2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00
linux-next/drivers/media/v4l2-core/v4l2-dv-timings.c
Hans Verkuil 9cfd2753f8 media: cec/v4l2: move V4L2 specific CEC functions to V4L2
Several CEC functions are actually specific for use with receivers,
i.e. they should be part of the V4L2 subsystem, not CEC.

These functions deal with validating and modifying EDIDs for (HDMI)
receivers, and they do not actually have anything to do with the CEC
subsystem and whether or not CEC is enabled. The problem was that if
the CEC_CORE config option was not set, then these functions would
become stubs, but that's not right: they should always be valid.

So replace the cec_ prefix by v4l2_ and move them to v4l2-dv-timings.c.
Update all drivers that call these accordingly.

Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Reported-by: Lars-Peter Clausen <lars@metafoo.de>
Cc: <stable@vger.kernel.org>      # for v4.17 and up
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-09-24 09:11:04 -04:00

1135 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* v4l2-dv-timings - dv-timings helper functions
*
* Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/rational.h>
#include <linux/videodev2.h>
#include <linux/v4l2-dv-timings.h>
#include <media/v4l2-dv-timings.h>
#include <linux/math64.h>
#include <linux/hdmi.h>
#include <media/cec.h>
MODULE_AUTHOR("Hans Verkuil");
MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
MODULE_LICENSE("GPL");
const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
V4L2_DV_BT_CEA_640X480P59_94,
V4L2_DV_BT_CEA_720X480I59_94,
V4L2_DV_BT_CEA_720X480P59_94,
V4L2_DV_BT_CEA_720X576I50,
V4L2_DV_BT_CEA_720X576P50,
V4L2_DV_BT_CEA_1280X720P24,
V4L2_DV_BT_CEA_1280X720P25,
V4L2_DV_BT_CEA_1280X720P30,
V4L2_DV_BT_CEA_1280X720P50,
V4L2_DV_BT_CEA_1280X720P60,
V4L2_DV_BT_CEA_1920X1080P24,
V4L2_DV_BT_CEA_1920X1080P25,
V4L2_DV_BT_CEA_1920X1080P30,
V4L2_DV_BT_CEA_1920X1080I50,
V4L2_DV_BT_CEA_1920X1080P50,
V4L2_DV_BT_CEA_1920X1080I60,
V4L2_DV_BT_CEA_1920X1080P60,
V4L2_DV_BT_DMT_640X350P85,
V4L2_DV_BT_DMT_640X400P85,
V4L2_DV_BT_DMT_720X400P85,
V4L2_DV_BT_DMT_640X480P72,
V4L2_DV_BT_DMT_640X480P75,
V4L2_DV_BT_DMT_640X480P85,
V4L2_DV_BT_DMT_800X600P56,
V4L2_DV_BT_DMT_800X600P60,
V4L2_DV_BT_DMT_800X600P72,
V4L2_DV_BT_DMT_800X600P75,
V4L2_DV_BT_DMT_800X600P85,
V4L2_DV_BT_DMT_800X600P120_RB,
V4L2_DV_BT_DMT_848X480P60,
V4L2_DV_BT_DMT_1024X768I43,
V4L2_DV_BT_DMT_1024X768P60,
V4L2_DV_BT_DMT_1024X768P70,
V4L2_DV_BT_DMT_1024X768P75,
V4L2_DV_BT_DMT_1024X768P85,
V4L2_DV_BT_DMT_1024X768P120_RB,
V4L2_DV_BT_DMT_1152X864P75,
V4L2_DV_BT_DMT_1280X768P60_RB,
V4L2_DV_BT_DMT_1280X768P60,
V4L2_DV_BT_DMT_1280X768P75,
V4L2_DV_BT_DMT_1280X768P85,
V4L2_DV_BT_DMT_1280X768P120_RB,
V4L2_DV_BT_DMT_1280X800P60_RB,
V4L2_DV_BT_DMT_1280X800P60,
V4L2_DV_BT_DMT_1280X800P75,
V4L2_DV_BT_DMT_1280X800P85,
V4L2_DV_BT_DMT_1280X800P120_RB,
V4L2_DV_BT_DMT_1280X960P60,
V4L2_DV_BT_DMT_1280X960P85,
V4L2_DV_BT_DMT_1280X960P120_RB,
V4L2_DV_BT_DMT_1280X1024P60,
V4L2_DV_BT_DMT_1280X1024P75,
V4L2_DV_BT_DMT_1280X1024P85,
V4L2_DV_BT_DMT_1280X1024P120_RB,
V4L2_DV_BT_DMT_1360X768P60,
V4L2_DV_BT_DMT_1360X768P120_RB,
V4L2_DV_BT_DMT_1366X768P60,
V4L2_DV_BT_DMT_1366X768P60_RB,
V4L2_DV_BT_DMT_1400X1050P60_RB,
