mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 20:53:53 +08:00
fe0754f0e5
Fix bug introduced in commit eb01c9cd87
aka
"[XFS] Remove the xlog_ticket allocator"
SGI-PV: 980887
SGI-Modid: xfs-linux-melb:xfs-kern:30995a
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
1363 lines
34 KiB
C
1363 lines
34 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_rw.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_dir2_trace.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_acl.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_clnt.h"
|
|
#include "xfs_mru_cache.h"
|
|
#include "xfs_filestream.h"
|
|
#include "xfs_fsops.h"
|
|
#include "xfs_vnodeops.h"
|
|
#include "xfs_vfsops.h"
|
|
#include "xfs_utils.h"
|
|
|
|
|
|
int __init
|
|
xfs_init(void)
|
|
{
|
|
#ifdef XFS_DABUF_DEBUG
|
|
extern spinlock_t xfs_dabuf_global_lock;
|
|
spin_lock_init(&xfs_dabuf_global_lock);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize all of the zone allocators we use.
|
|
*/
|
|
xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
|
|
"xfs_log_ticket");
|
|
xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
|
|
"xfs_bmap_free_item");
|
|
xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
|
|
"xfs_btree_cur");
|
|
xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
|
|
"xfs_da_state");
|
|
xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
|
|
xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
|
|
xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
|
|
xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
|
|
xfs_mru_cache_init();
|
|
xfs_filestream_init();
|
|
|
|
/*
|
|
* The size of the zone allocated buf log item is the maximum
|
|
* size possible under XFS. This wastes a little bit of memory,
|
|
* but it is much faster.
|
|
*/
|
|
xfs_buf_item_zone =
|
|
kmem_zone_init((sizeof(xfs_buf_log_item_t) +
|
|
(((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
|
|
NBWORD) * sizeof(int))),
|
|
"xfs_buf_item");
|
|
xfs_efd_zone =
|
|
kmem_zone_init((sizeof(xfs_efd_log_item_t) +
|
|
((XFS_EFD_MAX_FAST_EXTENTS - 1) *
|
|
sizeof(xfs_extent_t))),
|
|
"xfs_efd_item");
|
|
xfs_efi_zone =
|
|
kmem_zone_init((sizeof(xfs_efi_log_item_t) +
|
|
((XFS_EFI_MAX_FAST_EXTENTS - 1) *
|
|
sizeof(xfs_extent_t))),
|
|
"xfs_efi_item");
|
|
|
|
/*
|
|
* These zones warrant special memory allocator hints
|
|
*/
|
|
xfs_inode_zone =
|
|
kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
|
|
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
|
|
KM_ZONE_SPREAD, NULL);
|
|
xfs_ili_zone =
|
|
kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
|
|
KM_ZONE_SPREAD, NULL);
|
|
|
|
/*
|
|
* Allocate global trace buffers.
|
|
*/
|
|
#ifdef XFS_ALLOC_TRACE
|
|
xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
|
|
#endif
|
|
#ifdef XFS_BMAP_TRACE
|
|
xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
|
|
#endif
|
|
#ifdef XFS_BMBT_TRACE
|
|
xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
|
|
#endif
|
|
#ifdef XFS_ATTR_TRACE
|
|
xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
|
|
#endif
|
|
#ifdef XFS_DIR2_TRACE
|
|
xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
|
|
#endif
|
|
|
|
xfs_dir_startup();
|
|
|
|
#if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
|
|
xfs_error_test_init();
|
|
#endif /* DEBUG || INDUCE_IO_ERROR */
|
|
|
|
xfs_init_procfs();
|
|
xfs_sysctl_register();
|
|
return 0;
|
|
}
|
|
|
|
void __exit
|
|
xfs_cleanup(void)
|
|
{
|
|
extern kmem_zone_t *xfs_inode_zone;
|
|
extern kmem_zone_t *xfs_efd_zone;
|
|
extern kmem_zone_t *xfs_efi_zone;
|
|
|
|
xfs_cleanup_procfs();
|
|
xfs_sysctl_unregister();
|
|
xfs_filestream_uninit();
|
|
xfs_mru_cache_uninit();
|
|
xfs_acl_zone_destroy(xfs_acl_zone);
|
|
|
|
#ifdef XFS_DIR2_TRACE
|
|
ktrace_free(xfs_dir2_trace_buf);
|
|
#endif
|
|
#ifdef XFS_ATTR_TRACE
|
|
ktrace_free(xfs_attr_trace_buf);
|
|
#endif
|
|
#ifdef XFS_BMBT_TRACE
|
|
ktrace_free(xfs_bmbt_trace_buf);
|
|
#endif
|
|
#ifdef XFS_BMAP_TRACE
|
|
ktrace_free(xfs_bmap_trace_buf);
|
|
#endif
|
|
#ifdef XFS_ALLOC_TRACE
|
|
ktrace_free(xfs_alloc_trace_buf);
|
|
#endif
|
|
|
|
kmem_zone_destroy(xfs_bmap_free_item_zone);
|
|
kmem_zone_destroy(xfs_btree_cur_zone);
|
|
kmem_zone_destroy(xfs_inode_zone);
|
|
kmem_zone_destroy(xfs_trans_zone);
|
|
kmem_zone_destroy(xfs_da_state_zone);
|
|
kmem_zone_destroy(xfs_dabuf_zone);
|
|
kmem_zone_destroy(xfs_buf_item_zone);
|
|
kmem_zone_destroy(xfs_efd_zone);
|
|
kmem_zone_destroy(xfs_efi_zone);
|
|
kmem_zone_destroy(xfs_ifork_zone);
|
|
kmem_zone_destroy(xfs_ili_zone);
|
|
kmem_zone_destroy(xfs_log_ticket_zone);
|
|
}
|
|
|
|
/*
|
|
* xfs_start_flags
|
|
*
|
|
* This function fills in xfs_mount_t fields based on mount args.
