2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 07:04:04 +08:00
linux-next/block/blk-mq-sched.c
Ming Lei cc3200eac4 blk-mq: insert flush request to the front of dispatch queue
commit 01e99aeca3 ("blk-mq: insert passthrough request into
hctx->dispatch directly") may change to add flush request to the tail
of dispatch by applying the 'add_head' parameter of
blk_mq_sched_insert_request.

Turns out this way causes performance regression on NCQ controller because
flush is non-NCQ command, which can't be queued when there is any in-flight
NCQ command. When adding flush rq to the front of hctx->dispatch, it is
easier to introduce extra time to flush rq's latency compared with adding
to the tail of dispatch queue because of S_SCHED_RESTART, then chance of
flush merge is increased, and less flush requests may be issued to
controller.

So always insert flush request to the front of dispatch queue just like
before applying commit 01e99aeca3 ("blk-mq: insert passthrough request
into hctx->dispatch directly").

Cc: Damien Le Moal <Damien.LeMoal@wdc.com>
Cc: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Fixes: 01e99aeca3 ("blk-mq: insert passthrough request into hctx->dispatch directly")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-03-12 07:26:12 -06:00

612 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* blk-mq scheduling framework
*
* Copyright (C) 2016 Jens Axboe
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"
void blk_mq_sched_free_hctx_data(struct request_queue *q,
void (*exit)(struct blk_mq_hw_ctx *))
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (exit && hctx->sched_data)
exit(hctx);
kfree(hctx->sched_data);
hctx->sched_data = NULL;
}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
void blk_mq_sched_assign_ioc(struct request *rq)
{
struct request_queue *q = rq->q;
struct io_context *ioc;
struct io_cq *icq;
/*
* May not have an IO context if it's a passthrough request
*/
ioc = current->io_context;
if (!ioc)
return;
spin_lock_irq(&q->queue_lock);
icq = ioc_lookup_icq(ioc, q);
spin_unlock_irq(&q->queue_lock);
if (!icq) {
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
if (!icq)
return;
}
get_io_context(icq->ioc);
rq->elv.icq = icq;
}
/*
* Mark a hardware queue as needing a restart. For shared queues, maintain
* a count of how many hardware queues are marked for restart.
*/
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
return;
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
{
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
return;
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
blk_mq_run_hw_queue(hctx, true);
}
/*
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
* its queue by itself in its completion handler, so we don't need to
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
*/
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct elevator_queue *e = q->elevator;
LIST_HEAD(rq_list);
do {
struct request *rq;
if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
break;
if (!blk_mq_get_dispatch_budget(hctx))
break;
rq = e->type->ops.dispatch_request(hctx);
if (!rq) {
blk_mq_put_dispatch_budget(hctx);
break;
}
/*
* Now this rq owns the budget which has to be released
* if this rq won't be queued to driver via .queue_rq()
* in blk_mq_dispatch_rq_list().
*/
list_add(&rq->queuelist, &rq_list);
} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
}
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
unsigned short idx = ctx->index_hw[hctx->type];
if (++idx == hctx->nr_ctx)
idx = 0;
return hctx->ctxs[idx];
}
/*
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
* its queue by itself in its completion handler, so we don't need to
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
*/
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
LIST_HEAD(rq_list);
struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
do {
struct request *rq;
if (!sbitmap_any_bit_set(&hctx->ctx_map))
break;
if (!blk_mq_get_dispatch_budget(hctx))
break;
rq = blk_mq_dequeue_from_ctx(hctx, ctx);
if (!rq) {
blk_mq_put_dispatch_budget(hctx);
break;
}
/*
* Now this rq owns the budget which has to be released
* if this rq won't be queued to driver via .queue_rq()
* in blk_mq_dispatch_rq_list().
*/
list_add(&rq->queuelist, &rq_list);
/* round robin for fair dispatch */
ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
WRITE_ONCE(hctx->dispatch_from, ctx);
}
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct elevator_queue *e = q->elevator;
const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
LIST_HEAD(rq_list);
/* RCU or SRCU read lock is needed before checking quiesced flag */
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
return;
hctx->run++;
/*
* If we have previous entries on our dispatch list, grab them first for
* more fair dispatch.
*/
if (!list_empty_careful(&hctx->dispatch)) {
spin_lock(&hctx->lock);
if (!list_empty(&hctx->dispatch))
list_splice_init(&hctx->dispatch, &rq_list);
spin_unlock(&hctx->lock);
}
/*
* Only ask the scheduler for requests, if we didn't have residual
* requests from the dispatch list. This is to avoid the case where
* we only ever dispatch a fraction of the requests available because
* of low device queue depth. Once we pull requests out of the IO
* scheduler, we can no longer merge or sort them. So it's best to
* leave them there for as long as we can. Mark the hw queue as
* needing a restart in that case.