V4L2_DV_BT_DMT_1400X1050P60,
V4L2_DV_BT_DMT_1400X1050P75,
V4L2_DV_BT_DMT_1400X1050P85,
V4L2_DV_BT_DMT_1400X1050P120_RB,
V4L2_DV_BT_DMT_1440X900P60_RB,
V4L2_DV_BT_DMT_1440X900P60,
V4L2_DV_BT_DMT_1440X900P75,
V4L2_DV_BT_DMT_1440X900P85,
V4L2_DV_BT_DMT_1440X900P120_RB,
V4L2_DV_BT_DMT_1600X900P60_RB,
V4L2_DV_BT_DMT_1600X1200P60,
V4L2_DV_BT_DMT_1600X1200P65,
V4L2_DV_BT_DMT_1600X1200P70,
V4L2_DV_BT_DMT_1600X1200P75,
V4L2_DV_BT_DMT_1600X1200P85,
V4L2_DV_BT_DMT_1600X1200P120_RB,
V4L2_DV_BT_DMT_1680X1050P60_RB,
V4L2_DV_BT_DMT_1680X1050P60,
V4L2_DV_BT_DMT_1680X1050P75,
V4L2_DV_BT_DMT_1680X1050P85,
V4L2_DV_BT_DMT_1680X1050P120_RB,
V4L2_DV_BT_DMT_1792X1344P60,
V4L2_DV_BT_DMT_1792X1344P75,
V4L2_DV_BT_DMT_1792X1344P120_RB,
V4L2_DV_BT_DMT_1856X1392P60,
V4L2_DV_BT_DMT_1856X1392P75,
V4L2_DV_BT_DMT_1856X1392P120_RB,
V4L2_DV_BT_DMT_1920X1200P60_RB,
V4L2_DV_BT_DMT_1920X1200P60,
V4L2_DV_BT_DMT_1920X1200P75,
V4L2_DV_BT_DMT_1920X1200P85,
V4L2_DV_BT_DMT_1920X1200P120_RB,
V4L2_DV_BT_DMT_1920X1440P60,
V4L2_DV_BT_DMT_1920X1440P75,
V4L2_DV_BT_DMT_1920X1440P120_RB,
V4L2_DV_BT_DMT_2048X1152P60_RB,
V4L2_DV_BT_DMT_2560X1600P60_RB,
V4L2_DV_BT_DMT_2560X1600P60,
V4L2_DV_BT_DMT_2560X1600P75,
V4L2_DV_BT_DMT_2560X1600P85,
V4L2_DV_BT_DMT_2560X1600P120_RB,
V4L2_DV_BT_CEA_3840X2160P24,
V4L2_DV_BT_CEA_3840X2160P25,
V4L2_DV_BT_CEA_3840X2160P30,
V4L2_DV_BT_CEA_3840X2160P50,
V4L2_DV_BT_CEA_3840X2160P60,
V4L2_DV_BT_CEA_4096X2160P24,
V4L2_DV_BT_CEA_4096X2160P25,
V4L2_DV_BT_CEA_4096X2160P30,
V4L2_DV_BT_CEA_4096X2160P50,
V4L2_DV_BT_DMT_4096X2160P59_94_RB,
V4L2_DV_BT_CEA_4096X2160P60,
{ }
};
EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
const struct v4l2_dv_timings_cap *dvcap,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
const struct v4l2_bt_timings *bt = &t->bt;
const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
u32 caps = cap->capabilities;
if (t->type != V4L2_DV_BT_656_1120)
return false;
if (t->type != dvcap->type ||
bt->height < cap->min_height ||
bt->height > cap->max_height ||
bt->width < cap->min_width ||
bt->width > cap->max_width ||
bt->pixelclock < cap->min_pixelclock ||
bt->pixelclock > cap->max_pixelclock ||
(!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
cap->standards && bt->standards &&
!(bt->standards & cap->standards)) ||
(bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
(!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
return false;
return fnc == NULL || fnc(t, fnc_handle);
}
EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
const struct v4l2_dv_timings_cap *cap,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
u32 i, idx;
memset(t->reserved, 0, sizeof(t->reserved));
for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
fnc, fnc_handle) &&
idx++ == t->index) {
t->timings = v4l2_dv_timings_presets[i];
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
const struct v4l2_dv_timings_cap *cap,
unsigned pclock_delta,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
int i;
if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
return false;
for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
fnc, fnc_handle) &&
v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
pclock_delta, false)) {
u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
