_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
struct dimm_info *dimm;
enum dev_type dtype;
int index, j;
u32 mbmr, mbbar, bba, grain;
unsigned long row_size, nr_pages, last_nr_pages = 0;
get_total_mem(pdata);
for (index = 0; index < mci->nr_csrows; index++) {
mbmr = __raw_readl(pdata->vbase + REG_MBMR_OFFSET +
0x20 * index);
mbbar = __raw_readl(pdata->vbase + REG_MBBAR_OFFSET +
0x20 + index);
bba = (((mbmr & MBMR_BBA_MASK) >> MBMR_BBA_SHIFT) << 8) |
((mbbar & MBBAR_BBA_MASK) >> MBBAR_BBA_SHIFT);
if (bba == 0)
continue; /* not populated */
csrow = mci->csrows[index];
row_size = bba * (1UL << 28); /* 256M */
csrow->first_page = last_nr_pages;
nr_pages = row_size >> PAGE_SHIFT;
csrow->last_page = csrow->first_page + nr_pages - 1;
last_nr_pages = csrow->last_page + 1;
switch (csrow->nr_channels) {
case 1: /* Single channel */
grain = 32; /* four-beat burst of 32 bytes */
break;
case 2: /* Dual channel */
default:
grain = 64; /* four-beat burst of 64 bytes */
break;
}
switch ((mbmr & MBMR_MODE_MASK) >> MBMR_MODE_SHIFT) {
case 6: /* 0110, no way to differentiate X8 VS X16 */
case 5: /* 0101 */
case 8: /* 1000 */
dtype = DEV_X16;
break;
case 7: /* 0111 */
case 9: /* 1001 */
dtype = DEV_X8;
break;
default:
dtype = DEV_UNKNOWN;
break;
}
for (j = 0; j < csrow->nr_channels; j++) {
dimm = csrow->channels[j]->dimm;
dimm->nr_pages = nr_pages / csrow->nr_channels;
dimm->mtype = MEM_RDDR;
dimm->edac_mode = EDAC_SECDED;
dimm->grain = grain;
dimm->dtype = dtype;
}
}
}
/* Enable memory controller ECC detection */
static void cpc925_mc_init(struct mem_ctl_info *mci)
{
struct cpc925_mc_pdata *pdata = mci->pvt_info;
u32 apimask;
u32 mccr;
/* Enable various ECC error exceptions */
apimask = __raw_readl(pdata->vbase + REG_APIMASK_OFFSET);
if ((apimask & ECC_MASK_ENABLE) == 0) {
apimask |= ECC_MASK_ENABLE;
__raw_writel(apimask, pdata->vbase + REG_APIMASK_OFFSET);
}
/* Enable ECC detection */
mccr = __raw_readl(pdata->vbase + REG_MCCR_OFFSET);
if ((mccr & MCCR_ECC_EN) == 0) {
mccr |= MCCR_ECC_EN;
__raw_writel(mccr, pdata->vbase + REG_MCCR_OFFSET);
}
}
/* Disable memory controller ECC detection */
static void cpc925_mc_exit(struct mem_ctl_info *mci)
{
/*
* WARNING:
* We are supposed to clear the ECC error detection bits,
* and it will be no problem to do so. However, once they
* are cleared here if we want to re-install CPC925 EDAC
* module later, setting them up in cpc925_mc_init() will
* trigger machine check exception.
* Also, it's ok to leave ECC error detection bits enabled,
* since they are reset to 1 by default or by boot loader.
*/
return;
}
/*
* Revert DDR column/row/bank addresses into page frame number and
* offset in page.