|
|
* Note: the superblock has _not_ yet been read in.
|
|
*/
|
|
STATIC int
|
|
xfs_start_flags(
|
|
struct xfs_mount_args *ap,
|
|
struct xfs_mount *mp)
|
|
{
|
|
/* Values are in BBs */
|
|
if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
|
|
/*
|
|
* At this point the superblock has not been read
|
|
* in, therefore we do not know the block size.
|
|
* Before the mount call ends we will convert
|
|
* these to FSBs.
|
|
*/
|
|
mp->m_dalign = ap->sunit;
|
|
mp->m_swidth = ap->swidth;
|
|
}
|
|
|
|
if (ap->logbufs != -1 &&
|
|
ap->logbufs != 0 &&
|
|
(ap->logbufs < XLOG_MIN_ICLOGS ||
|
|
ap->logbufs > XLOG_MAX_ICLOGS)) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: invalid logbufs value: %d [not %d-%d]",
|
|
ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_logbufs = ap->logbufs;
|
|
if (ap->logbufsize != -1 &&
|
|
ap->logbufsize != 0 &&
|
|
(ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
|
|
ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
|
|
!is_power_of_2(ap->logbufsize))) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
|
|
ap->logbufsize);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_logbsize = ap->logbufsize;
|
|
mp->m_fsname_len = strlen(ap->fsname) + 1;
|
|
mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
|
|
strcpy(mp->m_fsname, ap->fsname);
|
|
if (ap->rtname[0]) {
|
|
mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
|
|
strcpy(mp->m_rtname, ap->rtname);
|
|
}
|
|
if (ap->logname[0]) {
|
|
mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
|
|
strcpy(mp->m_logname, ap->logname);
|
|
}
|
|
|
|
if (ap->flags & XFSMNT_WSYNC)
|
|
mp->m_flags |= XFS_MOUNT_WSYNC;
|
|
#if XFS_BIG_INUMS
|
|
if (ap->flags & XFSMNT_INO64) {
|
|
mp->m_flags |= XFS_MOUNT_INO64;
|
|
mp->m_inoadd = XFS_INO64_OFFSET;
|
|
}
|
|
#endif
|
|
if (ap->flags & XFSMNT_RETERR)
|
|
mp->m_flags |= XFS_MOUNT_RETERR;
|
|
if (ap->flags & XFSMNT_NOALIGN)
|
|
mp->m_flags |= XFS_MOUNT_NOALIGN;
|
|
if (ap->flags & XFSMNT_SWALLOC)
|
|
mp->m_flags |= XFS_MOUNT_SWALLOC;
|
|
if (ap->flags & XFSMNT_OSYNCISOSYNC)
|
|
mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
|
|
if (ap->flags & XFSMNT_32BITINODES)
|
|
mp->m_flags |= XFS_MOUNT_32BITINODES;
|
|
|
|
if (ap->flags & XFSMNT_IOSIZE) {
|
|
if (ap->iosizelog > XFS_MAX_IO_LOG ||
|
|
ap->iosizelog < XFS_MIN_IO_LOG) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: invalid log iosize: %d [not %d-%d]",
|
|
ap->iosizelog, XFS_MIN_IO_LOG,
|
|
XFS_MAX_IO_LOG);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
|
|
mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
|
|
mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
|
|
}
|
|
|
|
if (ap->flags & XFSMNT_IKEEP)
|
|
mp->m_flags |= XFS_MOUNT_IKEEP;
|
|
if (ap->flags & XFSMNT_DIRSYNC)
|
|
mp->m_flags |= XFS_MOUNT_DIRSYNC;
|
|
if (ap->flags & XFSMNT_ATTR2)
|
|
mp->m_flags |= XFS_MOUNT_ATTR2;
|
|
|
|
if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
|
|
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
|
|
|
|
/*
|
|
* no recovery flag requires a read-only mount
|
|
*/
|
|
if (ap->flags & XFSMNT_NORECOVERY) {
|
|
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: tried to mount a FS read-write without recovery!");
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_flags |= XFS_MOUNT_NORECOVERY;
|
|
}
|
|
|
|
if (ap->flags & XFSMNT_NOUUID)
|
|
mp->m_flags |= XFS_MOUNT_NOUUID;
|
|
if (ap->flags & XFSMNT_BARRIER)
|
|
mp->m_flags |= XFS_MOUNT_BARRIER;
|
|
else
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
|
|
if (ap->flags2 & XFSMNT2_FILESTREAMS)
|
|
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
|
|
|
|
if (ap->flags & XFSMNT_DMAPI)
|
|
mp->m_flags |= XFS_MOUNT_DMAPI;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function fills in xfs_mount_t fields based on mount args.
|
|
* Note: the superblock _has_ now been read in.
|
|
*/
|
|
STATIC int
|
|
xfs_finish_flags(
|
|
struct xfs_mount_args *ap,
|
|
struct xfs_mount *mp)
|
|
{
|
|
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
|
|
|
|
/* Fail a mount where the logbuf is smaller then the log stripe */
|
|
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
|
|
if ((ap->logbufsize <= 0) &&
|
|
(mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
|
|
mp->m_logbsize = mp->m_sb.sb_logsunit;
|
|
} else if (ap->logbufsize > 0 &&
|
|
ap->logbufsize < mp->m_sb.sb_logsunit) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: logbuf size must be greater than or equal to log stripe size");
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
} else {
|
|
/* Fail a mount if the logbuf is larger than 32K */
|
|
if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: logbuf size for version 1 logs must be 16K or 32K");
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
}
|
|
|
|
if (xfs_sb_version_hasattr2(&mp->m_sb))
|
|
mp->m_flags |= XFS_MOUNT_ATTR2;
|
|
|
|
/*
|
|
* prohibit r/w mounts of read-only filesystems
|
|
*/
|
|
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: cannot mount a read-only filesystem as read-write");
|
|
return XFS_ERROR(EROFS);
|
|
}
|
|
|
|
/*
|
|
* check for shared mount.