*t = v4l2_dv_timings_presets[i];
if (can_reduce_fps(&t->bt))
t->bt.flags |= flags;
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
{
unsigned int i;
for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
const struct v4l2_bt_timings *bt =
&v4l2_dv_timings_presets[i].bt;
if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
bt->cea861_vic == vic) {
*t = v4l2_dv_timings_presets[i];
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
/**
* v4l2_match_dv_timings - check if two timings match
* @t1: compare this v4l2_dv_timings struct...
* @t2: with this struct.
* @pclock_delta: the allowed pixelclock deviation.
* @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
* match.
*
* Compare t1 with t2 with a given margin of error for the pixelclock.
*/
bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
const struct v4l2_dv_timings *t2,
unsigned pclock_delta, bool match_reduced_fps)
{
if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
return false;
if (t1->bt.width == t2->bt.width &&
t1->bt.height == t2->bt.height &&
t1->bt.interlaced == t2->bt.interlaced &&
t1->bt.polarities == t2->bt.polarities &&
t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
t1->bt.hfrontporch == t2->bt.hfrontporch &&
t1->bt.hsync == t2->bt.hsync &&
t1->bt.hbackporch == t2->bt.hbackporch &&
t1->bt.vfrontporch == t2->bt.vfrontporch &&
t1->bt.vsync == t2->bt.vsync &&
t1->bt.vbackporch == t2->bt.vbackporch &&
(!match_reduced_fps ||
(t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
(!t1->bt.interlaced ||
(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
t1->bt.il_vsync == t2->bt.il_vsync &&
t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
return true;
return false;
}
EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
const struct v4l2_dv_timings *t, bool detailed)
{
const struct v4l2_bt_timings *bt = &t->bt;
u32 htot, vtot;
u32 fps;
if (t->type != V4L2_DV_BT_656_1120)
return;
htot = V4L2_DV_BT_FRAME_WIDTH(bt);
vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
if (bt->interlaced)
vtot /= 2;
fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
(htot * vtot)) : 0;
if (prefix == NULL)
prefix = "";
pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
bt->width, bt->height, bt->interlaced ? "i" : "p",
fps / 100, fps % 100, htot, vtot);
if (!detailed)
return;
pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->hfrontporch,
(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
bt->hsync, bt->hbackporch);
pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->vfrontporch,
(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
bt->vsync, bt->vbackporch);
if (bt->interlaced)
pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->il_vfrontporch,
(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
bt->il_vsync, bt->il_vbackporch);
pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
dev_prefix, bt->flags,
(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
" REDUCED_BLANKING" : "",
((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
bt->vsync == 8) ? " (V2)" : "",
(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
" CAN_REDUCE_FPS" : "",
(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
" REDUCED_FPS" : "",
(bt->flags & V4L2_DV_FL_HALF_LINE) ?