*
* Suppose memory mode is 0x0111(128-bit mode, identical DIMM pairs),
* physical address(PA) bits to column address(CA) bits mappings are:
* CA 0 1 2 3 4 5 6 7 8 9 10
* PA 59 58 57 56 55 54 53 52 51 50 49
*
* physical address(PA) bits to bank address(BA) bits mappings are:
* BA 0 1
* PA 43 44
*
* physical address(PA) bits to row address(RA) bits mappings are:
* RA 0 1 2 3 4 5 6 7 8 9 10 11 12
* PA 36 35 34 48 47 46 45 40 41 42 39 38 37
*/
static void cpc925_mc_get_pfn(struct mem_ctl_info *mci, u32 mear,
unsigned long *pfn, unsigned long *offset, int *csrow)
{
u32 bcnt, rank, col, bank, row;
u32 c;
unsigned long pa;
int i;
bcnt = (mear & MEAR_BCNT_MASK) >> MEAR_BCNT_SHIFT;
rank = (mear & MEAR_RANK_MASK) >> MEAR_RANK_SHIFT;
col = (mear & MEAR_COL_MASK) >> MEAR_COL_SHIFT;
bank = (mear & MEAR_BANK_MASK) >> MEAR_BANK_SHIFT;
row = mear & MEAR_ROW_MASK;
*csrow = rank;
#ifdef CONFIG_EDAC_DEBUG
if (mci->csrows[rank]->first_page == 0) {
cpc925_mc_printk(mci, KERN_ERR, "ECC occurs in a "
"non-populated csrow, broken hardware?\n");
return;
}
#endif
/* Revert csrow number */
pa = mci->csrows[rank]->first_page << PAGE_SHIFT;
/* Revert column address */
col += bcnt;
for (i = 0; i < 11; i++) {
c = col & 0x1;
col >>= 1;
pa |= c << (14 - i);
}
/* Revert bank address */
pa |= bank << 19;
/* Revert row address, in 4 steps */
for (i = 0; i < 3; i++) {
c = row & 0x1;
row >>= 1;
pa |= c << (26 - i);
}
for (i = 0; i < 3; i++) {
c = row & 0x1;
row >>= 1;
pa |= c << (21 + i);
}
for (i = 0; i < 4; i++) {
c = row & 0x1;
row >>= 1;
pa |= c << (18 - i);
}
for (i = 0; i < 3; i++) {
c = row & 0x1;
row >>= 1;
pa |= c << (29 - i);
}
*offset = pa & (PAGE_SIZE - 1);
*pfn = pa >> PAGE_SHIFT;
edac_dbg(0, "ECC physical address 0x%lx\n", pa);
}
static int cpc925_mc_find_channel(struct mem_ctl_info *mci, u16 syndrome)
{
if ((syndrome & MESR_ECC_SYN_H_MASK) == 0)
return 0;
if ((syndrome & MESR_ECC_SYN_L_MASK) == 0)
return 1;
cpc925_mc_printk(mci, KERN_INFO, "Unexpected syndrome value: 0x%x\n",
syndrome);
return 1;
}
/* Check memory controller registers for ECC errors */
static void cpc925_mc_check(struct mem_ctl_info *mci)
{
struct cpc925_mc_pdata *pdata = mci->pvt_info;
u32 apiexcp;
u32 mear;
u32 mesr;
u16 syndrome;
unsigned long pfn = 0, offset = 0;
int csrow = 0, channel = 0;
/* APIEXCP is cleared when read */
apiexcp = __raw_readl(pdata->vbase + REG_APIEXCP_OFFSET);
if ((apiexcp & ECC_EXCP_DETECTED) == 0)
return;
mesr = __raw_readl(pdata->vbase + REG_MESR_OFFSET);
syndrome = mesr | (MESR_ECC_SYN_H_MASK | MESR_ECC_SYN_L_MASK);
mear = __raw_readl(pdata->vbase + REG_MEAR_OFFSET);
/* Revert column/row addresses into page frame number, etc */
cpc925_mc_get_pfn(mci, mear, &pfn, &offset, &csrow);
if (apiexcp & CECC_EXCP_DETECTED) {
cpc925_mc_printk(mci, KERN_INFO, "DRAM CECC Fault\n");
channel = cpc925_mc_find_channel(mci, syndrome);
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, offset, syndrome,
csrow, channel, -1,
mci->ctl_name, "");
}
if (apiexcp & UECC_EXCP_DETECTED) {
cpc925_mc_printk(mci, KERN_INFO, "DRAM UECC Fault\n");
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, offset, 0,
csrow, -1, -1,