|
|
*/
|
|
if (ap->flags & XFSMNT_SHARED) {
|
|
if (!xfs_sb_version_hasshared(&mp->m_sb))
|
|
return XFS_ERROR(EINVAL);
|
|
|
|
/*
|
|
* For IRIX 6.5, shared mounts must have the shared
|
|
* version bit set, have the persistent readonly
|
|
* field set, must be version 0 and can only be mounted
|
|
* read-only.
|
|
*/
|
|
if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
|
|
(mp->m_sb.sb_shared_vn != 0))
|
|
return XFS_ERROR(EINVAL);
|
|
|
|
mp->m_flags |= XFS_MOUNT_SHARED;
|
|
|
|
/*
|
|
* Shared XFS V0 can't deal with DMI. Return EINVAL.
|
|
*/
|
|
if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
|
|
if (ap->flags & XFSMNT_UQUOTA) {
|
|
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
|
|
if (ap->flags & XFSMNT_UQUOTAENF)
|
|
mp->m_qflags |= XFS_UQUOTA_ENFD;
|
|
}
|
|
|
|
if (ap->flags & XFSMNT_GQUOTA) {
|
|
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
|
|
if (ap->flags & XFSMNT_GQUOTAENF)
|
|
mp->m_qflags |= XFS_OQUOTA_ENFD;
|
|
} else if (ap->flags & XFSMNT_PQUOTA) {
|
|
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
|
|
if (ap->flags & XFSMNT_PQUOTAENF)
|
|
mp->m_qflags |= XFS_OQUOTA_ENFD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_mount
|
|
*
|
|
* The file system configurations are:
|
|
* (1) device (partition) with data and internal log
|
|
* (2) logical volume with data and log subvolumes.
|
|
* (3) logical volume with data, log, and realtime subvolumes.
|
|
*
|
|
* We only have to handle opening the log and realtime volumes here if
|
|
* they are present. The data subvolume has already been opened by
|
|
* get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
|
|
*/
|
|
int
|
|
xfs_mount(
|
|
struct xfs_mount *mp,
|
|
struct xfs_mount_args *args,
|
|
cred_t *credp)
|
|
{
|
|
struct block_device *ddev, *logdev, *rtdev;
|
|
int flags = 0, error;
|
|
|
|
ddev = mp->m_super->s_bdev;
|
|
logdev = rtdev = NULL;
|
|
|
|
error = xfs_dmops_get(mp, args);
|
|
if (error)
|
|
return error;
|
|
error = xfs_qmops_get(mp, args);
|
|
if (error)
|
|
return error;
|
|
|
|
if (args->flags & XFSMNT_QUIET)
|
|
flags |= XFS_MFSI_QUIET;
|
|
|
|
/*
|
|
* Open real time and log devices - order is important.
|
|
*/
|
|
if (args->logname[0]) {
|
|
error = xfs_blkdev_get(mp, args->logname, &logdev);
|
|
if (error)
|
|
return error;
|
|
}
|
|
if (args->rtname[0]) {
|
|
error = xfs_blkdev_get(mp, args->rtname, &rtdev);
|
|
if (error) {
|
|
xfs_blkdev_put(logdev);
|
|
return error;
|
|
}
|
|
|
|
if (rtdev == ddev || rtdev == logdev) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
|
|
xfs_blkdev_put(logdev);
|
|
xfs_blkdev_put(rtdev);
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup xfs_mount buffer target pointers
|
|
*/
|
|
error = ENOMEM;
|
|
mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
|
|
if (!mp->m_ddev_targp) {
|
|
xfs_blkdev_put(logdev);
|
|
xfs_blkdev_put(rtdev);
|
|
return error;
|
|
}
|
|
if (rtdev) {
|
|
mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
|
|
if (!mp->m_rtdev_targp) {
|
|
xfs_blkdev_put(logdev);
|
|
xfs_blkdev_put(rtdev);
|
|
goto error0;
|
|
}
|
|
}
|
|
mp->m_logdev_targp = (logdev && logdev != ddev) ?