" HALF_LINE" : "",
(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
" CE_VIDEO" : "",
(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
" FIRST_FIELD_EXTRA_LINE" : "",
(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
" HAS_PICTURE_ASPECT" : "",
(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
" HAS_CEA861_VIC" : "",
(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
" HAS_HDMI_VIC" : "");
pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
(bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "",
(bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "",
(bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "",
(bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "",
(bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : "");
if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
bt->picture_aspect.numerator,
bt->picture_aspect.denominator);
if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
}
EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
{
struct v4l2_fract ratio = { 1, 1 };
unsigned long n, d;
if (t->type != V4L2_DV_BT_656_1120)
return ratio;
if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
return ratio;
ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
rational_best_approximation(ratio.numerator, ratio.denominator,
ratio.numerator, ratio.denominator, &n, &d);
ratio.numerator = n;
ratio.denominator = d;
return ratio;
}
EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
/** v4l2_calc_timeperframe - helper function to calculate timeperframe based
* v4l2_dv_timings fields.
* @t - Timings for the video mode.
*
* Calculates the expected timeperframe using the pixel clock value and
* horizontal/vertical measures. This means that v4l2_dv_timings structure
* must be correctly and fully filled.
*/
struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
{
const struct v4l2_bt_timings *bt = &t->bt;
struct v4l2_fract fps_fract = { 1, 1 };
unsigned long n, d;
u32 htot, vtot, fps;
u64 pclk;
if (t->type != V4L2_DV_BT_656_1120)
return fps_fract;
htot = V4L2_DV_BT_FRAME_WIDTH(bt);
vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
pclk = bt->pixelclock;
if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
(bt->flags & V4L2_DV_FL_REDUCED_FPS))
pclk = div_u64(pclk * 1000ULL, 1001);
fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
if (!fps)
return fps_fract;
rational_best_approximation(fps, 100, fps, 100, &n, &d);
fps_fract.numerator = d;
fps_fract.denominator = n;
return fps_fract;
}
EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
/*
* CVT defines
* Based on Coordinated Video Timings Standard
* version 1.1 September 10, 2003
*/
#define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
#define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/
/* Normal blanking */
#define CVT_MIN_V_BPORCH 7 /* lines */
#define CVT_MIN_V_PORCH_RND 3 /* lines */
#define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
#define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */
/* Normal blanking for CVT uses GTF to calculate horizontal blanking */
#define CVT_CELL_GRAN 8 /* character cell granularity */
#define CVT_M 600 /* blanking formula gradient */
#define CVT_C 40 /* blanking formula offset */
#define CVT_K 128 /* blanking formula scaling factor */
#define CVT_J 20 /* blanking formula scaling factor */
#define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
#define CVT_M_PRIME (CVT_K * CVT_M / 256)
/* Reduced Blanking */
#define CVT_RB_MIN_V_BPORCH 7 /* lines */
#define CVT_RB_V_FPORCH 3 /* lines */
#define CVT_RB_MIN_V_BLANK 460 /* us */
#define CVT_RB_H_SYNC 32 /* pixels */
#define CVT_RB_H_BLANK 160 /* pixels */
/* Reduce blanking Version 2 */
#define CVT_RB_V2_H_BLANK 80 /* pixels */
#define CVT_RB_MIN_V_FPORCH 3 /* lines */
#define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */
#define CVT_RB_V_BPORCH 6 /* lines */
/** v4l2_detect_cvt - detect if the given timings follow the CVT standard
* @frame_height - the total height of the frame (including blanking) in lines.
* @hfreq - the horizontal frequency in Hz.
* @vsync - the height of the vertical sync in lines.
* @active_width - active width of image (does not include blanking). This
* information is needed only in case of version 2 of reduced blanking.
* In other cases, this parameter does not have any effect on timings.
* @polarities - the horizontal and vertical polarities (same as struct
* v4l2_bt_timings polarities).
* @interlaced - if this flag is true, it indicates interlaced format
* @fmt - the resulting timings.
*
* This function will attempt to detect if the given values correspond to a
* valid CVT format. If so, then it will return true, and fmt will be filled
* in with the found CVT timings.