mci->ctl_name, "");
}
cpc925_mc_printk(mci, KERN_INFO, "Dump registers:\n");
cpc925_mc_printk(mci, KERN_INFO, "APIMASK 0x%08x\n",
__raw_readl(pdata->vbase + REG_APIMASK_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "APIEXCP 0x%08x\n",
apiexcp);
cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Ctrl 0x%08x\n",
__raw_readl(pdata->vbase + REG_MSCR_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Rge Start 0x%08x\n",
__raw_readl(pdata->vbase + REG_MSRSR_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Rge End 0x%08x\n",
__raw_readl(pdata->vbase + REG_MSRER_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Pattern 0x%08x\n",
__raw_readl(pdata->vbase + REG_MSPR_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Chk Ctrl 0x%08x\n",
__raw_readl(pdata->vbase + REG_MCCR_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Chk Rge End 0x%08x\n",
__raw_readl(pdata->vbase + REG_MCRER_OFFSET));
cpc925_mc_printk(mci, KERN_INFO, "Mem Err Address 0x%08x\n",
mesr);
cpc925_mc_printk(mci, KERN_INFO, "Mem Err Syndrome 0x%08x\n",
syndrome);
}
/******************** CPU err device********************************/
static u32 cpc925_cpu_mask_disabled(void)
{
struct device_node *cpus;
struct device_node *cpunode = NULL;
static u32 mask = 0;
/* use cached value if available */
if (mask != 0)
return mask;
mask = APIMASK_ADI0 | APIMASK_ADI1;
cpus = of_find_node_by_path("/cpus");
if (cpus == NULL) {
cpc925_printk(KERN_DEBUG, "No /cpus node !\n");
return 0;
}
while ((cpunode = of_get_next_child(cpus, cpunode)) != NULL) {
const u32 *reg = of_get_property(cpunode, "reg", NULL);
if (strcmp(cpunode->type, "cpu")) {
cpc925_printk(KERN_ERR, "Not a cpu node in /cpus: %s\n", cpunode->name);
continue;
}
if (reg == NULL || *reg > 2) {
cpc925_printk(KERN_ERR, "Bad reg value at %s\n", cpunode->full_name);
continue;
}
mask &= ~APIMASK_ADI(*reg);
}
if (mask != (APIMASK_ADI0 | APIMASK_ADI1)) {
/* We assume that each CPU sits on it's own PI and that
* for present CPUs the reg property equals to the PI
* interface id */
cpc925_printk(KERN_WARNING,
"Assuming PI id is equal to CPU MPIC id!\n");
}
of_node_put(cpunode);
of_node_put(cpus);
return mask;
}
/* Enable CPU Errors detection */
static void cpc925_cpu_init(struct cpc925_dev_info *dev_info)
{
u32 apimask;
u32 cpumask;
apimask = __raw_readl(dev_info->vbase + REG_APIMASK_OFFSET);
cpumask = cpc925_cpu_mask_disabled();
if (apimask & cpumask) {
cpc925_printk(KERN_WARNING, "CPU(s) not present, "
"but enabled in APIMASK, disabling\n");
apimask &= ~cpumask;
}
if ((apimask & CPU_MASK_ENABLE) == 0)
apimask |= CPU_MASK_ENABLE;
__raw_writel(apimask, dev_info->vbase + REG_APIMASK_OFFSET);
}
/* Disable CPU Errors detection */
static void cpc925_cpu_exit(struct cpc925_dev_info *dev_info)
{
/*
* WARNING:
* We are supposed to clear the CPU error detection bits,
* and it will be no problem to do so. However, once they
* are cleared here if we want to re-install CPC925 EDAC
* module later, setting them up in cpc925_cpu_init() will
* trigger machine check exception.
* Also, it's ok to leave CPU error detection bits enabled,
* since they are reset to 1 by default.
