2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/arch/powerpc/perf/core-book3s.c
Michael Ellerman 9de5cb0f6d powerpc/perf: Add per-event excludes on Power8
Power8 has a new register (MMCR2), which contains individual freeze bits
for each counter. This is an improvement on previous chips as it means
we can have multiple events on the PMU at the same time with different
exclude_{user,kernel,hv} settings. Previously we had to ensure all
events on the PMU had the same exclude settings.

The core of the patch is fairly simple. We use the 207S feature flag to
indicate that the PMU backend supports per-event excludes, if it's set
we skip the generic logic that enforces the equality of excludes between
events. We also use that flag to skip setting the freeze bits in MMCR0,
the PMU backend is expected to have handled setting them in MMCR2.

The complication arises with EBB. The FCxP bits in MMCR2 are accessible
R/W to a task using EBB. Which means a task using EBB will be able to
see that we are using MMCR2 for freezing, whereas the old logic which
used MMCR0 is not user visible.

The task can not see or affect exclude_kernel & exclude_hv, so we only
need to consider exclude_user.

The table below summarises the behaviour both before and after this
commit is applied:

 exclude_user           true  false
 ------------------------------------
        | User visible |  N    N
 Before | Can freeze   |  Y    Y
        | Can unfreeze |  N    Y
 ------------------------------------
        | User visible |  Y    Y
  After | Can freeze   |  Y    Y
        | Can unfreeze |  Y/N  Y
 ------------------------------------

So firstly I assert that the simple visibility of the exclude_user
setting in MMCR2 is a non-issue. The event belongs to the task, and
was most likely created by the task. So the exclude_user setting is not
privileged information in any way.

Secondly, the behaviour in the exclude_user = false case is unchanged.
This is important as it is the case that is actually useful, ie. the
event is created with no exclude setting and the task uses MMCR2 to
implement exclusion manually.

For exclude_user = true there is no meaningful change to freezing the
event. Previously the task could use MMCR2 to freeze the event, though
it was already frozen with MMCR0. With the new code the task can use
MMCR2 to freeze the event, though it was already frozen with MMCR2.

The only real change is when exclude_user = true and the task tries to
use MMCR2 to unfreeze the event. Previously this had no effect, because
the event was already frozen in MMCR0. With the new code the task can
unfreeze the event in MMCR2, but at some indeterminate time in the
future the kernel will overwrite its setting and refreeze the event.

Therefore my final assertion is that any task using exclude_user = true
and also fiddling with MMCR2 was deeply confused before this change, and
remains so after it.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-07-28 14:30:58 +10:00

2172 lines
54 KiB
C

/*
* Performance event support - powerpc architecture code
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
#include <asm/reg.h>
#include <asm/pmc.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/ptrace.h>
#include <asm/code-patching.h>
#define BHRB_MAX_ENTRIES 32
#define BHRB_TARGET 0x0000000000000002
#define BHRB_PREDICTION 0x0000000000000001
#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
struct cpu_hw_events {
int n_events;
int n_percpu;
int disabled;
int n_added;
int n_limited;
u8 pmcs_enabled;
struct perf_event *event[MAX_HWEVENTS];
u64 events[MAX_HWEVENTS];
unsigned int flags[MAX_HWEVENTS];
/*
* The order of the MMCR array is:
* - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
* - 32-bit, MMCR0, MMCR1, MMCR2
*/
unsigned long mmcr[4];
struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned int group_flag;
int n_txn_start;
/* BHRB bits */
u64 bhrb_filter; /* BHRB HW branch filter */
int bhrb_users;
void *bhrb_context;
struct perf_branch_stack bhrb_stack;
struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
struct power_pmu *ppmu;
/*
* Normally, to ignore kernel events we set the FCS (freeze counters
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
* hypervisor bit set in the MSR, or if we are running on a processor
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
* then we need to use the FCHV bit to ignore kernel events.
*/
static unsigned int freeze_events_kernel = MMCR0_FCS;
/*
* 32-bit doesn't have MMCRA but does have an MMCR2,
* and a few other names are different.
*/
#ifdef CONFIG_PPC32
#define MMCR0_FCHV 0
#define MMCR0_PMCjCE MMCR0_PMCnCE
#define MMCR0_FC56 0
#define MMCR0_PMAO 0
#define MMCR0_EBE 0
#define MMCR0_BHRBA 0
#define MMCR0_PMCC 0
#define MMCR0_PMCC_U6 0
#define SPRN_MMCRA SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE 0
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
return 0;
}
static inline void perf_read_regs(struct pt_regs *regs)
{
regs->result = 0;
}
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
return 0;
}
static inline int siar_valid(struct pt_regs *regs)
{
return 1;
}
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
{
return cpuhw->mmcr[0];
}
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
static void pmao_restore_workaround(bool ebb) { }
#endif /* CONFIG_PPC32 */
static bool regs_use_siar(struct pt_regs *regs)
{
return !!regs->result;
}
/*
* Things that are specific to 64-bit implementations.
*/
#ifdef CONFIG_PPC64
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
unsigned long mmcra = regs->dsisr;
if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
if (slot > 1)
return 4 * (slot - 1);
}
return 0;
}
/*
* The user wants a data address recorded.
* If we're not doing instruction sampling, give them the SDAR
* (sampled data address). If we are doing instruction sampling, then
* only give them the SDAR if it corresponds to the instruction
* pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
* [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
*/
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
unsigned long mmcra = regs->dsisr;
bool sdar_valid;
if (ppmu->flags & PPMU_HAS_SIER)
sdar_valid = regs->dar & SIER_SDAR_VALID;
else {
unsigned long sdsync;
if (ppmu->flags & PPMU_SIAR_VALID)
sdsync = POWER7P_MMCRA_SDAR_VALID;
else if (ppmu->flags & PPMU_ALT_SIPR)
sdsync = POWER6_MMCRA_SDSYNC;
else
sdsync = MMCRA_SDSYNC;
sdar_valid = mmcra & sdsync;
}
if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
*addrp = mfspr(SPRN_SDAR);
}
static bool regs_sihv(struct pt_regs *regs)
{
unsigned long sihv = MMCRA_SIHV;
if (ppmu->flags & PPMU_HAS_SIER)
return !!(regs->dar & SIER_SIHV);
if (ppmu->flags & PPMU_ALT_SIPR)
sihv = POWER6_MMCRA_SIHV;
return !!(regs->dsisr & sihv);
}
static bool regs_sipr(struct pt_regs *regs)
{
unsigned long sipr = MMCRA_SIPR;
if (ppmu->flags & PPMU_HAS_SIER)
return !!(regs->dar & SIER_SIPR);
if (ppmu->flags & PPMU_ALT_SIPR)
sipr = POWER6_MMCRA_SIPR;
return !!(regs->dsisr & sipr);
}
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
if (regs->msr & MSR_PR)
return PERF_RECORD_MISC_USER;
if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
return PERF_RECORD_MISC_HYPERVISOR;
return PERF_RECORD_MISC_KERNEL;
}
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
bool use_siar = regs_use_siar(regs);
if (!use_siar)
return perf_flags_from_msr(regs);
/*
* If we don't have flags in MMCRA, rather than using
* the MSR, we intuit the flags from the address in
* SIAR which should give slightly more reliable
* results
*/
if (ppmu->flags & PPMU_NO_SIPR) {
unsigned long siar = mfspr(SPRN_SIAR);
if (siar >= PAGE_OFFSET)
return PERF_RECORD_MISC_KERNEL;
return PERF_RECORD_MISC_USER;
}
/* PR has priority over HV, so order below is important */
if (regs_sipr(regs))
return PERF_RECORD_MISC_USER;
if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
return PERF_RECORD_MISC_HYPERVISOR;
return PERF_RECORD_MISC_KERNEL;
}
/*
* Overload regs->dsisr to store MMCRA so we only need to read it once
* on each interrupt.