*
* We want to dispatch from the scheduler if there was nothing
* on the dispatch list or we were able to dispatch from the
* dispatch list.
*/
if (!list_empty(&rq_list)) {
blk_mq_sched_mark_restart_hctx(hctx);
if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
if (has_sched_dispatch)
blk_mq_do_dispatch_sched(hctx);
else
blk_mq_do_dispatch_ctx(hctx);
}
} else if (has_sched_dispatch) {
blk_mq_do_dispatch_sched(hctx);
} else if (hctx->dispatch_busy) {
/* dequeue request one by one from sw queue if queue is busy */
blk_mq_do_dispatch_ctx(hctx);
} else {
blk_mq_flush_busy_ctxs(hctx, &rq_list);
blk_mq_dispatch_rq_list(q, &rq_list, false);
}
}
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs, struct request **merged_request)
{
struct request *rq;
switch (elv_merge(q, &rq, bio)) {
case ELEVATOR_BACK_MERGE:
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (!bio_attempt_back_merge(rq, bio, nr_segs))
return false;
*merged_request = attempt_back_merge(q, rq);
if (!*merged_request)
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
return true;
case ELEVATOR_FRONT_MERGE:
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (!bio_attempt_front_merge(rq, bio, nr_segs))
return false;
*merged_request = attempt_front_merge(q, rq);
if (!*merged_request)
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
return true;
case ELEVATOR_DISCARD_MERGE:
return bio_attempt_discard_merge(q, rq, bio);
default:
return false;
}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
/*
* Iterate list of requests and see if we can merge this bio with any
* of them.
*/
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
struct bio *bio, unsigned int nr_segs)
{
struct request *rq;
int checked = 8;
list_for_each_entry_reverse(rq, list, queuelist) {
bool merged = false;
if (!checked--)
break;
if (!blk_rq_merge_ok(rq, bio))
continue;
switch (blk_try_merge(rq, bio)) {
case ELEVATOR_BACK_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_back_merge(rq, bio,
nr_segs);
break;
case ELEVATOR_FRONT_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_front_merge(rq, bio,
nr_segs);
break;
case ELEVATOR_DISCARD_MERGE:
merged = bio_attempt_discard_merge(q, rq, bio);
break;
default:
continue;
}
return merged;
}
return false;
}
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
/*
* Reverse check our software queue for entries that we could potentially
* merge with. Currently includes a hand-wavy stop count of 8, to not spend
* too much time checking for merges.
*/
static bool blk_mq_attempt_merge(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx, struct bio *bio,
unsigned int nr_segs)
{
enum hctx_type type = hctx->type;
lockdep_assert_held(&ctx->lock);
if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
ctx->rq_merged++;
return true;
}
return false;
}
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs)
{
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
bool ret = false;
enum hctx_type type;
if (e && e->type->ops.bio_merge)
return e->type->ops.bio_merge(hctx, bio, nr_segs);
type = hctx->type;
if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
!list_empty_careful(&ctx->rq_lists[type])) {
/* default per sw-queue merge */
spin_lock(&ctx->lock);
ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
spin_unlock(&ctx->lock);
}
return ret;
}
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
void blk_mq_sched_request_inserted(struct request *rq)
{
trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
bool has_sched,
struct request *rq)
{
/*
* dispatch flush and passthrough rq directly
*
* passthrough request has to be added to hctx->dispatch directly.
* For some reason, device may be in one situation which can't
* handle FS request, so STS_RESOURCE is always returned and the
* FS request will be added to hctx->dispatch. However passthrough
* request may be required at that time for fixing the problem. If
* passthrough request is added to scheduler queue, there isn't any
* chance to dispatch it given we prioritize requests in hctx->dispatch.
*/
if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
return true;
if (has_sched)
rq->rq_flags |= RQF_SORTED;
return false;
}
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
bool run_queue, bool async)
{
struct request_queue *q = rq->q;
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx = rq->mq_ctx;
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
/* flush rq in flush machinery need to be dispatched directly */
if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
blk_insert_flush(rq);
goto run;
}
WARN_ON(e && (rq->tag != -1));
if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
/*
* Firstly normal IO request is inserted to scheduler queue or
* sw queue, meantime we add flush request to dispatch queue(
* hctx->dispatch) directly and there is at most one in-flight
* flush request for each hw queue, so it doesn't matter to add
* flush request to tail or front of the dispatch queue.
