2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/crypto/async_tx/async_raid6_recov.c
Paul Gortmaker 4bb33cc890 crypto: add module.h to those files that are explicitly using it
Part of the include cleanups means that the implicit
inclusion of module.h via device.h is going away.  So
fix things up in advance.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:31:11 -04:00

507 lines
14 KiB
C

/*
* Asynchronous RAID-6 recovery calculations ASYNC_TX API.
* Copyright(c) 2009 Intel Corporation
*
* based on raid6recov.c:
* Copyright 2002 H. Peter Anvin
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/raid/pq.h>
#include <linux/async_tx.h>
static struct dma_async_tx_descriptor *
async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
size_t len, struct async_submit_ctl *submit)
{
struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
&dest, 1, srcs, 2, len);
struct dma_device *dma = chan ? chan->device : NULL;
const u8 *amul, *bmul;
u8 ax, bx;
u8 *a, *b, *c;
if (dma) {
dma_addr_t dma_dest[2];
dma_addr_t dma_src[2];
struct device *dev = dma->dev;
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
if (submit->flags & ASYNC_TX_FENCE)
dma_flags |= DMA_PREP_FENCE;
dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
len, dma_flags);
if (tx) {
async_tx_submit(chan, tx, submit);
return tx;
}
/* could not get a descriptor, unmap and fall through to
* the synchronous path
*/
dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
}
/* run the operation synchronously */
async_tx_quiesce(&submit->depend_tx);
amul = raid6_gfmul[coef[0]];
bmul = raid6_gfmul[coef[1]];
a = page_address(srcs[0]);
b = page_address(srcs[1]);
c = page_address(dest);
while (len--) {
ax = amul[*a++];
bx = bmul[*b++];
*c++ = ax ^ bx;
}
return NULL;
}
static struct dma_async_tx_descriptor *
async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
struct async_submit_ctl *submit)
{
struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
&dest, 1, &src, 1, len);
struct dma_device *dma = chan ? chan->device : NULL;
const u8 *qmul; /* Q multiplier table */
u8 *d, *s;
if (dma) {
dma_addr_t dma_dest[2];
dma_addr_t dma_src[1];
struct device *dev = dma->dev;
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
if (submit->flags & ASYNC_TX_FENCE)
dma_flags |= DMA_PREP_FENCE;
dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
len, dma_flags);
if (tx) {
async_tx_submit(chan, tx, submit);
return tx;
}
/* could not get a descriptor, unmap and fall through to
* the synchronous path
*/
dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
}
/* no channel available, or failed to allocate a descriptor, so
* perform the operation synchronously
*/
async_tx_quiesce(&submit->depend_tx);
qmul = raid6_gfmul[coef];
d = page_address(dest);
s = page_address(src);
while (len--)
*d++ = qmul[*s++];
return NULL;
}
static struct dma_async_tx_descriptor *
__2data_recov_4(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *a, *b;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
p = blocks[disks-2];
q = blocks[disks-1];
a = blocks[faila];
b = blocks[failb];
/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = p;
srcs[1] = q;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(b, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = p;
srcs[1] = b;
init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(a, srcs, 0, 2, bytes, submit);
return tx;
}
static struct dma_async_tx_descriptor *
__2data_recov_5(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *g, *dp, *dq;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
int good_srcs, good, i;
good_srcs = 0;
good = -1;
for (i = 0; i < disks-2; i++) {
if (blocks[i] == NULL)
continue;
if (i == faila || i == failb)
continue;
good = i;
good_srcs++;
}
BUG_ON(good_srcs > 1);
p = blocks[disks-2];
q = blocks[disks-1];
g = blocks[good];
/* Compute syndrome with zero for the missing data pages
* Use the dead data pages as temporary storage for delta p and
* delta q
*/
dp = blocks[faila];
dq = blocks[failb];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_memcpy(dp, g, 0, 0, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
/* compute P + Pxy */
srcs[0] = dp;
srcs[1] = p;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
/* compute Q + Qxy */
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = dp;
srcs[1] = dq;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(dq, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = dp;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
return tx;
}
static struct dma_async_tx_descriptor *
__2data_recov_n(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *dp, *dq;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
p = blocks[disks-2];
q = blocks[disks-1];
/* Compute syndrome with zero for the missing data pages
* Use the dead data pages as temporary storage for
* delta p and delta q
*/
dp = blocks[faila];
blocks[faila] = NULL;
blocks[disks-2] = dp;
dq = blocks[failb];
blocks[failb] = NULL;
blocks[disks-1] = dq;
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
/* Restore pointer table */
blocks[faila] = dp;
blocks[failb] = dq;
blocks[disks-2] = p;
blocks[disks-1] = q;
/* compute P + Pxy */
srcs[0] = dp;
srcs[1] = p;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
/* compute Q + Qxy */
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = dp;
srcs[1] = dq;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(dq, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = dp;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
return tx;
}
/**
* async_raid6_2data_recov - asynchronously calculate two missing data blocks
* @disks: number of disks in the RAID-6 array
* @bytes: block size
* @faila: first failed drive index
* @failb: second failed drive index
* @blocks: array of source pointers where the last two entries are p and q
* @submit: submission/completion modifiers
*/
struct dma_async_tx_descriptor *
async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
void *scribble = submit->scribble;
int non_zero_srcs, i;
BUG_ON(faila == failb);
if (failb < faila)
swap(faila, failb);
pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
/* if a dma resource is not available or a scribble buffer is not
* available punt to the synchronous path. In the 'dma not
* available' case be sure to use the scribble buffer to
* preserve the content of 'blocks' as the caller intended.