* Overload regs->dar to store SIER if we have it.
* Overload regs->result to specify whether we should use the MSR (result
* is zero) or the SIAR (result is non zero).
*/
static inline void perf_read_regs(struct pt_regs *regs)
{
unsigned long mmcra = mfspr(SPRN_MMCRA);
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
int use_siar;
regs->dsisr = mmcra;
if (ppmu->flags & PPMU_HAS_SIER)
regs->dar = mfspr(SPRN_SIER);
/*
* If this isn't a PMU exception (eg a software event) the SIAR is
* not valid. Use pt_regs.
*
* If it is a marked event use the SIAR.
*
* If the PMU doesn't update the SIAR for non marked events use
* pt_regs.
*
* If the PMU has HV/PR flags then check to see if they
* place the exception in userspace. If so, use pt_regs. In
* continuous sampling mode the SIAR and the PMU exception are
* not synchronised, so they may be many instructions apart.
* This can result in confusing backtraces. We still want
* hypervisor samples as well as samples in the kernel with
* interrupts off hence the userspace check.
*/
if (TRAP(regs) != 0xf00)
use_siar = 0;
else if (marked)
use_siar = 1;
else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
use_siar = 0;
else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
use_siar = 0;
else
use_siar = 1;
regs->result = use_siar;
}
/*
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
* it as an NMI.
*/
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
return !regs->softe;
}
/*
* On processors like P7+ that have the SIAR-Valid bit, marked instructions
* must be sampled only if the SIAR-valid bit is set.
*
* For unmarked instructions and for processors that don't have the SIAR-Valid
* bit, assume that SIAR is valid.
*/
static inline int siar_valid(struct pt_regs *regs)
{
unsigned long mmcra = regs->dsisr;
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
if (marked) {
if (ppmu->flags & PPMU_HAS_SIER)
return regs->dar & SIER_SIAR_VALID;
if (ppmu->flags & PPMU_SIAR_VALID)
return mmcra & POWER7P_MMCRA_SIAR_VALID;
}
return 1;
}
/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
asm volatile(PPC_CLRBHRB);
}
static void power_pmu_bhrb_enable(struct perf_event *event)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
if (!ppmu->bhrb_nr)
return;
/* Clear BHRB if we changed task context to avoid data leaks */
if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
power_pmu_bhrb_reset();
cpuhw->bhrb_context = event->ctx;
}
cpuhw->bhrb_users++;
}
static void power_pmu_bhrb_disable(struct perf_event *event)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
if (!ppmu->bhrb_nr)
return;
cpuhw->bhrb_users--;
WARN_ON_ONCE(cpuhw->bhrb_users < 0);
if (!cpuhw->disabled && !cpuhw->bhrb_users) {
/* BHRB cannot be turned off when other
* events are active on the PMU.
*/
/* avoid stale pointer */
cpuhw->bhrb_context = NULL;
}
}
/* Called from ctxsw to prevent one process's branch entries to
* mingle with the other process's entries during context switch.
*/
void power_pmu_flush_branch_stack(void)
{
if (ppmu->bhrb_nr)
power_pmu_bhrb_reset();
}
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
unsigned int instr;
int ret;
__u64 target;
if (is_kernel_addr(addr))
return branch_target((unsigned int *)addr);
/* Userspace: need copy instruction here then translate it */
pagefault_disable();
ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
if (ret) {
pagefault_enable();
return 0;
}
pagefault_enable();
target = branch_target(&instr);
if ((!target) || (instr & BRANCH_ABSOLUTE))
return target;
/* Translate relative branch target from kernel to user address */
return target - (unsigned long)&instr + addr;
}
/* Processing BHRB entries */
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
{
u64 val;
u64 addr;
int r_index, u_index, pred;
r_index = 0;
u_index = 0;
while (r_index < ppmu->bhrb_nr) {
/* Assembly read function */
val = read_bhrb(r_index++);
if (!val)
/* Terminal marker: End of valid BHRB entries */
break;
else {
addr = val & BHRB_EA;
pred = val & BHRB_PREDICTION;
if (!addr)
/* invalid entry */
continue;
/* Branches are read most recent first (ie. mfbhrb 0 is
* the most recent branch).
* There are two types of valid entries:
* 1) a target entry which is the to address of a
* computed goto like a blr,bctr,btar. The next
* entry read from the bhrb will be branch
* corresponding to this target (ie. the actual
* blr/bctr/btar instruction).
* 2) a from address which is an actual branch. If a
* target entry proceeds this, then this is the
* matching branch for that target. If this is not
* following a target entry, then this is a branch
* where the target is given as an immediate field
* in the instruction (ie. an i or b form branch).
* In this case we need to read the instruction from
* memory to determine the target/to address.
*/
if (val & BHRB_TARGET) {
/* Target branches use two entries
* (ie. computed gotos/XL form)
*/
cpuhw->bhrb_entries[u_index].to = addr;
cpuhw->bhrb_entries[u_index].mispred = pred;
cpuhw->bhrb_entries[u_index].predicted = ~pred;
/* Get from address in next entry */
val = read_bhrb(r_index++);
addr = val & BHRB_EA;
if (val & BHRB_TARGET) {
/* Shouldn't have two targets in a
row.. Reset index and try again */
r_index--;
addr = 0;
}
cpuhw->bhrb_entries[u_index].from = addr;
} else {
/* Branches to immediate field
(ie I or B form) */
cpuhw->bhrb_entries[u_index].from = addr;
cpuhw->bhrb_entries[u_index].to =
power_pmu_bhrb_to(addr);
cpuhw->bhrb_entries[u_index].mispred = pred;
cpuhw->bhrb_entries[u_index].predicted = ~pred;
}
u_index++;
}
}
cpuhw->bhrb_stack.nr = u_index;
return;
}
static bool is_ebb_event(struct perf_event *event)
{
/*
* This could be a per-PMU callback, but we'd rather avoid the cost. We
* check that the PMU supports EBB, meaning those that don't can still
* use bit 63 of the event code for something else if they wish.