|
|
xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp;
|
|
if (!mp->m_logdev_targp) {
|
|
xfs_blkdev_put(logdev);
|
|
xfs_blkdev_put(rtdev);
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* Setup flags based on mount(2) options and then the superblock
|
|
*/
|
|
error = xfs_start_flags(args, mp);
|
|
if (error)
|
|
goto error1;
|
|
error = xfs_readsb(mp, flags);
|
|
if (error)
|
|
goto error1;
|
|
error = xfs_finish_flags(args, mp);
|
|
if (error)
|
|
goto error2;
|
|
|
|
/*
|
|
* Setup xfs_mount buffer target pointers based on superblock
|
|
*/
|
|
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
|
|
mp->m_sb.sb_sectsize);
|
|
if (!error && logdev && logdev != ddev) {
|
|
unsigned int log_sector_size = BBSIZE;
|
|
|
|
if (xfs_sb_version_hassector(&mp->m_sb))
|
|
log_sector_size = mp->m_sb.sb_logsectsize;
|
|
error = xfs_setsize_buftarg(mp->m_logdev_targp,
|
|
mp->m_sb.sb_blocksize,
|
|
log_sector_size);
|
|
}
|
|
if (!error && rtdev)
|
|
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
|
|
mp->m_sb.sb_blocksize,
|
|
mp->m_sb.sb_sectsize);
|
|
if (error)
|
|
goto error2;
|
|
|
|
if (mp->m_flags & XFS_MOUNT_BARRIER)
|
|
xfs_mountfs_check_barriers(mp);
|
|
|
|
if ((error = xfs_filestream_mount(mp)))
|
|
goto error2;
|
|
|
|
error = xfs_mountfs(mp, flags);
|
|
if (error)
|
|
goto error2;
|
|
|
|
XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
|
|
|
|
return 0;
|
|
|
|
error2:
|
|
if (mp->m_sb_bp)
|
|
xfs_freesb(mp);
|
|
error1:
|
|
xfs_binval(mp->m_ddev_targp);
|
|
if (logdev && logdev != ddev)
|
|
xfs_binval(mp->m_logdev_targp);
|
|
if (rtdev)
|
|
xfs_binval(mp->m_rtdev_targp);
|
|
error0:
|
|
xfs_unmountfs_close(mp, credp);
|
|
xfs_qmops_put(mp);
|
|
xfs_dmops_put(mp);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_unmount(
|
|
xfs_mount_t *mp,
|
|
int flags,
|
|
cred_t *credp)
|
|
{
|
|
xfs_inode_t *rip;
|
|
bhv_vnode_t *rvp;
|
|
int unmount_event_wanted = 0;
|
|
int unmount_event_flags = 0;
|
|
int xfs_unmountfs_needed = 0;
|
|
int error;
|
|
|
|
rip = mp->m_rootip;
|
|
rvp = XFS_ITOV(rip);
|
|
|
|
#ifdef HAVE_DMAPI
|
|
if (mp->m_flags & XFS_MOUNT_DMAPI) {
|
|
error = XFS_SEND_PREUNMOUNT(mp,
|
|
rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL,
|
|
NULL, NULL, 0, 0,
|
|
(mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
|
|
0:DM_FLAGS_UNWANTED);
|
|
if (error)
|
|
return XFS_ERROR(error);
|
|
unmount_event_wanted = 1;
|
|
unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
|
|
0 : DM_FLAGS_UNWANTED;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Blow away any referenced inode in the filestreams cache.
|
|
* This can and will cause log traffic as inodes go inactive
|
|
* here.
|
|
*/
|
|
xfs_filestream_unmount(mp);
|
|
|
|
XFS_bflush(mp->m_ddev_targp);
|
|
error = xfs_unmount_flush(mp, 0);
|
|
if (error)
|
|
goto out;
|
|
|
|
ASSERT(vn_count(rvp) == 1);
|
|
|
|
/*
|
|
* Drop the reference count
|
|
*/
|
|
IRELE(rip);
|
|
|
|
/*
|
|
* If we're forcing a shutdown, typically because of a media error,
|
|
* we want to make sure we invalidate dirty pages that belong to
|
|
* referenced vnodes as well.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
|
|
ASSERT(error != EFSCORRUPTED);
|
|
}
|
|
xfs_unmountfs_needed = 1;
|
|
|
|
out:
|
|
/* Send DMAPI event, if required.
|
|
* Then do xfs_unmountfs() if needed.
|
|
* Then return error (or zero).
|
|
*/
|
|
if (unmount_event_wanted) {
|
|
/* Note: mp structure must still exist for
|
|
* XFS_SEND_UNMOUNT() call.
|
|
*/
|
|
XFS_SEND_UNMOUNT(mp, error == 0 ? rip : NULL,
|
|
DM_RIGHT_NULL, 0, error, unmount_event_flags);
|
|
}
|
|
if (xfs_unmountfs_needed) {
|
|
/*
|
|
* Call common unmount function to flush to disk
|
|
* and free the super block buffer & mount structures.
|
|
*/
|
|
xfs_unmountfs(mp, credp);
|
|
xfs_qmops_put(mp);
|
|
xfs_dmops_put(mp);
|
|
kmem_free(mp, sizeof(xfs_mount_t));
|
|
}
|
|
|
|
return XFS_ERROR(error);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_quiesce_fs(
|
|
xfs_mount_t *mp)
|
|
{
|
|
int count = 0, pincount;
|
|
|
|
xfs_flush_buftarg(mp->m_ddev_targp, 0);
|
|
xfs_finish_reclaim_all(mp, 0);
|
|
|
|
/* This loop must run at least twice.
|
|
* The first instance of the loop will flush
|
|
* most meta data but that will generate more
|
|
* meta data (typically directory updates).
|
|
* Which then must be flushed and logged before
|
|
* we can write the unmount record.
|
|
*/
|
|
do {
|
|
xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
|
|
pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
|
|
if (!pincount) {
|
|
delay(50);
|
|
count++;
|
|
}
|
|
} while (count < 2);
|
|
}
|
|
|
|
/*
|
|
* Second stage of a quiesce. The data is already synced, now we have to take
|
|
* care of the metadata. New transactions are already blocked, so we need to
|
|
* wait for any remaining transactions to drain out before proceding.