*/
bool v4l2_detect_cvt(unsigned frame_height,
unsigned hfreq,
unsigned vsync,
unsigned active_width,
u32 polarities,
bool interlaced,
struct v4l2_dv_timings *fmt)
{
int v_fp, v_bp, h_fp, h_bp, hsync;
int frame_width, image_height, image_width;
bool reduced_blanking;
bool rb_v2 = false;
unsigned pix_clk;
if (vsync < 4 || vsync > 8)
return false;
if (polarities == V4L2_DV_VSYNC_POS_POL)
reduced_blanking = false;
else if (polarities == V4L2_DV_HSYNC_POS_POL)
reduced_blanking = true;
else
return false;
if (reduced_blanking && vsync == 8)
rb_v2 = true;
if (rb_v2 && active_width == 0)
return false;
if (!rb_v2 && vsync > 7)
return false;
if (hfreq == 0)
return false;
/* Vertical */
if (reduced_blanking) {
if (rb_v2) {
v_bp = CVT_RB_V_BPORCH;
v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
v_fp -= vsync + v_bp;
if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
v_fp = CVT_RB_V2_MIN_V_FPORCH;
} else {
v_fp = CVT_RB_V_FPORCH;
v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
v_bp -= vsync + v_fp;
if (v_bp < CVT_RB_MIN_V_BPORCH)
v_bp = CVT_RB_MIN_V_BPORCH;
}
} else {
v_fp = CVT_MIN_V_PORCH_RND;
v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
if (v_bp < CVT_MIN_V_BPORCH)
v_bp = CVT_MIN_V_BPORCH;
}
if (interlaced)
image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
else
image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
if (image_height < 0)
return false;
/* Aspect ratio based on vsync */
switch (vsync) {
case 4:
image_width = (image_height * 4) / 3;
break;
case 5:
image_width = (image_height * 16) / 9;
break;
case 6:
image_width = (image_height * 16) / 10;
break;
case 7:
/* special case */
if (image_height == 1024)
image_width = (image_height * 5) / 4;
else if (image_height == 768)
image_width = (image_height * 15) / 9;
else
return false;
break;
case 8:
image_width = active_width;
break;
default:
return false;
}
if (!rb_v2)
image_width = image_width & ~7;
/* Horizontal */
if (reduced_blanking) {
int h_blank;
int clk_gran;
h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = (pix_clk / clk_gran) * clk_gran;
h_bp = h_blank / 2;
hsync = CVT_RB_H_SYNC;
h_fp = h_blank - h_bp - hsync;
frame_width = image_width + h_blank;
} else {
unsigned ideal_duty_cycle_per_myriad =
100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
int h_blank;
if (ideal_duty_cycle_per_myriad < 2000)
ideal_duty_cycle_per_myriad = 2000;
h_blank = image_width * ideal_duty_cycle_per_myriad /
(10000 - ideal_duty_cycle_per_myriad);
h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
h_bp = h_blank / 2;
frame_width = image_width + h_blank;
hsync = frame_width * CVT_HSYNC_PERCENT / 100;
hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
h_fp = h_blank - hsync - h_bp;
}
fmt->type = V4L2_DV_BT_656_1120;
fmt->bt.polarities = polarities;
fmt->bt.width = image_width;
fmt->bt.height = image_height;
fmt->bt.hfrontporch = h_fp;
fmt->bt.vfrontporch = v_fp;
fmt->bt.hsync = hsync;
fmt->bt.vsync = vsync;
fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
if (!interlaced) {
fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
} else {
fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
2 * vsync) / 2;
fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
2 * vsync - fmt->bt.vbackporch;
fmt->bt.il_vfrontporch = v_fp;
fmt->bt.il_vsync = vsync;
fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
fmt->bt.interlaced = V4L2_DV_INTERLACED;
}
fmt->bt.pixelclock = pix_clk;
fmt->bt.standards = V4L2_DV_BT_STD_CVT;
if (reduced_blanking)
fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
return true;
}
EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
/*
* GTF defines
* Based on Generalized Timing Formula Standard
* Version 1.1 September 2, 1999
*/
#define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
#define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
#define GTF_V_FP 1 /* vertical front porch (lines) */
#define GTF_CELL_GRAN 8 /* character cell granularity */
/* Default */
#define GTF_D_M 600 /* blanking formula gradient */
#define GTF_D_C 40 /* blanking formula offset */
#define GTF_D_K 128 /* blanking formula scaling factor */
#define GTF_D_J 20 /* blanking formula scaling factor */
#define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
#define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
/* Secondary */
#define GTF_S_M 3600 /* blanking formula gradient */
#define GTF_S_C 40 /* blanking formula offset */
#define GTF_S_K 128 /* blanking formula scaling factor */
#define GTF_S_J 35 /* blanking formula scaling factor */
#define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
#define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
/** v4l2_detect_gtf - detect if the given timings follow the GTF standard
* @frame_height - the total height of the frame (including blanking) in lines.