*/
return (ppmu->flags & PPMU_ARCH_207S) &&
((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
}
static int ebb_event_check(struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
/* Event and group leader must agree on EBB */
if (is_ebb_event(leader) != is_ebb_event(event))
return -EINVAL;
if (is_ebb_event(event)) {
if (!(event->attach_state & PERF_ATTACH_TASK))
return -EINVAL;
if (!leader->attr.pinned || !leader->attr.exclusive)
return -EINVAL;
if (event->attr.freq ||
event->attr.inherit ||
event->attr.sample_type ||
event->attr.sample_period ||
event->attr.enable_on_exec)
return -EINVAL;
}
return 0;
}
static void ebb_event_add(struct perf_event *event)
{
if (!is_ebb_event(event) || current->thread.used_ebb)
return;
/*
* IFF this is the first time we've added an EBB event, set
* PMXE in the user MMCR0 so we can detect when it's cleared by
* userspace. We need this so that we can context switch while
* userspace is in the EBB handler (where PMXE is 0).
*/
current->thread.used_ebb = 1;
current->thread.mmcr0 |= MMCR0_PMXE;
}
static void ebb_switch_out(unsigned long mmcr0)
{
if (!(mmcr0 & MMCR0_EBE))
return;
current->thread.siar = mfspr(SPRN_SIAR);
current->thread.sier = mfspr(SPRN_SIER);
current->thread.sdar = mfspr(SPRN_SDAR);
current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
{
unsigned long mmcr0 = cpuhw->mmcr[0];
if (!ebb)
goto out;
/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
/*
* Add any bits from the user MMCR0, FC or PMAO. This is compatible
* with pmao_restore_workaround() because we may add PMAO but we never
* clear it here.
*/
mmcr0 |= current->thread.mmcr0;
/*
* Be careful not to set PMXE if userspace had it cleared. This is also
* compatible with pmao_restore_workaround() because it has already
* cleared PMXE and we leave PMAO alone.
*/
if (!(current->thread.mmcr0 & MMCR0_PMXE))
mmcr0 &= ~MMCR0_PMXE;
mtspr(SPRN_SIAR, current->thread.siar);
mtspr(SPRN_SIER, current->thread.sier);
mtspr(SPRN_SDAR, current->thread.sdar);
/*
* Merge the kernel & user values of MMCR2. The semantics we implement
* are that the user MMCR2 can set bits, ie. cause counters to freeze,
* but not clear bits. If a task wants to be able to clear bits, ie.
* unfreeze counters, it should not set exclude_xxx in its events and
* instead manage the MMCR2 entirely by itself.
*/
mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
out:
return mmcr0;
}
static void pmao_restore_workaround(bool ebb)
{
unsigned pmcs[6];
if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
return;
/*
* On POWER8E there is a hardware defect which affects the PMU context
* switch logic, ie. power_pmu_disable/enable().
*
* When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
* by the hardware. Sometime later the actual PMU exception is
* delivered.
*
* If we context switch, or simply disable/enable, the PMU prior to the
* exception arriving, the exception will be lost when we clear PMAO.
*
* When we reenable the PMU, we will write the saved MMCR0 with PMAO
* set, and this _should_ generate an exception. However because of the
* defect no exception is generated when we write PMAO, and we get
* stuck with no counters counting but no exception delivered.
*
* The workaround is to detect this case and tweak the hardware to
* create another pending PMU exception.
*
* We do that by setting up PMC6 (cycles) for an imminent overflow and
* enabling the PMU. That causes a new exception to be generated in the
* chip, but we don't take it yet because we have interrupts hard
* disabled. We then write back the PMU state as we want it to be seen
* by the exception handler. When we reenable interrupts the exception
* handler will be called and see the correct state.
*
* The logic is the same for EBB, except that the exception is gated by
* us having interrupts hard disabled as well as the fact that we are
* not in userspace. The exception is finally delivered when we return
* to userspace.
*/
/* Only if PMAO is set and PMAO_SYNC is clear */
if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
return;
/* If we're doing EBB, only if BESCR[GE] is set */
if (ebb && !(current->thread.bescr & BESCR_GE))
return;
/*
* We are already soft-disabled in power_pmu_enable(). We need to hard
* enable to actually prevent the PMU exception from firing.
*/
hard_irq_disable();
/*
* This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
* Using read/write_pmc() in a for loop adds 12 function calls and
* almost doubles our code size.
*/
pmcs[0] = mfspr(SPRN_PMC1);
pmcs[1] = mfspr(SPRN_PMC2);
pmcs[2] = mfspr(SPRN_PMC3);
pmcs[3] = mfspr(SPRN_PMC4);
pmcs[4] = mfspr(SPRN_PMC5);
pmcs[5] = mfspr(SPRN_PMC6);
/* Ensure all freeze bits are unset */
mtspr(SPRN_MMCR2, 0);
/* Set up PMC6 to overflow in one cycle */
mtspr(SPRN_PMC6, 0x7FFFFFFE);
/* Enable exceptions and unfreeze PMC6 */
mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
/* Now we need to refreeze and restore the PMCs */
mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
mtspr(SPRN_PMC1, pmcs[0]);
mtspr(SPRN_PMC2, pmcs[1]);
mtspr(SPRN_PMC3, pmcs[2]);
mtspr(SPRN_PMC4, pmcs[3]);
mtspr(SPRN_PMC5, pmcs[4]);
mtspr(SPRN_PMC6, pmcs[5]);
}
#endif /* CONFIG_PPC64 */
static void perf_event_interrupt(struct pt_regs *regs);
/*
* Read one performance monitor counter (PMC).
*/
static unsigned long read_pmc(int idx)
{
unsigned long val;
switch (idx) {
case 1:
val = mfspr(SPRN_PMC1);
break;
case 2:
val = mfspr(SPRN_PMC2);
break;
case 3:
val = mfspr(SPRN_PMC3);
break;
case 4:
val = mfspr(SPRN_PMC4);
break;
case 5:
val = mfspr(SPRN_PMC5);
break;
case 6:
val = mfspr(SPRN_PMC6);
break;
#ifdef CONFIG_PPC64
case 7:
val = mfspr(SPRN_PMC7);
break;
case 8:
val = mfspr(SPRN_PMC8);
break;
#endif /* CONFIG_PPC64 */
default:
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
val = 0;
}
return val;
}
/*
* Write one PMC.