|
|
*/
|
|
void
|
|
xfs_attr_quiesce(
|
|
xfs_mount_t *mp)
|
|
{
|
|
int error = 0;
|
|
|
|
/* wait for all modifications to complete */
|
|
while (atomic_read(&mp->m_active_trans) > 0)
|
|
delay(100);
|
|
|
|
/* flush inodes and push all remaining buffers out to disk */
|
|
xfs_quiesce_fs(mp);
|
|
|
|
ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
|
|
|
|
/* Push the superblock and write an unmount record */
|
|
error = xfs_log_sbcount(mp, 1);
|
|
if (error)
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
|
"xfs_attr_quiesce: failed to log sb changes. "
|
|
"Frozen image may not be consistent.");
|
|
xfs_log_unmount_write(mp);
|
|
xfs_unmountfs_writesb(mp);
|
|
}
|
|
|
|
int
|
|
xfs_mntupdate(
|
|
struct xfs_mount *mp,
|
|
int *flags,
|
|
struct xfs_mount_args *args)
|
|
{
|
|
if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
|
mp->m_flags &= ~XFS_MOUNT_RDONLY;
|
|
if (args->flags & XFSMNT_BARRIER) {
|
|
mp->m_flags |= XFS_MOUNT_BARRIER;
|
|
xfs_mountfs_check_barriers(mp);
|
|
} else {
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
}
|
|
} else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
|
|
xfs_filestream_flush(mp);
|
|
xfs_sync(mp, SYNC_DATA_QUIESCE);
|
|
xfs_attr_quiesce(mp);
|
|
mp->m_flags |= XFS_MOUNT_RDONLY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_unmount_flush implements a set of flush operation on special
|
|
* inodes, which are needed as a separate set of operations so that
|
|
* they can be called as part of relocation process.
|
|
*/
|
|
int
|
|
xfs_unmount_flush(
|
|
xfs_mount_t *mp, /* Mount structure we are getting
|
|
rid of. */
|
|
int relocation) /* Called from vfs relocation. */
|
|
{
|
|
xfs_inode_t *rip = mp->m_rootip;
|
|
xfs_inode_t *rbmip;
|
|
xfs_inode_t *rsumip = NULL;
|
|
bhv_vnode_t *rvp = XFS_ITOV(rip);
|
|
int error;
|
|
|
|
xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
|
|
xfs_iflock(rip);
|
|
|
|
/*
|
|
* Flush out the real time inodes.
|
|
*/
|
|
if ((rbmip = mp->m_rbmip) != NULL) {
|
|
xfs_ilock(rbmip, XFS_ILOCK_EXCL);
|
|
xfs_iflock(rbmip);
|
|
error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
|
|
xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
|
|
|
|
if (error == EFSCORRUPTED)
|
|
goto fscorrupt_out;
|
|
|
|
ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
|
|
|
|
rsumip = mp->m_rsumip;
|
|
xfs_ilock(rsumip, XFS_ILOCK_EXCL);
|
|
xfs_iflock(rsumip);
|
|
error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
|
|
xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
|
|
|
|
if (error == EFSCORRUPTED)
|
|
goto fscorrupt_out;
|
|
|
|
ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
|
|
}
|
|
|
|
/*
|
|
* Synchronously flush root inode to disk
|
|
*/
|
|
error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
|
|
if (error == EFSCORRUPTED)
|
|
goto fscorrupt_out2;
|
|
|
|
if (vn_count(rvp) != 1 && !relocation) {
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
return XFS_ERROR(EBUSY);
|
|
}
|
|
|
|
/*
|
|
* Release dquot that rootinode, rbmino and rsumino might be holding,
|
|
* flush and purge the quota inodes.
|
|
*/
|
|
error = XFS_QM_UNMOUNT(mp);
|
|
if (error == EFSCORRUPTED)
|
|
goto fscorrupt_out2;
|
|
|
|
if (rbmip) {
|
|
IRELE(rbmip);
|
|
IRELE(rsumip);
|
|
}
|
|
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
return 0;
|
|
|
|
fscorrupt_out:
|
|
xfs_ifunlock(rip);
|
|
|
|
fscorrupt_out2:
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
/*
|
|
* xfs_sync flushes any pending I/O to file system vfsp.
|
|
*
|
|
* This routine is called by vfs_sync() to make sure that things make it
|
|
* out to disk eventually, on sync() system calls to flush out everything,
|
|
* and when the file system is unmounted. For the vfs_sync() case, all
|
|
* we really need to do is sync out the log to make all of our meta-data
|
|
* updates permanent (except for timestamps). For calls from pflushd(),
|
|
* dirty pages are kept moving by calling pdflush() on the inodes
|
|
* containing them. We also flush the inodes that we can lock without
|
|
* sleeping and the superblock if we can lock it without sleeping from
|
|
* vfs_sync() so that items at the tail of the log are always moving out.
|
|
*
|
|
* Flags:
|
|
* SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
|
|
* to sleep if we can help it. All we really need
|
|
* to do is ensure that the log is synced at least
|
|
* periodically. We also push the inodes and
|
|
* superblock if we can lock them without sleeping
|
|
* and they are not pinned.
|
|
* SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
|
|
* set, then we really want to lock each inode and flush
|
|
* it.
|
|
* SYNC_WAIT - All the flushes that take place in this call should
|
|
* be synchronous.
|
|
* SYNC_DELWRI - This tells us to push dirty pages associated with
|
|
* inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
|
|
* determine if they should be flushed sync, async, or
|
|
* delwri.
|
|
* SYNC_CLOSE - This flag is passed when the system is being
|
|
* unmounted. We should sync and invalidate everything.
|
|
* SYNC_FSDATA - This indicates that the caller would like to make
|
|
* sure the superblock is safe on disk. We can ensure
|
|
* this by simply making sure the log gets flushed
|
|
* if SYNC_BDFLUSH is set, and by actually writing it
|
|
* out otherwise.
|
|
* SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete
|
|
* before we return (including direct I/O). Forms the drain
|
|
* side of the write barrier needed to safely quiesce the
|
|
* filesystem.