*/
return;
}
/* Check for CPU Errors */
static void cpc925_cpu_check(struct edac_device_ctl_info *edac_dev)
{
struct cpc925_dev_info *dev_info = edac_dev->pvt_info;
u32 apiexcp;
u32 apimask;
/* APIEXCP is cleared when read */
apiexcp = __raw_readl(dev_info->vbase + REG_APIEXCP_OFFSET);
if ((apiexcp & CPU_EXCP_DETECTED) == 0)
return;
if ((apiexcp & ~cpc925_cpu_mask_disabled()) == 0)
return;
apimask = __raw_readl(dev_info->vbase + REG_APIMASK_OFFSET);
cpc925_printk(KERN_INFO, "Processor Interface Fault\n"
"Processor Interface register dump:\n");
cpc925_printk(KERN_INFO, "APIMASK 0x%08x\n", apimask);
cpc925_printk(KERN_INFO, "APIEXCP 0x%08x\n", apiexcp);
edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name);
}
/******************** HT Link err device****************************/
/* Enable HyperTransport Link Error detection */
static void cpc925_htlink_init(struct cpc925_dev_info *dev_info)
{
u32 ht_errctrl;
ht_errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET);
if ((ht_errctrl & HT_ERRCTRL_ENABLE) == 0) {
ht_errctrl |= HT_ERRCTRL_ENABLE;
__raw_writel(ht_errctrl, dev_info->vbase + REG_ERRCTRL_OFFSET);
}
}
/* Disable HyperTransport Link Error detection */
static void cpc925_htlink_exit(struct cpc925_dev_info *dev_info)
{
u32 ht_errctrl;
ht_errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET);
ht_errctrl &= ~HT_ERRCTRL_ENABLE;
__raw_writel(ht_errctrl, dev_info->vbase + REG_ERRCTRL_OFFSET);
}
/* Check for HyperTransport Link errors */
static void cpc925_htlink_check(struct edac_device_ctl_info *edac_dev)
{
struct cpc925_dev_info *dev_info = edac_dev->pvt_info;
u32 brgctrl = __raw_readl(dev_info->vbase + REG_BRGCTRL_OFFSET);
u32 linkctrl = __raw_readl(dev_info->vbase + REG_LINKCTRL_OFFSET);
u32 errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET);
u32 linkerr = __raw_readl(dev_info->vbase + REG_LINKERR_OFFSET);
if (!((brgctrl & BRGCTRL_DETSERR) ||
(linkctrl & HT_LINKCTRL_DETECTED) ||
(errctrl & HT_ERRCTRL_DETECTED) ||
(linkerr & HT_LINKERR_DETECTED)))
return;
cpc925_printk(KERN_INFO, "HT Link Fault\n"
"HT register dump:\n");
cpc925_printk(KERN_INFO, "Bridge Ctrl 0x%08x\n",
brgctrl);
cpc925_printk(KERN_INFO, "Link Config Ctrl 0x%08x\n",
linkctrl);
cpc925_printk(KERN_INFO, "Error Enum and Ctrl 0x%08x\n",
errctrl);
cpc925_printk(KERN_INFO, "Link Error 0x%08x\n",
linkerr);
/* Clear by write 1 */
if (brgctrl & BRGCTRL_DETSERR)
__raw_writel(BRGCTRL_DETSERR,
dev_info->vbase + REG_BRGCTRL_OFFSET);
if (linkctrl & HT_LINKCTRL_DETECTED)
__raw_writel(HT_LINKCTRL_DETECTED,
dev_info->vbase + REG_LINKCTRL_OFFSET);
/* Initiate Secondary Bus Reset to clear the chain failure */
if (errctrl & ERRCTRL_CHN_FAL)
__raw_writel(BRGCTRL_SECBUSRESET,
dev_info->vbase + REG_BRGCTRL_OFFSET);
if (errctrl & ERRCTRL_RSP_ERR)
__raw_writel(ERRCTRL_RSP_ERR,
dev_info->vbase + REG_ERRCTRL_OFFSET);
if (linkerr & HT_LINKERR_DETECTED)
__raw_writel(HT_LINKERR_DETECTED,
dev_info->vbase + REG_LINKERR_OFFSET);
edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name);
}
static struct cpc925_dev_info cpc925_devs[] = {
{
.ctl_name = CPC925_CPU_ERR_DEV,
.init = cpc925_cpu_init,
.exit = cpc925_cpu_exit,
.check = cpc925_cpu_check,
},
{
.ctl_name = CPC925_HT_LINK_DEV,
.init = cpc925_htlink_init,
.exit = cpc925_htlink_exit,
.check = cpc925_htlink_check,
},
{0}, /* Terminated by NULL */
};
/*
* Add CPU Err detection and HyperTransport Link Err detection
* as common "edac_device", they have no corresponding device
* nodes in the Open Firmware DTB and we have to add platform
* devices for them. Also, they will share the MMIO with that
* of memory controller.