*/
static void write_pmc(int idx, unsigned long val)
{
switch (idx) {
case 1:
mtspr(SPRN_PMC1, val);
break;
case 2:
mtspr(SPRN_PMC2, val);
break;
case 3:
mtspr(SPRN_PMC3, val);
break;
case 4:
mtspr(SPRN_PMC4, val);
break;
case 5:
mtspr(SPRN_PMC5, val);
break;
case 6:
mtspr(SPRN_PMC6, val);
break;
#ifdef CONFIG_PPC64
case 7:
mtspr(SPRN_PMC7, val);
break;
case 8:
mtspr(SPRN_PMC8, val);
break;
#endif /* CONFIG_PPC64 */
default:
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
}
}
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
unsigned long sdar, sier, flags;
u32 pmcs[MAX_HWEVENTS];
int i;
if (!ppmu->n_counter)
return;
local_irq_save(flags);
pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
smp_processor_id(), ppmu->name, ppmu->n_counter);
for (i = 0; i < ppmu->n_counter; i++)
pmcs[i] = read_pmc(i + 1);
for (; i < MAX_HWEVENTS; i++)
pmcs[i] = 0xdeadbeef;
pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
if (ppmu->n_counter > 4)
pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
sdar = sier = 0;
#ifdef CONFIG_PPC64
sdar = mfspr(SPRN_SDAR);
if (ppmu->flags & PPMU_HAS_SIER)
sier = mfspr(SPRN_SIER);
if (ppmu->flags & PPMU_ARCH_207S) {
pr_info("MMCR2: %016lx EBBHR: %016lx\n",
mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
pr_info("EBBRR: %016lx BESCR: %016lx\n",
mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
}
#endif
pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
mfspr(SPRN_SIAR), sdar, sier);
local_irq_restore(flags);
}
/*
* Check if a set of events can all go on the PMU at once.
* If they can't, this will look at alternative codes for the events
* and see if any combination of alternative codes is feasible.
* The feasible set is returned in event_id[].
*/
static int power_check_constraints(struct cpu_hw_events *cpuhw,
u64 event_id[], unsigned int cflags[],
int n_ev)
{
unsigned long mask, value, nv;
unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
int i, j;
unsigned long addf = ppmu->add_fields;
unsigned long tadd = ppmu->test_adder;
if (n_ev > ppmu->n_counter)
return -1;
/* First see if the events will go on as-is */
for (i = 0; i < n_ev; ++i) {
if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
&& !ppmu->limited_pmc_event(event_id[i])) {
ppmu->get_alternatives(event_id[i], cflags[i],
cpuhw->alternatives[i]);
event_id[i] = cpuhw->alternatives[i][0];
}
if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
&cpuhw->avalues[i][0]))
return -1;
}
value = mask = 0;
for (i = 0; i < n_ev; ++i) {
nv = (value | cpuhw->avalues[i][0]) +
(value & cpuhw->avalues[i][0] & addf);
if ((((nv + tadd) ^ value) & mask) != 0 ||
(((nv + tadd) ^ cpuhw->avalues[i][0]) &
cpuhw->amasks[i][0]) != 0)
break;
value = nv;
mask |= cpuhw->amasks[i][0];
}
if (i == n_ev)
return 0; /* all OK */
/* doesn't work, gather alternatives... */
if (!ppmu->get_alternatives)
return -1;
for (i = 0; i < n_ev; ++i) {
choice[i] = 0;
n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
cpuhw->alternatives[i]);
for (j = 1; j < n_alt[i]; ++j)
ppmu->get_constraint(cpuhw->alternatives[i][j],
&cpuhw->amasks[i][j],
&cpuhw->avalues[i][j]);
}
/* enumerate all possibilities and see if any will work */
i = 0;
j = -1;
value = mask = nv = 0;
while (i < n_ev) {
if (j >= 0) {
/* we're backtracking, restore context */
value = svalues[i];
mask = smasks[i];
j = choice[i];
}
/*
* See if any alternative k for event_id i,
* where k > j, will satisfy the constraints.
*/
while (++j < n_alt[i]) {
nv = (value | cpuhw->avalues[i][j]) +
(value & cpuhw->avalues[i][j] & addf);
if ((((nv + tadd) ^ value) & mask) == 0 &&
(((nv + tadd) ^ cpuhw->avalues[i][j])
& cpuhw->amasks[i][j]) == 0)
break;
}
if (j >= n_alt[i]) {
/*
* No feasible alternative, backtrack
* to event_id i-1 and continue enumerating its
* alternatives from where we got up to.
*/
if (--i < 0)
return -1;
} else {
/*
* Found a feasible alternative for event_id i,
* remember where we got up to with this event_id,
* go on to the next event_id, and start with
* the first alternative for it.
*/
choice[i] = j;
svalues[i] = value;
smasks[i] = mask;
value = nv;
mask |= cpuhw->amasks[i][j];
++i;
j = -1;
}
}
/* OK, we have a feasible combination, tell the caller the solution */
for (i = 0; i < n_ev; ++i)
event_id[i] = cpuhw->alternatives[i][choice[i]];
return 0;
}
/*
* Check if newly-added events have consistent settings for
* exclude_{user,kernel,hv} with each other and any previously
* added events.
*/
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
int n_prev, int n_new)
{
int eu = 0, ek = 0, eh = 0;
int i, n, first;
struct perf_event *event;
/*
* If the PMU we're on supports per event exclude settings then we
* don't need to do any of this logic. NB. This assumes no PMU has both
* per event exclude and limited PMCs.
*/
if (ppmu->flags & PPMU_ARCH_207S)
return 0;
n = n_prev + n_new;
if (n <= 1)
return 0;
first = 1;
for (i = 0; i < n; ++i) {
if (cflags[i] & PPMU_LIMITED_PMC_OK) {
cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
continue;
}
event = ctrs[i];
if (first) {
eu = event->attr.exclude_user;
ek = event->attr.exclude_kernel;
eh = event->attr.exclude_hv;
first = 0;
} else if (event->attr.exclude_user != eu ||
event->attr.exclude_kernel != ek ||
event->attr.exclude_hv != eh) {
return -EAGAIN;
}
}
if (eu || ek || eh)
for (i = 0; i < n; ++i)
if (cflags[i] & PPMU_LIMITED_PMC_OK)
cflags[i] |= PPMU_LIMITED_PMC_REQD;
return 0;
}
static u64 check_and_compute_delta(u64 prev, u64 val)
{
u64 delta = (val - prev) & 0xfffffffful;
/*
* POWER7 can roll back counter values, if the new value is smaller
* than the previous value it will cause the delta and the counter to
* have bogus values unless we rolled a counter over. If a coutner is
* rolled back, it will be smaller, but within 256, which is the maximum
* number of events to rollback at once. If we dectect a rollback
* return 0. This can lead to a small lack of precision in the
* counters.