* @hfreq - the horizontal frequency in Hz.
* @vsync - the height of the vertical sync in lines.
* @polarities - the horizontal and vertical polarities (same as struct
* v4l2_bt_timings polarities).
* @interlaced - if this flag is true, it indicates interlaced format
* @aspect - preferred aspect ratio. GTF has no method of determining the
* aspect ratio in order to derive the image width from the
* image height, so it has to be passed explicitly. Usually
* the native screen aspect ratio is used for this. If it
* is not filled in correctly, then 16:9 will be assumed.
* @fmt - the resulting timings.
*
* This function will attempt to detect if the given values correspond to a
* valid GTF format. If so, then it will return true, and fmt will be filled
* in with the found GTF timings.
*/
bool v4l2_detect_gtf(unsigned frame_height,
unsigned hfreq,
unsigned vsync,
u32 polarities,
bool interlaced,
struct v4l2_fract aspect,
struct v4l2_dv_timings *fmt)
{
int pix_clk;
int v_fp, v_bp, h_fp, hsync;
int frame_width, image_height, image_width;
bool default_gtf;
int h_blank;
if (vsync != 3)
return false;
if (polarities == V4L2_DV_VSYNC_POS_POL)
default_gtf = true;
else if (polarities == V4L2_DV_HSYNC_POS_POL)
default_gtf = false;
else
return false;
if (hfreq == 0)
return false;
/* Vertical */
v_fp = GTF_V_FP;
v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
if (interlaced)
image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
else
image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
if (image_height < 0)
return false;
if (aspect.numerator == 0 || aspect.denominator == 0) {
aspect.numerator = 16;
aspect.denominator = 9;
}
image_width = ((image_height * aspect.numerator) / aspect.denominator);
image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
/* Horizontal */
if (default_gtf) {
u64 num;
u32 den;
num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
((u64)image_width * GTF_D_M_PRIME * 1000));
den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
(2 * GTF_CELL_GRAN);
h_blank = div_u64((num + (den >> 1)), den);
h_blank *= (2 * GTF_CELL_GRAN);
} else {
u64 num;
u32 den;
num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
((u64)image_width * GTF_S_M_PRIME * 1000));
den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
(2 * GTF_CELL_GRAN);
h_blank = div_u64((num + (den >> 1)), den);
h_blank *= (2 * GTF_CELL_GRAN);
}
frame_width = image_width + h_blank;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
hsync = (frame_width * 8 + 50) / 100;
hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
h_fp = h_blank / 2 - hsync;
fmt->type = V4L2_DV_BT_656_1120;
fmt->bt.polarities = polarities;
fmt->bt.width = image_width;
fmt->bt.height = image_height;
fmt->bt.hfrontporch = h_fp;
fmt->bt.vfrontporch = v_fp;
fmt->bt.hsync = hsync;
fmt->bt.vsync = vsync;
fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
if (!interlaced) {
fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
} else {
fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
2 * vsync) / 2;
fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
2 * vsync - fmt->bt.vbackporch;
fmt->bt.il_vfrontporch = v_fp;
fmt->bt.il_vsync = vsync;
fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
fmt->bt.interlaced = V4L2_DV_INTERLACED;
}
fmt->bt.pixelclock = pix_clk;
fmt->bt.standards = V4L2_DV_BT_STD_GTF;
if (!default_gtf)
fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
return true;
}
EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
/** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
* 0x15 and 0x16 from the EDID.