|
|
*
|
|
*/
|
|
int
|
|
xfs_sync(
|
|
xfs_mount_t *mp,
|
|
int flags)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Get the Quota Manager to flush the dquots.
|
|
*
|
|
* If XFS quota support is not enabled or this filesystem
|
|
* instance does not use quotas XFS_QM_DQSYNC will always
|
|
* return zero.
|
|
*/
|
|
error = XFS_QM_DQSYNC(mp, flags);
|
|
if (error) {
|
|
/*
|
|
* If we got an IO error, we will be shutting down.
|
|
* So, there's nothing more for us to do here.
|
|
*/
|
|
ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp));
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return XFS_ERROR(error);
|
|
}
|
|
|
|
if (flags & SYNC_IOWAIT)
|
|
xfs_filestream_flush(mp);
|
|
|
|
return xfs_syncsub(mp, flags, NULL);
|
|
}
|
|
|
|
/*
|
|
* xfs sync routine for internal use
|
|
*
|
|
* This routine supports all of the flags defined for the generic vfs_sync
|
|
* interface as explained above under xfs_sync.
|
|
*
|
|
*/
|
|
int
|
|
xfs_sync_inodes(
|
|
xfs_mount_t *mp,
|
|
int flags,
|
|
int *bypassed)
|
|
{
|
|
xfs_inode_t *ip = NULL;
|
|
bhv_vnode_t *vp = NULL;
|
|
int error;
|
|
int last_error;
|
|
uint64_t fflag;
|
|
uint lock_flags;
|
|
uint base_lock_flags;
|
|
boolean_t mount_locked;
|
|
boolean_t vnode_refed;
|
|
int preempt;
|
|
xfs_iptr_t *ipointer;
|
|
#ifdef DEBUG
|
|
boolean_t ipointer_in = B_FALSE;
|
|
|
|
#define IPOINTER_SET ipointer_in = B_TRUE
|
|
#define IPOINTER_CLR ipointer_in = B_FALSE
|
|
#else
|
|
#define IPOINTER_SET
|
|
#define IPOINTER_CLR
|
|
#endif
|
|
|
|
|
|
/* Insert a marker record into the inode list after inode ip. The list
|
|
* must be locked when this is called. After the call the list will no
|
|
* longer be locked.
|
|
*/
|
|
#define IPOINTER_INSERT(ip, mp) { \
|
|
ASSERT(ipointer_in == B_FALSE); \
|
|
ipointer->ip_mnext = ip->i_mnext; \
|
|
ipointer->ip_mprev = ip; \
|
|
ip->i_mnext = (xfs_inode_t *)ipointer; \
|
|
ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
|
|
preempt = 0; \
|
|
XFS_MOUNT_IUNLOCK(mp); \
|
|
mount_locked = B_FALSE; \
|
|
IPOINTER_SET; \
|
|
}
|
|
|
|
/* Remove the marker from the inode list. If the marker was the only item
|
|
* in the list then there are no remaining inodes and we should zero out
|
|
* the whole list. If we are the current head of the list then move the head
|
|
* past us.
|
|
*/
|
|
#define IPOINTER_REMOVE(ip, mp) { \
|
|
ASSERT(ipointer_in == B_TRUE); \
|
|
if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
|
|
ip = ipointer->ip_mnext; \
|
|
ip->i_mprev = ipointer->ip_mprev; \
|
|
ipointer->ip_mprev->i_mnext = ip; \
|
|
if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
|
|
mp->m_inodes = ip; \
|
|
} \
|
|
} else { \
|
|
ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
|
|
mp->m_inodes = NULL; \
|
|
ip = NULL; \
|
|
} \
|
|
IPOINTER_CLR; \
|
|
}
|
|
|
|
#define XFS_PREEMPT_MASK 0x7f
|
|
|
|
ASSERT(!(flags & SYNC_BDFLUSH));
|
|
|
|
if (bypassed)
|
|
*bypassed = 0;
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
|
return 0;
|
|
error = 0;
|
|
last_error = 0;
|
|
preempt = 0;
|
|
|
|
/* Allocate a reference marker */
|
|
ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
|
|
|
|
fflag = XFS_B_ASYNC; /* default is don't wait */
|
|
if (flags & SYNC_DELWRI)
|
|
fflag = XFS_B_DELWRI;
|
|
if (flags & SYNC_WAIT)
|
|
fflag = 0; /* synchronous overrides all */
|
|
|
|
base_lock_flags = XFS_ILOCK_SHARED;
|
|
if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
|
|
/*
|
|
* We need the I/O lock if we're going to call any of
|
|
* the flush/inval routines.
|
|
*/
|
|
base_lock_flags |= XFS_IOLOCK_SHARED;
|
|
}
|
|
|
|
XFS_MOUNT_ILOCK(mp);
|
|
|
|
ip = mp->m_inodes;
|
|
|
|
mount_locked = B_TRUE;
|
|
vnode_refed = B_FALSE;
|
|
|
|
IPOINTER_CLR;
|
|
|
|
do {
|
|
ASSERT(ipointer_in == B_FALSE);
|
|
ASSERT(vnode_refed == B_FALSE);
|
|
|
|
lock_flags = base_lock_flags;
|
|
|
|
/*
|
|
* There were no inodes in the list, just break out
|
|
* of the loop.
|
|
*/
|
|
if (ip == NULL) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We found another sync thread marker - skip it
|
|
*/
|
|
if (ip->i_mount == NULL) {
|
|
ip = ip->i_mnext;
|
|
continue;
|
|
}
|
|
|
|
vp = XFS_ITOV_NULL(ip);
|
|
|
|
/*
|
|
* If the vnode is gone then this is being torn down,
|
|
* call reclaim if it is flushed, else let regular flush
|
|
* code deal with it later in the loop.