*/
if (!async_dma_find_channel(DMA_PQ) || !scribble) {
void **ptrs = scribble ? scribble : (void **) blocks;
async_tx_quiesce(&submit->depend_tx);
for (i = 0; i < disks; i++)
if (blocks[i] == NULL)
ptrs[i] = (void *) raid6_empty_zero_page;
else
ptrs[i] = page_address(blocks[i]);
raid6_2data_recov(disks, bytes, faila, failb, ptrs);
async_tx_sync_epilog(submit);
return NULL;
}
non_zero_srcs = 0;
for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
if (blocks[i])
non_zero_srcs++;
switch (non_zero_srcs) {
case 0:
case 1:
/* There must be at least 2 sources - the failed devices. */
BUG();
case 2:
/* dma devices do not uniformly understand a zero source pq
* operation (in contrast to the synchronous case), so
* explicitly handle the special case of a 4 disk array with
* both data disks missing.
*/
return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
case 3:
/* dma devices do not uniformly understand a single
* source pq operation (in contrast to the synchronous
* case), so explicitly handle the special case of a 5 disk
* array with 2 of 3 data disks missing.
*/
return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
default:
return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
}
}
EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
/**
* async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
* @disks: number of disks in the RAID-6 array
* @bytes: block size
* @faila: failed drive index
* @blocks: array of source pointers where the last two entries are p and q
* @submit: submission/completion modifiers
*/
struct dma_async_tx_descriptor *
async_raid6_datap_recov(int disks, size_t bytes, int faila,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *dq;
u8 coef;
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
int good_srcs, good, i;
struct page *srcs[2];
pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
/* if a dma resource is not available or a scribble buffer is not
* available punt to the synchronous path. In the 'dma not
* available' case be sure to use the scribble buffer to
* preserve the content of 'blocks' as the caller intended.
*/
if (!async_dma_find_channel(DMA_PQ) || !scribble) {
void **ptrs = scribble ? scribble : (void **) blocks;
async_tx_quiesce(&submit->depend_tx);
for (i = 0; i < disks; i++)
if (blocks[i] == NULL)
ptrs[i] = (void*)raid6_empty_zero_page;
else
ptrs[i] = page_address(blocks[i]);
raid6_datap_recov(disks, bytes, faila, ptrs);
async_tx_sync_epilog(submit);
return NULL;
}
good_srcs = 0;
good = -1;
for (i = 0; i < disks-2; i++) {
if (i == faila)
continue;
if (blocks[i]) {
good = i;
good_srcs++;
if (good_srcs > 1)
break;
}
}
BUG_ON(good_srcs == 0);
p = blocks[disks-2];
q = blocks[disks-1];
/* Compute syndrome with zero for the missing data page
* Use the dead data page as temporary storage for delta q
*/
dq = blocks[faila];
blocks[faila] = NULL;
blocks[disks-1] = dq;
/* in the 4-disk case we only need to perform a single source
* multiplication with the one good data block.
*/
if (good_srcs == 1) {
struct page *g = blocks[good];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_memcpy(p, g, 0, 0, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
} else {
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
}
/* Restore pointer table */
blocks[faila] = dq;
blocks[disks-1] = q;
/* calculate g^{-faila} */
coef = raid6_gfinv[raid6_gfexp[faila]];
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_mult(dq, dq, coef, bytes, submit);
srcs[0] = p;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(p, srcs, 0, 2, bytes, submit);
return tx;
}
EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
MODULE_LICENSE("GPL");