*/
static void cpc925_add_edac_devices(void __iomem *vbase)
{
struct cpc925_dev_info *dev_info;
if (!vbase) {
cpc925_printk(KERN_ERR, "MMIO not established yet\n");
return;
}
for (dev_info = &cpc925_devs[0]; dev_info->init; dev_info++) {
dev_info->vbase = vbase;
dev_info->pdev = platform_device_register_simple(
dev_info->ctl_name, 0, NULL, 0);
if (IS_ERR(dev_info->pdev)) {
cpc925_printk(KERN_ERR,
"Can't register platform device for %s\n",
dev_info->ctl_name);
continue;
}
/*
* Don't have to allocate private structure but
* make use of cpc925_devs[] instead.
*/
dev_info->edac_idx = edac_device_alloc_index();
dev_info->edac_dev =
edac_device_alloc_ctl_info(0, dev_info->ctl_name,
1, NULL, 0, 0, NULL, 0, dev_info->edac_idx);
if (!dev_info->edac_dev) {
cpc925_printk(KERN_ERR, "No memory for edac device\n");
goto err1;
}
dev_info->edac_dev->pvt_info = dev_info;
dev_info->edac_dev->dev = &dev_info->pdev->dev;
dev_info->edac_dev->ctl_name = dev_info->ctl_name;
dev_info->edac_dev->mod_name = CPC925_EDAC_MOD_STR;
dev_info->edac_dev->dev_name = dev_name(&dev_info->pdev->dev);
if (edac_op_state == EDAC_OPSTATE_POLL)
dev_info->edac_dev->edac_check = dev_info->check;
if (dev_info->init)
dev_info->init(dev_info);
if (edac_device_add_device(dev_info->edac_dev) > 0) {
cpc925_printk(KERN_ERR,
"Unable to add edac device for %s\n",
dev_info->ctl_name);
goto err2;
}
edac_dbg(0, "Successfully added edac device for %s\n",
dev_info->ctl_name);
continue;
err2:
if (dev_info->exit)
dev_info->exit(dev_info);
edac_device_free_ctl_info(dev_info->edac_dev);
err1:
platform_device_unregister(dev_info->pdev);
}
}
/*
* Delete the common "edac_device" for CPU Err Detection
* and HyperTransport Link Err Detection
*/
static void cpc925_del_edac_devices(void)
{
struct cpc925_dev_info *dev_info;
for (dev_info = &cpc925_devs[0]; dev_info->init; dev_info++) {
if (dev_info->edac_dev) {
edac_device_del_device(dev_info->edac_dev->dev);
edac_device_free_ctl_info(dev_info->edac_dev);
platform_device_unregister(dev_info->pdev);
}
if (dev_info->exit)
dev_info->exit(dev_info);
edac_dbg(0, "Successfully deleted edac device for %s\n",
dev_info->ctl_name);
}
}
/* Convert current back-ground scrub rate into byte/sec bandwidth */
static int cpc925_get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
struct cpc925_mc_pdata *pdata = mci->pvt_info;
int bw;
u32 mscr;
u8 si;
mscr = __raw_readl(pdata->vbase + REG_MSCR_OFFSET);
si = (mscr & MSCR_SI_MASK) >> MSCR_SI_SHIFT;
edac_dbg(0, "Mem Scrub Ctrl Register 0x%x\n", mscr);
if (((mscr & MSCR_SCRUB_MOD_MASK) != MSCR_BACKGR_SCRUB) ||
(si == 0)) {
cpc925_mc_printk(mci, KERN_INFO, "Scrub mode not enabled\n");
bw = 0;
} else
bw = CPC925_SCRUB_BLOCK_SIZE * 0xFA67 / si;
return bw;
}
/* Return 0 for single channel; 1 for dual channel */
static int cpc925_mc_get_channels(void __iomem *vbase)
{
int dual = 0;
u32 mbcr;
mbcr = __raw_readl(vbase + REG_MBCR_OFFSET);
/*
* Dual channel only when 128-bit wide physical bus
* and 128-bit configuration.