|
|
*/
|
|
|
|
if (vp == NULL) {
|
|
/* Skip ones already in reclaim */
|
|
if (ip->i_flags & XFS_IRECLAIM) {
|
|
ip = ip->i_mnext;
|
|
continue;
|
|
}
|
|
if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
|
|
ip = ip->i_mnext;
|
|
} else if ((xfs_ipincount(ip) == 0) &&
|
|
xfs_iflock_nowait(ip)) {
|
|
IPOINTER_INSERT(ip, mp);
|
|
|
|
xfs_finish_reclaim(ip, 1,
|
|
XFS_IFLUSH_DELWRI_ELSE_ASYNC);
|
|
|
|
XFS_MOUNT_ILOCK(mp);
|
|
mount_locked = B_TRUE;
|
|
IPOINTER_REMOVE(ip, mp);
|
|
} else {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
ip = ip->i_mnext;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (VN_BAD(vp)) {
|
|
ip = ip->i_mnext;
|
|
continue;
|
|
}
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
kmem_free(ipointer, sizeof(xfs_iptr_t));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to lock without sleeping. We're out of order with
|
|
* the inode list lock here, so if we fail we need to drop
|
|
* the mount lock and try again. If we're called from
|
|
* bdflush() here, then don't bother.
|
|
*
|
|
* The inode lock here actually coordinates with the
|
|
* almost spurious inode lock in xfs_ireclaim() to prevent
|
|
* the vnode we handle here without a reference from
|
|
* being freed while we reference it. If we lock the inode
|
|
* while it's on the mount list here, then the spurious inode
|
|
* lock in xfs_ireclaim() after the inode is pulled from
|
|
* the mount list will sleep until we release it here.
|
|
* This keeps the vnode from being freed while we reference
|
|
* it.
|
|
*/
|
|
if (xfs_ilock_nowait(ip, lock_flags) == 0) {
|
|
if (vp == NULL) {
|
|
ip = ip->i_mnext;
|
|
continue;
|
|
}
|
|
|
|
vp = vn_grab(vp);
|
|
if (vp == NULL) {
|
|
ip = ip->i_mnext;
|
|
continue;
|
|
}
|
|
|
|
IPOINTER_INSERT(ip, mp);
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
ASSERT(vp == XFS_ITOV(ip));
|
|
ASSERT(ip->i_mount == mp);
|
|
|
|
vnode_refed = B_TRUE;
|
|
}
|
|
|
|
/* From here on in the loop we may have a marker record
|
|
* in the inode list.
|
|
*/
|
|
|
|
/*
|
|
* If we have to flush data or wait for I/O completion
|
|
* we need to drop the ilock that we currently hold.
|
|
* If we need to drop the lock, insert a marker if we
|
|
* have not already done so.
|
|
*/
|
|
if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) ||
|
|
((flags & SYNC_DELWRI) && VN_DIRTY(vp))) {
|
|
if (mount_locked) {
|
|
IPOINTER_INSERT(ip, mp);
|
|
}
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (flags & SYNC_CLOSE) {
|
|
/* Shutdown case. Flush and invalidate. */
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
xfs_tosspages(ip, 0, -1,
|
|
FI_REMAPF);
|
|
else
|
|
error = xfs_flushinval_pages(ip,
|
|
0, -1, FI_REMAPF);
|
|
} else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) {
|
|
error = xfs_flush_pages(ip, 0,
|
|
-1, fflag, FI_NONE);
|
|
}
|
|
|
|
/*
|
|
* When freezing, we need to wait ensure all I/O (including direct
|
|
* I/O) is complete to ensure no further data modification can take
|
|
* place after this point
|
|
*/
|
|
if (flags & SYNC_IOWAIT)
|
|
vn_iowait(ip);
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
}
|
|
|
|
if ((flags & SYNC_ATTR) &&
|
|
(ip->i_update_core ||
|
|
(ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) {
|
|
if (mount_locked)
|
|
IPOINTER_INSERT(ip, mp);
|
|
|
|
if (flags & SYNC_WAIT) {
|
|
xfs_iflock(ip);
|
|
error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
|
|
|
|
/*
|
|
* If we can't acquire the flush lock, then the inode
|
|
* is already being flushed so don't bother waiting.
|
|
*
|
|
* If we can lock it then do a delwri flush so we can
|
|
* combine multiple inode flushes in each disk write.
|
|
*/
|
|
} else if (xfs_iflock_nowait(ip)) {
|
|
error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
|
|
} else if (bypassed) {
|
|
(*bypassed)++;
|
|
}
|
|
}
|
|
|
|
if (lock_flags != 0) {
|
|
xfs_iunlock(ip, lock_flags);
|
|
}
|
|
|
|
if (vnode_refed) {
|
|
/*
|
|
* If we had to take a reference on the vnode
|
|
* above, then wait until after we've unlocked
|
|
* the inode to release the reference. This is
|
|
* because we can be already holding the inode
|
|
* lock when IRELE() calls xfs_inactive().
|
|
*
|
|
* Make sure to drop the mount lock before calling
|
|
* IRELE() so that we don't trip over ourselves if
|
|
* we have to go for the mount lock again in the
|
|
* inactive code.
|
|
*/
|
|
if (mount_locked) {
|
|
IPOINTER_INSERT(ip, mp);
|
|
}
|
|
|
|
IRELE(ip);
|
|
|
|
vnode_refed = B_FALSE;
|
|
}
|
|
|
|
if (error) {
|
|
last_error = error;
|
|
}
|
|
|
|
/*
|
|
* bail out if the filesystem is corrupted.