* @hor_landscape - byte 0x15 from the EDID.
* @vert_portrait - byte 0x16 from the EDID.
*
* Determines the aspect ratio from the EDID.
* See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
* "Horizontal and Vertical Screen Size or Aspect Ratio"
*/
struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
{
struct v4l2_fract aspect = { 16, 9 };
u8 ratio;
/* Nothing filled in, fallback to 16:9 */
if (!hor_landscape && !vert_portrait)
return aspect;
/* Both filled in, so they are interpreted as the screen size in cm */
if (hor_landscape && vert_portrait) {
aspect.numerator = hor_landscape;
aspect.denominator = vert_portrait;
return aspect;
}
/* Only one is filled in, so interpret them as a ratio:
(val + 99) / 100 */
ratio = hor_landscape | vert_portrait;
/* Change some rounded values into the exact aspect ratio */
if (ratio == 79) {
aspect.numerator = 16;
aspect.denominator = 9;
} else if (ratio == 34) {
aspect.numerator = 4;
aspect.denominator = 3;
} else if (ratio == 68) {
aspect.numerator = 15;
aspect.denominator = 9;
} else {
aspect.numerator = hor_landscape + 99;
aspect.denominator = 100;
}
if (hor_landscape)
return aspect;
/* The aspect ratio is for portrait, so swap numerator and denominator */
swap(aspect.denominator, aspect.numerator);
return aspect;
}
EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
/** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
* based on various InfoFrames.
* @avi: the AVI InfoFrame
* @hdmi: the HDMI Vendor InfoFrame, may be NULL
* @height: the frame height
*
* Determines the HDMI colorimetry information, i.e. how the HDMI
* pixel color data should be interpreted.
*
* Note that some of the newer features (DCI-P3, HDR) are not yet
* implemented: the hdmi.h header needs to be updated to the HDMI 2.0
* and CTA-861-G standards.
*/
struct v4l2_hdmi_colorimetry
v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
const struct hdmi_vendor_infoframe *hdmi,
unsigned int height)
{
struct v4l2_hdmi_colorimetry c = {
V4L2_COLORSPACE_SRGB,
V4L2_YCBCR_ENC_DEFAULT,
V4L2_QUANTIZATION_FULL_RANGE,
V4L2_XFER_FUNC_SRGB
};
bool is_ce = avi->video_code || (hdmi && hdmi->vic);
bool is_sdtv = height <= 576;
bool default_is_lim_range_rgb = avi->video_code > 1;
switch (avi->colorspace) {
case HDMI_COLORSPACE_RGB:
/* RGB pixel encoding */
switch (avi->colorimetry) {
case HDMI_COLORIMETRY_EXTENDED:
switch (avi->extended_colorimetry) {
case HDMI_EXTENDED_COLORIMETRY_ADOBE_RGB:
c.colorspace = V4L2_COLORSPACE_ADOBERGB;
c.xfer_func = V4L2_XFER_FUNC_ADOBERGB;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
default:
break;
}
break;
default:
break;
}
switch (avi->quantization_range) {
case HDMI_QUANTIZATION_RANGE_LIMITED:
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
break;
case HDMI_QUANTIZATION_RANGE_FULL:
break;
default:
if (default_is_lim_range_rgb)
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
break;
}
break;
default:
/* YCbCr pixel encoding */
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
switch (avi->colorimetry) {
case HDMI_COLORIMETRY_NONE:
if (!is_ce)
break;
if (is_sdtv) {
c.colorspace = V4L2_COLORSPACE_SMPTE170M;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
} else {
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
}
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_ITU_601:
c.colorspace = V4L2_COLORSPACE_SMPTE170M;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_ITU_709:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_EXTENDED:
switch (avi->extended_colorimetry) {
case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
c.colorspace = V4L2_COLORSPACE_SRGB;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_SRGB;
break;
case HDMI_EXTENDED_COLORIMETRY_ADOBE_YCC_601:
c.colorspace = V4L2_COLORSPACE_ADOBERGB;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_ADOBERGB;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
default: /* fall back to ITU_709 */
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
}
break;
default:
break;
}
/*
* YCC Quantization Range signaling is more-or-less broken,
* let's just ignore this.