*/
if (((mbcr & MBCR_64BITCFG_MASK) == 0) &&
((mbcr & MBCR_64BITBUS_MASK) == 0))
dual = 1;
edac_dbg(0, "%s channel\n", (dual > 0) ? "Dual" : "Single");
return dual;
}
static int cpc925_probe(struct platform_device *pdev)
{
static int edac_mc_idx;
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
void __iomem *vbase;
struct cpc925_mc_pdata *pdata;
struct resource *r;
int res = 0, nr_channels;
edac_dbg(0, "%s platform device found!\n", pdev->name);
if (!devres_open_group(&pdev->dev, cpc925_probe, GFP_KERNEL)) {
res = -ENOMEM;
goto out;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
cpc925_printk(KERN_ERR, "Unable to get resource\n");
res = -ENOENT;
goto err1;
}
if (!devm_request_mem_region(&pdev->dev,
r->start,
resource_size(r),
pdev->name)) {
cpc925_printk(KERN_ERR, "Unable to request mem region\n");
res = -EBUSY;
goto err1;
}
vbase = devm_ioremap(&pdev->dev, r->start, resource_size(r));
if (!vbase) {
cpc925_printk(KERN_ERR, "Unable to ioremap device\n");
res = -ENOMEM;
goto err2;
}
nr_channels = cpc925_mc_get_channels(vbase) + 1;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = CPC925_NR_CSROWS;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = nr_channels;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
sizeof(struct cpc925_mc_pdata));
if (!mci) {
cpc925_printk(KERN_ERR, "No memory for mem_ctl_info\n");
res = -ENOMEM;
goto err2;
}
pdata = mci->pvt_info;
pdata->vbase = vbase;
pdata->edac_idx = edac_mc_idx++;
pdata->name = pdev->name;
mci->pdev = &pdev->dev;
platform_set_drvdata(pdev, mci);
mci->dev_name = dev_name(&pdev->dev);
mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_DDR;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = CPC925_EDAC_MOD_STR;
mci->mod_ver = CPC925_EDAC_REVISION;
mci->ctl_name = pdev->name;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = cpc925_mc_check;
mci->ctl_page_to_phys = NULL;
mci->scrub_mode = SCRUB_SW_SRC;
mci->set_sdram_scrub_rate = NULL;
mci->get_sdram_scrub_rate = cpc925_get_sdram_scrub_rate;
cpc925_init_csrows(mci);
/* Setup memory controller registers */
cpc925_mc_init(mci);
if (edac_mc_add_mc(mci) > 0) {
cpc925_mc_printk(mci, KERN_ERR, "Failed edac_mc_add_mc()\n");
goto err3;
}
cpc925_add_edac_devices(vbase);
/* get this far and it's successful */
edac_dbg(0, "success\n");
res = 0;
goto out;
err3:
cpc925_mc_exit(mci);
edac_mc_free(mci);
err2:
devm_release_mem_region(&pdev->dev, r->start, resource_size(r));
err1:
devres_release_group(&pdev->dev, cpc925_probe);
out:
return res;
}
static int cpc925_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
/*
* Delete common edac devices before edac mc, because
* the former share the MMIO of the latter.
*/
cpc925_del_edac_devices();
cpc925_mc_exit(mci);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
return 0;
}
static struct platform_driver cpc925_edac_driver = {
.probe = cpc925_probe,
.remove = cpc925_remove,
.driver = {
.name = "cpc925_edac",
}
};
static int __init cpc925_edac_init(void)
{
int ret = 0;
printk(KERN_INFO "IBM CPC925 EDAC driver " CPC925_EDAC_REVISION "\n");
printk(KERN_INFO "\t(c) 2008 Wind River Systems, Inc\n");
/* Only support POLL mode so far */
edac_op_state = EDAC_OPSTATE_POLL;
ret = platform_driver_register(&cpc925_edac_driver);
if (ret) {
printk(KERN_WARNING "Failed to register %s\n",
CPC925_EDAC_MOD_STR);
}
return ret;
}
static void __exit cpc925_edac_exit(void)
{
platform_driver_unregister(&cpc925_edac_driver);
}
module_init(cpc925_edac_init);
module_exit(cpc925_edac_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cao Qingtao <qingtao.cao@windriver.com>");
MODULE_DESCRIPTION("IBM CPC925 Bridge and MC EDAC kernel module");