|
|
*/
|
|
if (error == EFSCORRUPTED) {
|
|
if (!mount_locked) {
|
|
XFS_MOUNT_ILOCK(mp);
|
|
IPOINTER_REMOVE(ip, mp);
|
|
}
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
ASSERT(ipointer_in == B_FALSE);
|
|
kmem_free(ipointer, sizeof(xfs_iptr_t));
|
|
return XFS_ERROR(error);
|
|
}
|
|
|
|
/* Let other threads have a chance at the mount lock
|
|
* if we have looped many times without dropping the
|
|
* lock.
|
|
*/
|
|
if ((++preempt & XFS_PREEMPT_MASK) == 0) {
|
|
if (mount_locked) {
|
|
IPOINTER_INSERT(ip, mp);
|
|
}
|
|
}
|
|
|
|
if (mount_locked == B_FALSE) {
|
|
XFS_MOUNT_ILOCK(mp);
|
|
mount_locked = B_TRUE;
|
|
IPOINTER_REMOVE(ip, mp);
|
|
continue;
|
|
}
|
|
|
|
ASSERT(ipointer_in == B_FALSE);
|
|
ip = ip->i_mnext;
|
|
|
|
} while (ip != mp->m_inodes);
|
|
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
|
|
ASSERT(ipointer_in == B_FALSE);
|
|
|
|
kmem_free(ipointer, sizeof(xfs_iptr_t));
|
|
return XFS_ERROR(last_error);
|
|
}
|
|
|
|
/*
|
|
* xfs sync routine for internal use
|
|
*
|
|
* This routine supports all of the flags defined for the generic vfs_sync
|
|
* interface as explained above under xfs_sync.
|
|
*
|
|
*/
|
|
int
|
|
xfs_syncsub(
|
|
xfs_mount_t *mp,
|
|
int flags,
|
|
int *bypassed)
|
|
{
|
|
int error = 0;
|
|
int last_error = 0;
|
|
uint log_flags = XFS_LOG_FORCE;
|
|
xfs_buf_t *bp;
|
|
xfs_buf_log_item_t *bip;
|
|
|
|
/*
|
|
* Sync out the log. This ensures that the log is periodically
|
|
* flushed even if there is not enough activity to fill it up.
|
|
*/
|
|
if (flags & SYNC_WAIT)
|
|
log_flags |= XFS_LOG_SYNC;
|
|
|
|
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
|
|
|
|
if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
|
|
if (flags & SYNC_BDFLUSH)
|
|
xfs_finish_reclaim_all(mp, 1);
|
|
else
|
|
error = xfs_sync_inodes(mp, flags, bypassed);
|
|
}
|
|
|
|
/*
|
|
* Flushing out dirty data above probably generated more
|
|
* log activity, so if this isn't vfs_sync() then flush
|
|
* the log again.
|
|
*/
|
|
if (flags & SYNC_DELWRI) {
|
|
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
|
|
}
|
|
|
|
if (flags & SYNC_FSDATA) {
|
|
/*
|
|
* If this is vfs_sync() then only sync the superblock
|
|
* if we can lock it without sleeping and it is not pinned.
|
|
*/
|
|
if (flags & SYNC_BDFLUSH) {
|
|
bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
|
|
if (bp != NULL) {
|
|
bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
|
|
if ((bip != NULL) &&
|
|
xfs_buf_item_dirty(bip)) {
|
|
if (!(XFS_BUF_ISPINNED(bp))) {
|
|
XFS_BUF_ASYNC(bp);
|
|
error = xfs_bwrite(mp, bp);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
}
|
|
} else {
|
|
bp = xfs_getsb(mp, 0);
|
|
/*
|
|
* If the buffer is pinned then push on the log so
|
|
* we won't get stuck waiting in the write for
|
|
* someone, maybe ourselves, to flush the log.
|
|
* Even though we just pushed the log above, we
|
|
* did not have the superblock buffer locked at
|
|
* that point so it can become pinned in between
|
|
* there and here.
|
|
*/
|
|
if (XFS_BUF_ISPINNED(bp))
|
|
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
|
|
if (flags & SYNC_WAIT)
|
|
XFS_BUF_UNASYNC(bp);
|
|
else
|
|
XFS_BUF_ASYNC(bp);
|
|
error = xfs_bwrite(mp, bp);
|
|
}
|
|
if (error) {
|
|
last_error = error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now check to see if the log needs a "dummy" transaction.
|
|
*/
|
|
if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
|
|
xfs_trans_t *tp;
|
|
xfs_inode_t *ip;
|
|
|
|
/*
|
|
* Put a dummy transaction in the log to tell
|
|
* recovery that all others are OK.
|
|
*/
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
|
|
if ((error = xfs_trans_reserve(tp, 0,
|
|
XFS_ICHANGE_LOG_RES(mp),
|
|
0, 0, 0))) {
|
|
xfs_trans_cancel(tp, 0);
|
|
return error;
|
|
}
|
|
|
|
ip = mp->m_rootip;
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ihold(tp, ip);
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
error = xfs_trans_commit(tp, 0);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
|
|
}
|
|
|
|
/*
|
|
* When shutting down, we need to insure that the AIL is pushed
|
|
* to disk or the filesystem can appear corrupt from the PROM.
|
|
*/
|
|
if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
|
|
XFS_bflush(mp->m_ddev_targp);
|
|
if (mp->m_rtdev_targp) {
|
|
XFS_bflush(mp->m_rtdev_targp);
|
|
}
|
|
}
|
|
|
|
return XFS_ERROR(last_error);
|
|
}
|