*/
if (prev > val && (prev - val) < 256)
delta = 0;
return delta;
}
static void power_pmu_read(struct perf_event *event)
{
s64 val, delta, prev;
if (event->hw.state & PERF_HES_STOPPED)
return;
if (!event->hw.idx)
return;
if (is_ebb_event(event)) {
val = read_pmc(event->hw.idx);
local64_set(&event->hw.prev_count, val);
return;
}
/*
* Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled.
* Therefore we treat them like NMIs.
*/
do {
prev = local64_read(&event->hw.prev_count);
barrier();
val = read_pmc(event->hw.idx);
delta = check_and_compute_delta(prev, val);
if (!delta)
return;
} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
local64_add(delta, &event->count);
/*
* A number of places program the PMC with (0x80000000 - period_left).
* We never want period_left to be less than 1 because we will program
* the PMC with a value >= 0x800000000 and an edge detected PMC will
* roll around to 0 before taking an exception. We have seen this
* on POWER8.
*
* To fix this, clamp the minimum value of period_left to 1.
*/
do {
prev = local64_read(&event->hw.period_left);
val = prev - delta;
if (val < 1)
val = 1;
} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
}
/*
* On some machines, PMC5 and PMC6 can't be written, don't respect
* the freeze conditions, and don't generate interrupts. This tells
* us if `event' is using such a PMC.
*/
static int is_limited_pmc(int pmcnum)
{
return (ppmu->flags & PPMU_LIMITED_PMC5_6)
&& (pmcnum == 5 || pmcnum == 6);
}
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
unsigned long pmc5, unsigned long pmc6)
{
struct perf_event *event;
u64 val, prev, delta;
int i;
for (i = 0; i < cpuhw->n_limited; ++i) {
event = cpuhw->limited_counter[i];
if (!event->hw.idx)
continue;
val = (event->hw.idx == 5) ? pmc5 : pmc6;
prev = local64_read(&event->hw.prev_count);
event->hw.idx = 0;
delta = check_and_compute_delta(prev, val);
if (delta)
local64_add(delta, &event->count);
}
}
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
unsigned long pmc5, unsigned long pmc6)
{
struct perf_event *event;
u64 val, prev;
int i;
for (i = 0; i < cpuhw->n_limited; ++i) {
event = cpuhw->limited_counter[i];
event->hw.idx = cpuhw->limited_hwidx[i];
val = (event->hw.idx == 5) ? pmc5 : pmc6;
prev = local64_read(&event->hw.prev_count);
if (check_and_compute_delta(prev, val))
local64_set(&event->hw.prev_count, val);
perf_event_update_userpage(event);
}
}
/*
* Since limited events don't respect the freeze conditions, we
* have to read them immediately after freezing or unfreezing the
* other events. We try to keep the values from the limited
* events as consistent as possible by keeping the delay (in
* cycles and instructions) between freezing/unfreezing and reading
* the limited events as small and consistent as possible.
* Therefore, if any limited events are in use, we read them
* both, and always in the same order, to minimize variability,
* and do it inside the same asm that writes MMCR0.
*/
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
{
unsigned long pmc5, pmc6;
if (!cpuhw->n_limited) {
mtspr(SPRN_MMCR0, mmcr0);
return;
}
/*
* Write MMCR0, then read PMC5 and PMC6 immediately.
* To ensure we don't get a performance monitor interrupt
* between writing MMCR0 and freezing/thawing the limited
* events, we first write MMCR0 with the event overflow
* interrupt enable bits turned off.
*/
asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
: "=&r" (pmc5), "=&r" (pmc6)
: "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
"i" (SPRN_MMCR0),
"i" (SPRN_PMC5), "i" (SPRN_PMC6));
if (mmcr0 & MMCR0_FC)
freeze_limited_counters(cpuhw, pmc5, pmc6);
else
thaw_limited_counters(cpuhw, pmc5, pmc6);
/*
* Write the full MMCR0 including the event overflow interrupt
* enable bits, if necessary.
*/
if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
mtspr(SPRN_MMCR0, mmcr0);
}
/*
* Disable all events to prevent PMU interrupts and to allow
* events to be added or removed.
*/
static void power_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
unsigned long flags, mmcr0, val;
if (!ppmu)
return;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled) {
/*
* Check if we ever enabled the PMU on this cpu.
*/
if (!cpuhw->pmcs_enabled) {
ppc_enable_pmcs();
cpuhw->pmcs_enabled = 1;
}
/*
* Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
*/
val = mmcr0 = mfspr(SPRN_MMCR0);
val |= MMCR0_FC;
val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
MMCR0_FC56);
/*
* The barrier is to make sure the mtspr has been
* executed and the PMU has frozen the events etc.
* before we return.
*/
write_mmcr0(cpuhw, val);
mb();
/*
* Disable instruction sampling if it was enabled
*/
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
mtspr(SPRN_MMCRA,
cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mb();
}
cpuhw->disabled = 1;
cpuhw->n_added = 0;
ebb_switch_out(mmcr0);
}
local_irq_restore(flags);
}
/*
* Re-enable all events if disable == 0.
* If we were previously disabled and events were added, then
* put the new config on the PMU.
*/
static void power_pmu_enable(struct pmu *pmu)
{
struct perf_event *event;
struct cpu_hw_events *cpuhw;
unsigned long flags;
long i;
unsigned long val, mmcr0;
s64 left;
unsigned int hwc_index[MAX_HWEVENTS];
int n_lim;
int idx;
bool ebb;
if (!ppmu)
return;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled)
goto out;
if (cpuhw->n_events == 0) {
ppc_set_pmu_inuse(0);
goto out;
}
cpuhw->disabled = 0;
/*
* EBB requires an exclusive group and all events must have the EBB
* flag set, or not set, so we can just check a single event. Also we
* know we have at least one event.
*/
ebb = is_ebb_event(cpuhw->event[0]);
/*
* If we didn't change anything, or only removed events,
* no need to recalculate MMCR* settings and reset the PMCs.
* Just reenable the PMU with the current MMCR* settings
* (possibly updated for removal of events).
*/
if (!cpuhw->n_added) {
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
goto out_enable;
}
/*
* Clear all MMCR settings and recompute them for the new set of events.
*/
memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
cpuhw->mmcr, cpuhw->event)) {
/* shouldn't ever get here */
printk(KERN_ERR "oops compute_mmcr failed\n");
goto out;
}
if (!(ppmu->flags & PPMU_ARCH_207S)) {
/*
* Add in MMCR0 freeze bits corresponding to the attr.exclude_*
* bits for the first event. We have already checked that all
* events have the same value for these bits as the first event.