*
* Secondly in case of NCQ, flush request belongs to non-NCQ
* command, and queueing it will fail when there is any
* in-flight normal IO request(NCQ command). When adding flush
* rq to the front of hctx->dispatch, it is easier to introduce
* extra time to flush rq's latency because of S_SCHED_RESTART
* compared with adding to the tail of dispatch queue, then
* chance of flush merge is increased, and less flush requests
* will be issued to controller. It is observed that ~10% time
* is saved in blktests block/004 on disk attached to AHCI/NCQ
* drive when adding flush rq to the front of hctx->dispatch.
*
* Simply queue flush rq to the front of hctx->dispatch so that
* intensive flush workloads can benefit in case of NCQ HW.
*/
at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
blk_mq_request_bypass_insert(rq, at_head, false);
goto run;
}
if (e && e->type->ops.insert_requests) {
LIST_HEAD(list);
list_add(&rq->queuelist, &list);
e->type->ops.insert_requests(hctx, &list, at_head);
} else {
spin_lock(&ctx->lock);
__blk_mq_insert_request(hctx, rq, at_head);
spin_unlock(&ctx->lock);
}
run:
if (run_queue)
blk_mq_run_hw_queue(hctx, async);
}
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx,
struct list_head *list, bool run_queue_async)
{
struct elevator_queue *e;
struct request_queue *q = hctx->queue;
/*
* blk_mq_sched_insert_requests() is called from flush plug
* context only, and hold one usage counter to prevent queue
* from being released.
*/
percpu_ref_get(&q->q_usage_counter);
e = hctx->queue->elevator;
if (e && e->type->ops.insert_requests)
e->type->ops.insert_requests(hctx, list, false);
else {
/*
* try to issue requests directly if the hw queue isn't
* busy in case of 'none' scheduler, and this way may save
* us one extra enqueue & dequeue to sw queue.
*/
if (!hctx->dispatch_busy && !e && !run_queue_async) {
blk_mq_try_issue_list_directly(hctx, list);
if (list_empty(list))
goto out;
}
blk_mq_insert_requests(hctx, ctx, list);
}
blk_mq_run_hw_queue(hctx, run_queue_async);
out:
percpu_ref_put(&q->q_usage_counter);
}
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
if (hctx->sched_tags) {
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
blk_mq_free_rq_map(hctx->sched_tags);
hctx->sched_tags = NULL;
}
}
static int blk_mq_sched_alloc_tags(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
struct blk_mq_tag_set *set = q->tag_set;
int ret;
hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
set->reserved_tags);
if (!hctx->sched_tags)
return -ENOMEM;
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
if (ret)
blk_mq_sched_free_tags(set, hctx, hctx_idx);
return ret;
}
/* called in queue's release handler, tagset has gone away */
static void blk_mq_sched_tags_teardown(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (hctx->sched_tags) {
blk_mq_free_rq_map(hctx->sched_tags);
hctx->sched_tags = NULL;
}
}
}
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
struct blk_mq_hw_ctx *hctx;
struct elevator_queue *eq;
unsigned int i;
int ret;
if (!e) {
q->elevator = NULL;
q->nr_requests = q->tag_set->queue_depth;
return 0;
}
/*
* Default to double of smaller one between hw queue_depth and 128,
* since we don't split into sync/async like the old code did.
* Additionally, this is a per-hw queue depth.
*/
q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
BLKDEV_MAX_RQ);
queue_for_each_hw_ctx(q, hctx, i) {
ret = blk_mq_sched_alloc_tags(q, hctx, i);
if (ret)
goto err;
}
ret = e->ops.init_sched(q, e);
if (ret)
goto err;
blk_mq_debugfs_register_sched(q);
queue_for_each_hw_ctx(q, hctx, i) {
if (e->ops.init_hctx) {
ret = e->ops.init_hctx(hctx, i);
if (ret) {
eq = q->elevator;
blk_mq_sched_free_requests(q);
blk_mq_exit_sched(q, eq);
kobject_put(&eq->kobj);
return ret;
}
}
blk_mq_debugfs_register_sched_hctx(q, hctx);
}
return 0;
err:
blk_mq_sched_free_requests(q);
blk_mq_sched_tags_teardown(q);
q->elevator = NULL;
return ret;
}
/*
* called in either blk_queue_cleanup or elevator_switch, tagset
* is required for freeing requests
*/
void blk_mq_sched_free_requests(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (hctx->sched_tags)
blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
}
}
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
queue_for_each_hw_ctx(q, hctx, i) {
blk_mq_debugfs_unregister_sched_hctx(hctx);
if (e->type->ops.exit_hctx && hctx->sched_data) {
e->type->ops.exit_hctx(hctx, i);
hctx->sched_data = NULL;
}
}
blk_mq_debugfs_unregister_sched(q);
if (e->type->ops.exit_sched)
e->type->ops.exit_sched(e);
blk_mq_sched_tags_teardown(q);
q->elevator = NULL;
}