*/
break;
}
return c;
}
EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
/**
* v4l2_get_edid_phys_addr() - find and return the physical address
*
* @edid: pointer to the EDID data
* @size: size in bytes of the EDID data
* @offset: If not %NULL then the location of the physical address
* bytes in the EDID will be returned here. This is set to 0
* if there is no physical address found.
*
* Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
*/
u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
unsigned int *offset)
{
unsigned int loc = cec_get_edid_spa_location(edid, size);
if (offset)
*offset = loc;
if (loc == 0)
return CEC_PHYS_ADDR_INVALID;
return (edid[loc] << 8) | edid[loc + 1];
}
EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
/**
* v4l2_set_edid_phys_addr() - find and set the physical address
*
* @edid: pointer to the EDID data
* @size: size in bytes of the EDID data
* @phys_addr: the new physical address
*
* This function finds the location of the physical address in the EDID
* and fills in the given physical address and updates the checksum
* at the end of the EDID block. It does nothing if the EDID doesn't
* contain a physical address.
*/
void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
{
unsigned int loc = cec_get_edid_spa_location(edid, size);
u8 sum = 0;
unsigned int i;
if (loc == 0)
return;
edid[loc] = phys_addr >> 8;
edid[loc + 1] = phys_addr & 0xff;
loc &= ~0x7f;
/* update the checksum */
for (i = loc; i < loc + 127; i++)
sum += edid[i];
edid[i] = 256 - sum;
}
EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
/**
* v4l2_phys_addr_for_input() - calculate the PA for an input
*
* @phys_addr: the physical address of the parent
* @input: the number of the input port, must be between 1 and 15
*
* This function calculates a new physical address based on the input
* port number. For example:
*
* PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
*
* PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
*
* PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
*
* PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
*
* Return: the new physical address or CEC_PHYS_ADDR_INVALID.
*/
u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
{
/* Check if input is sane */
if (WARN_ON(input == 0 || input > 0xf))
return CEC_PHYS_ADDR_INVALID;
if (phys_addr == 0)
return input << 12;
if ((phys_addr & 0x0fff) == 0)
return phys_addr | (input << 8);
if ((phys_addr & 0x00ff) == 0)
return phys_addr | (input << 4);
if ((phys_addr & 0x000f) == 0)
return phys_addr | input;
/*
* All nibbles are used so no valid physical addresses can be assigned
* to the input.
*/
return CEC_PHYS_ADDR_INVALID;
}
EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
/**
* v4l2_phys_addr_validate() - validate a physical address from an EDID
*
* @phys_addr: the physical address to validate
* @parent: if not %NULL, then this is filled with the parents PA.
* @port: if not %NULL, then this is filled with the input port.
*
* This validates a physical address as read from an EDID. If the
* PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
* then it will return -EINVAL.
*
* The parent PA is passed into %parent and the input port is passed into
* %port. For example:
*
* PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
*
* PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
*
* PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
*
* PA = f.f.f.f: has parent f.f.f.f and input port 0.
*
* Return: 0 if the PA is valid, -EINVAL if not.
*/
int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
{
int i;
if (parent)
*parent = phys_addr;
if (port)
*port = 0;
if (phys_addr == CEC_PHYS_ADDR_INVALID)
return 0;
for (i = 0; i < 16; i += 4)
if (phys_addr & (0xf << i))
break;
if (i == 16)
return 0;
if (parent)
*parent = phys_addr & (0xfff0 << i);
if (port)
*port = (phys_addr >> i) & 0xf;
for (i += 4; i < 16; i += 4)
if ((phys_addr & (0xf << i)) == 0)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);