*/
event = cpuhw->event[0];
if (event->attr.exclude_user)
cpuhw->mmcr[0] |= MMCR0_FCP;
if (event->attr.exclude_kernel)
cpuhw->mmcr[0] |= freeze_events_kernel;
if (event->attr.exclude_hv)
cpuhw->mmcr[0] |= MMCR0_FCHV;
}
/*
* Write the new configuration to MMCR* with the freeze
* bit set and set the hardware events to their initial values.
* Then unfreeze the events.
*/
ppc_set_pmu_inuse(1);
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
| MMCR0_FC);
if (ppmu->flags & PPMU_ARCH_207S)
mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
/*
* Read off any pre-existing events that need to move
* to another PMC.
*/
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
power_pmu_read(event);
write_pmc(event->hw.idx, 0);
event->hw.idx = 0;
}
}
/*
* Initialize the PMCs for all the new and moved events.
*/
cpuhw->n_limited = n_lim = 0;
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (event->hw.idx)
continue;
idx = hwc_index[i] + 1;
if (is_limited_pmc(idx)) {
cpuhw->limited_counter[n_lim] = event;
cpuhw->limited_hwidx[n_lim] = idx;
++n_lim;
continue;
}
if (ebb)
val = local64_read(&event->hw.prev_count);
else {
val = 0;
if (event->hw.sample_period) {
left = local64_read(&event->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
local64_set(&event->hw.prev_count, val);
}
event->hw.idx = idx;
if (event->hw.state & PERF_HES_STOPPED)
val = 0;
write_pmc(idx, val);
perf_event_update_userpage(event);
}
cpuhw->n_limited = n_lim;
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
out_enable:
pmao_restore_workaround(ebb);
mmcr0 = ebb_switch_in(ebb, cpuhw);
mb();
if (cpuhw->bhrb_users)
ppmu->config_bhrb(cpuhw->bhrb_filter);
write_mmcr0(cpuhw, mmcr0);
/*
* Enable instruction sampling if necessary
*/
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
mb();
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
}
out:
local_irq_restore(flags);
}
static int collect_events(struct perf_event *group, int max_count,
struct perf_event *ctrs[], u64 *events,
unsigned int *flags)
{
int n = 0;
struct perf_event *event;
if (!is_software_event(group)) {
if (n >= max_count)
return -1;
ctrs[n] = group;
flags[n] = group->hw.event_base;
events[n++] = group->hw.config;
}
list_for_each_entry(event, &group->sibling_list, group_entry) {
if (!is_software_event(event) &&
event->state != PERF_EVENT_STATE_OFF) {
if (n >= max_count)
return -1;
ctrs[n] = event;
flags[n] = event->hw.event_base;
events[n++] = event->hw.config;
}
}
return n;
}
/*
* Add a event to the PMU.
* If all events are not already frozen, then we disable and
* re-enable the PMU in order to get hw_perf_enable to do the
* actual work of reconfiguring the PMU.
*/
static int power_pmu_add(struct perf_event *event, int ef_flags)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
int n0;
int ret = -EAGAIN;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
/*
* Add the event to the list (if there is room)
* and check whether the total set is still feasible.
*/
cpuhw = &__get_cpu_var(cpu_hw_events);
n0 = cpuhw->n_events;
if (n0 >= ppmu->n_counter)
goto out;
cpuhw->event[n0] = event;
cpuhw->events[n0] = event->hw.config;
cpuhw->flags[n0] = event->hw.event_base;
/*
* This event may have been disabled/stopped in record_and_restart()
* because we exceeded the ->event_limit. If re-starting the event,
* clear the ->hw.state (STOPPED and UPTODATE flags), so the user
* notification is re-enabled.
*/
if (!(ef_flags & PERF_EF_START))
event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
else
event->hw.state = 0;
/*
* If group events scheduling transaction was started,
* skip the schedulability test here, it will be performed
* at commit time(->commit_txn) as a whole
*/
if (cpuhw->group_flag & PERF_EVENT_TXN)
goto nocheck;
if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
goto out;
if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
goto out;
event->hw.config = cpuhw->events[n0];
nocheck:
ebb_event_add(event);
++cpuhw->n_events;
++cpuhw->n_added;
ret = 0;
out:
if (has_branch_stack(event)) {
power_pmu_bhrb_enable(event);
cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
event->attr.branch_sample_type);
}
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
return ret;
}
/*
* Remove a event from the PMU.
*/
static void power_pmu_del(struct perf_event *event, int ef_flags)
{
struct cpu_hw_events *cpuhw;
long i;
unsigned long flags;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
power_pmu_read(event);
cpuhw = &__get_cpu_var(cpu_hw_events);
for (i = 0; i < cpuhw->n_events; ++i) {
if (event == cpuhw->event[i]) {
while (++i < cpuhw->n_events) {
cpuhw->event[i-1] = cpuhw->event[i];
cpuhw->events[i-1] = cpuhw->events[i];
cpuhw->flags[i-1] = cpuhw->flags[i];
}
--cpuhw->n_events;
ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
if (event->hw.idx) {
write_pmc(event->hw.idx, 0);
event->hw.idx = 0;
}
perf_event_update_userpage(event);
break;
}
}
for (i = 0; i < cpuhw->n_limited; ++i)
if (event == cpuhw->limited_counter[i])
break;
if (i < cpuhw->n_limited) {
while (++i < cpuhw->n_limited) {
cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
}
--cpuhw->n_limited;
}
if (cpuhw->n_events == 0) {
/* disable exceptions if no events are running */
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
}
if (has_branch_stack(event))
power_pmu_bhrb_disable(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
/*
* POWER-PMU does not support disabling individual counters, hence
* program their cycle counter to their max value and ignore the interrupts.
*/
static void power_pmu_start(struct perf_event *event, int ef_flags)
{
unsigned long flags;
s64 left;
unsigned long val;
if (!event->hw.idx || !event->hw.sample_period)
return;
if (!(event->hw.state & PERF_HES_STOPPED))
return;
if (ef_flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
local_irq_save(flags);
perf_pmu_disable(event->pmu);
event->hw.state = 0;
left = local64_read(&event->hw.period_left);
val = 0;
if (left < 0x80000000L)
val = 0x80000000L - left;
write_pmc(event->hw.idx, val);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
unsigned long flags;
if (!event->hw.idx || !event->hw.sample_period)
return;
if (event->hw.state & PERF_HES_STOPPED)
return;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
power_pmu_read(event);
event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
write_pmc(event->hw.idx, 0);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
/*
* Start group events scheduling transaction
* Set the flag to make pmu::enable() not perform the
* schedulability test, it will be performed at commit time
*/
void power_pmu_start_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
perf_pmu_disable(pmu);
cpuhw->group_flag |= PERF_EVENT_TXN;
cpuhw->n_txn_start = cpuhw->n_events;
}
/*
* Stop group events scheduling transaction
* Clear the flag and pmu::enable() will perform the
* schedulability test.
*/
void power_pmu_cancel_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
cpuhw->group_flag &= ~PERF_EVENT_TXN;
perf_pmu_enable(pmu);
}
/*
* Commit group events scheduling transaction
* Perform the group schedulability test as a whole
* Return 0 if success
*/
int power_pmu_commit_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
long i, n;
if (!ppmu)
return -EAGAIN;
cpuhw = &__get_cpu_var(cpu_hw_events);
n = cpuhw->n_events;
if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
return -EAGAIN;
i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
if (i < 0)
return -EAGAIN;
for (i = cpuhw->n_txn_start; i < n; ++i)
cpuhw->event[i]->hw.config = cpuhw->events[i];
cpuhw->group_flag &= ~PERF_EVENT_TXN;
perf_pmu_enable(pmu);
return 0;
}
/*
* Return 1 if we might be able to put event on a limited PMC,
* or 0 if not.
* A event can only go on a limited PMC if it counts something
* that a limited PMC can count, doesn't require interrupts, and
* doesn't exclude any processor mode.
*/
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
unsigned int flags)
{
int n;
u64 alt[MAX_EVENT_ALTERNATIVES];
if (event->attr.exclude_user
|| event->attr.exclude_kernel
|| event->attr.exclude_hv
|| event->attr.sample_period)
return 0;
if (ppmu->limited_pmc_event(ev))
return 1;
/*
* The requested event_id isn't on a limited PMC already;
* see if any alternative code goes on a limited PMC.
*/
if (!ppmu->get_alternatives)
return 0;
flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
n = ppmu->get_alternatives(ev, flags, alt);
return n > 0;
}
/*
* Find an alternative event_id that goes on a normal PMC, if possible,
* and return the event_id code, or 0 if there is no such alternative.
* (Note: event_id code 0 is "don't count" on all machines.)
*/
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
{
u64 alt[MAX_EVENT_ALTERNATIVES];
int n;
flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
n = ppmu->get_alternatives(ev, flags, alt);
if (!n)
return 0;
return alt[0];
}
/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* Release the PMU if this is the last perf_event.
*/
static void hw_perf_event_destroy(struct perf_event *event)
{
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
/*
* Translate a generic cache event_id config to a raw event_id code.
*/
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
unsigned long type, op, result;
int ev;
if (!ppmu->cache_events)
return -EINVAL;
/* unpack config */
type = config & 0xff;
op = (config >> 8) & 0xff;
result = (config >> 16) & 0xff;
if (type >= PERF_COUNT_HW_CACHE_MAX ||
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ev = (*ppmu->cache_events)[type][op][result];
if (ev == 0)
return -EOPNOTSUPP;
if (ev == -1)
return -EINVAL;
*eventp = ev;
return 0;
}
static int power_pmu_event_init(struct perf_event *event)
{
u64 ev;
unsigned long flags;
struct perf_event *ctrs[MAX_HWEVENTS];
u64 events[MAX_HWEVENTS];
unsigned int cflags[MAX_HWEVENTS];
int n;
int err;
struct cpu_hw_events *cpuhw;
if (!ppmu)
return -ENOENT;
if (has_branch_stack(event)) {
/* PMU has BHRB enabled */
if (!(ppmu->flags & PPMU_ARCH_207S))
return -EOPNOTSUPP;
}
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
ev = event->attr.config;
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
return -EOPNOTSUPP;
ev = ppmu->generic_events[ev];
break;
case PERF_TYPE_HW_CACHE:
err = hw_perf_cache_event(event->attr.config, &ev);
if (err)
return err;
break;
case PERF_TYPE_RAW:
ev = event->attr.config;
break;
default:
return -ENOENT;
}
event->hw.config_base = ev;
event->hw.idx = 0;
/*
* If we are not running on a hypervisor, force the
* exclude_hv bit to 0 so that we don't care what
* the user set it to.
*/
if (!firmware_has_feature(FW_FEATURE_LPAR))
event->attr.exclude_hv = 0;
/*
* If this is a per-task event, then we can use
* PM_RUN_* events interchangeably with their non RUN_*
* equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
* XXX we should check if the task is an idle task.
*/
flags = 0;
if (event->attach_state & PERF_ATTACH_TASK)
flags |= PPMU_ONLY_COUNT_RUN;
/*
* If this machine has limited events, check whether this
* event_id could go on a limited event.
*/
if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
if (can_go_on_limited_pmc(event, ev, flags)) {
flags |= PPMU_LIMITED_PMC_OK;
} else if (ppmu->limited_pmc_event(ev)) {
/*
* The requested event_id is on a limited PMC,
* but we can't use a limited PMC; see if any
* alternative goes on a normal PMC.
*/
ev = normal_pmc_alternative(ev, flags);
if (!ev)
return -EINVAL;
}
}
/* Extra checks for EBB */
err = ebb_event_check(event);
if (err)
return err;
/*
* If this is in a group, check if it can go on with all the
* other hardware events in the group. We assume the event
* hasn't been linked into its leader's sibling list at this point.
*/
n = 0;
if (event->group_leader != event) {
n = collect_events(event->group_leader, ppmu->n_counter - 1,
ctrs, events, cflags);
if (n < 0)
return -EINVAL;
}
events[n] = ev;
ctrs[n] = event;
cflags[n] = flags;
if (check_excludes(ctrs, cflags, n, 1))
return -EINVAL;
cpuhw = &get_cpu_var(cpu_hw_events);
err = power_check_constraints(cpuhw, events, cflags, n + 1);
if (has_branch_stack(event)) {
cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
event->attr.branch_sample_type);
if(cpuhw->bhrb_filter == -1)
return -EOPNOTSUPP;
}
put_cpu_var(cpu_hw_events);
if (err)
return -EINVAL;
event->hw.config = events[n];
event->hw.event_base = cflags[n];
event->hw.last_period = event->hw.sample_period;
local64_set(&event->hw.period_left, event->hw.last_period);
/*
* For EBB events we just context switch the PMC value, we don't do any
* of the sample_period logic. We use hw.prev_count for this.
*/
if (is_ebb_event(event))
local64_set(&event->hw.prev_count, 0);
/*
* See if we need to reserve the PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* reserve_pmc_hardware or release_pmc_hardware.
*/
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 &&
reserve_pmc_hardware(perf_event_interrupt))
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
}
event->destroy = hw_perf_event_destroy;
return err;
}
static int power_pmu_event_idx(struct perf_event *event)
{
return event->hw.idx;
}
ssize_t power_events_sysfs_show(struct device *dev,
struct device_attribute *attr, char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}
struct pmu power_pmu = {
.pmu_enable = power_pmu_enable,
.pmu_disable = power_pmu_disable,
.event_init = power_pmu_event_init,
.add = power_pmu_add,
.del = power_pmu_del,
.start = power_pmu_start,
.stop = power_pmu_stop,
.read = power_pmu_read,
.start_txn = power_pmu_start_txn,
.cancel_txn = power_pmu_cancel_txn,
.commit_txn = power_pmu_commit_txn,
.event_idx = power_pmu_event_idx,
.flush_branch_stack = power_pmu_flush_branch_stack,
};
/*
* A counter has overflowed; update its count and record
* things if requested. Note that interrupts are hard-disabled
* here so there is no possibility of being interrupted.
*/
static void record_and_restart(struct perf_event *event, unsigned long val,
struct pt_regs *regs)
{
u64 period = event->hw.sample_period;
s64 prev, delta, left;
int record = 0;
if (event->hw.state & PERF_HES_STOPPED) {
write_pmc(event->hw.idx, 0);
return;
}
/* we don't have to worry about interrupts here */
prev = local64_read(&event->hw.prev_count);
delta = check_and_compute_delta(prev, val);
local64_add(delta, &event->count);
/*
* See if the total period for this event has expired,
* and update for the next period.
*/
val = 0;
left = local64_read(&event->hw.period_left) - delta;
if (delta == 0)
left++;
if (period) {
if (left <= 0) {
left += period;
if (left <= 0)
left = period;
record = siar_valid(regs);
event->hw.last_period = event->hw.sample_period;
}
if (left < 0x80000000LL)
val = 0x80000000LL - left;
}
write_pmc(event->hw.idx, val);
local64_set(&event->hw.prev_count, val);
local64_set(&event->hw.period_left, left);
perf_event_update_userpage(event);
/*
* Finally record data if requested.
*/
if (record) {
struct perf_sample_data data;
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
if (event->attr.sample_type & PERF_SAMPLE_ADDR)
perf_get_data_addr(regs, &data.addr);
if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
struct cpu_hw_events *cpuhw;
cpuhw = &__get_cpu_var(cpu_hw_events);
power_pmu_bhrb_read(cpuhw);
data.br_stack = &cpuhw->bhrb_stack;
}
if (perf_event_overflow(event, &data, regs))
power_pmu_stop(event, 0);
}
}
/*
* Called from generic code to get the misc flags (i.e. processor mode)
* for an event_id.
*/
unsigned long perf_misc_flags(struct pt_regs *regs)
{
u32 flags = perf_get_misc_flags(regs);
if (flags)
return flags;
return user_mode(regs) ? PERF_RECORD_MISC_USER :
PERF_RECORD_MISC_KERNEL;
}
/*
* Called from generic code to get the instruction pointer
* for an event_id.
*/
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
bool use_siar = regs_use_siar(regs);
if (use_siar && siar_valid(regs))
return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
else if (use_siar)
return 0; // no valid instruction pointer
else
return regs->nip;
}
static bool pmc_overflow_power7(unsigned long val)
{
/*
* Events on POWER7 can roll back if a speculative event doesn't
* eventually complete. Unfortunately in some rare cases they will
* raise a performance monitor exception. We need to catch this to
* ensure we reset the PMC. In all cases the PMC will be 256 or less
* cycles from overflow.
*
* We only do this if the first pass fails to find any overflowing
* PMCs because a user might set a period of less than 256 and we
* don't want to mistakenly reset them.
*/
if ((0x80000000 - val) <= 256)
return true;
return false;
}
static bool pmc_overflow(unsigned long val)
{
if ((int)val < 0)
return true;
return false;
}
/*
* Performance monitor interrupt stuff
*/
static void perf_event_interrupt(struct pt_regs *regs)
{
int i, j;
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
struct perf_event *event;
unsigned long val[8];
int found, active;
int nmi;
if (cpuhw->n_limited)
freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
mfspr(SPRN_PMC6));
perf_read_regs(regs);
nmi = perf_intr_is_nmi(regs);
if (nmi)
nmi_enter();
else
irq_enter();
/* Read all the PMCs since we'll need them a bunch of times */
for (i = 0; i < ppmu->n_counter; ++i)
val[i] = read_pmc(i + 1);
/* Try to find what caused the IRQ */
found = 0;
for (i = 0; i < ppmu->n_counter; ++i) {
if (!pmc_overflow(val[i]))
continue;
if (is_limited_pmc(i + 1))
continue; /* these won't generate IRQs */
/*
* We've found one that's overflowed. For active
* counters we need to log this. For inactive
* counters, we need to reset it anyway
*/
found = 1;
active = 0;
for (j = 0; j < cpuhw->n_events; ++j) {
event = cpuhw->event[j];
if (event->hw.idx == (i + 1)) {
active = 1;
record_and_restart(event, val[i], regs);
break;
}
}
if (!active)
/* reset non active counters that have overflowed */
write_pmc(i + 1, 0);
}
if (!found && pvr_version_is(PVR_POWER7)) {
/* check active counters for special buggy p7 overflow */
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (!event->hw.idx || is_limited_pmc(event->hw.idx))
continue;
if (pmc_overflow_power7(val[event->hw.idx - 1])) {
/* event has overflowed in a buggy way*/
found = 1;
record_and_restart(event,
val[event->hw.idx - 1],
regs);
}
}
}
if (!found && !nmi && printk_ratelimit())
printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
/*
* Reset MMCR0 to its normal value. This will set PMXE and
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
* and thus allow interrupts to occur again.
* XXX might want to use MSR.PM to keep the events frozen until
* we get back out of this interrupt.
*/
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
if (nmi)
nmi_exit();
else
irq_exit();
}
static void power_pmu_setup(int cpu)
{
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
if (!ppmu)
return;
memset(cpuhw, 0, sizeof(*cpuhw));
cpuhw->mmcr[0] = MMCR0_FC;
}
static int
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
{
unsigned int cpu = (long)hcpu;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
power_pmu_setup(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
int register_power_pmu(struct power_pmu *pmu)
{
if (ppmu)
return -EBUSY; /* something's already registered */
ppmu = pmu;
pr_info("%s performance monitor hardware support registered\n",
pmu->name);
power_pmu.attr_groups = ppmu->attr_groups;
#ifdef MSR_HV
/*
* Use FCHV to ignore kernel events if MSR.HV is set.
*/
if (mfmsr() & MSR_HV)
freeze_events_kernel = MMCR0_FCHV;
#endif /* CONFIG_PPC64 */
perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
perf_cpu_notifier(power_pmu_notifier);
return 0;
}