mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1659 lines
41 KiB
Plaintext
1659 lines
41 KiB
Plaintext
config MIPS
|
|
bool
|
|
default y
|
|
# Horrible source of confusion. Die, die, die ...
|
|
select EMBEDDED
|
|
|
|
config MIPS64
|
|
bool "64-bit kernel"
|
|
help
|
|
Select this option if you want to build a 64-bit kernel. You should
|
|
only select this option if you have hardware that actually has a
|
|
64-bit processor and if your application will actually benefit from
|
|
64-bit processing, otherwise say N. You must say Y for kernels for
|
|
SGI IP27 (Origin 200 and 2000) and SGI IP32 (O2). If in doubt say N.
|
|
|
|
config 64BIT
|
|
def_bool MIPS64
|
|
|
|
config MIPS32
|
|
bool
|
|
depends on MIPS64 = 'n'
|
|
default y
|
|
|
|
mainmenu "Linux/MIPS Kernel Configuration"
|
|
|
|
source "init/Kconfig"
|
|
|
|
menu "Machine selection"
|
|
|
|
config MACH_JAZZ
|
|
bool "Support for the Jazz family of machines"
|
|
select ARC
|
|
select ARC32
|
|
select GENERIC_ISA_DMA
|
|
select I8259
|
|
select ISA
|
|
help
|
|
This a family of machines based on the MIPS R4030 chipset which was
|
|
used by several vendors to build RISC/os and Windows NT workstations.
|
|
Members include the Acer PICA, MIPS Magnum 4000, MIPS Millenium and
|
|
Olivetti M700-10 workstations.
|
|
|
|
config ACER_PICA_61
|
|
bool "Support for Acer PICA 1 chipset (EXPERIMENTAL)"
|
|
depends on MACH_JAZZ && EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
help
|
|
This is a machine with a R4400 133/150 MHz CPU. To compile a Linux
|
|
kernel that runs on these, say Y here. For details about Linux on
|
|
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
|
|
<http://www.linux-mips.org/>.
|
|
|
|
config MIPS_MAGNUM_4000
|
|
bool "Support for MIPS Magnum 4000"
|
|
depends on MACH_JAZZ
|
|
select DMA_NONCOHERENT
|
|
help
|
|
This is a machine with a R4000 100 MHz CPU. To compile a Linux
|
|
kernel that runs on these, say Y here. For details about Linux on
|
|
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
|
|
<http://www.linux-mips.org/>.
|
|
|
|
config OLIVETTI_M700
|
|
bool "Support for Olivetti M700-10"
|
|
depends on MACH_JAZZ
|
|
select DMA_NONCOHERENT
|
|
help
|
|
This is a machine with a R4000 100 MHz CPU. To compile a Linux
|
|
kernel that runs on these, say Y here. For details about Linux on
|
|
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
|
|
<http://www.linux-mips.org/>.
|
|
|
|
config MACH_VR41XX
|
|
bool "Support for NEC VR41XX-based machines"
|
|
|
|
config NEC_CMBVR4133
|
|
bool "Support for NEC CMB-VR4133"
|
|
depends on MACH_VR41XX
|
|
select CPU_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
select HW_HAS_PCI
|
|
select PCI_VR41XX
|
|
|
|
config ROCKHOPPER
|
|
bool "Support for Rockhopper baseboard"
|
|
depends on NEC_CMBVR4133
|
|
select I8259
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
|
|
config CASIO_E55
|
|
bool "Support for CASIO CASSIOPEIA E-10/15/55/65"
|
|
depends on MACH_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
select ISA
|
|
|
|
config IBM_WORKPAD
|
|
bool "Support for IBM WorkPad z50"
|
|
depends on MACH_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
select ISA
|
|
|
|
config TANBAC_TB0226
|
|
bool "Support for TANBAC TB0226 (Mbase)"
|
|
depends on MACH_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
help
|
|
The TANBAC TB0226 (Mbase) is a MIPS-based platform manufactured by TANBAC.
|
|
Please refer to <http://www.tanbac.co.jp/> about Mbase.
|
|
|
|
config TANBAC_TB0229
|
|
bool "Support for TANBAC TB0229 (VR4131DIMM)"
|
|
depends on MACH_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
help
|
|
The TANBAC TB0229 (VR4131DIMM) is a MIPS-based platform manufactured by TANBAC.
|
|
Please refer to <http://www.tanbac.co.jp/> about VR4131DIMM.
|
|
|
|
config VICTOR_MPC30X
|
|
bool "Support for Victor MP-C303/304"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
depends on MACH_VR41XX
|
|
|
|
config ZAO_CAPCELLA
|
|
bool "Support for ZAO Networks Capcella"
|
|
depends on MACH_VR41XX
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
|
|
config PCI_VR41XX
|
|
bool "Add PCI control unit support of NEC VR4100 series"
|
|
depends on MACH_VR41XX && PCI
|
|
|
|
config VRC4171
|
|
tristate "Add NEC VRC4171 companion chip support"
|
|
depends on MACH_VR41XX && ISA
|
|
---help---
|
|
The NEC VRC4171/4171A is a companion chip for NEC VR4111/VR4121.
|
|
|
|
config VRC4173
|
|
tristate "Add NEC VRC4173 companion chip support"
|
|
depends on MACH_VR41XX && PCI_VR41XX
|
|
---help---
|
|
The NEC VRC4173 is a companion chip for NEC VR4122/VR4131.
|
|
|
|
config TOSHIBA_JMR3927
|
|
bool "Support for Toshiba JMR-TX3927 board"
|
|
depends on MIPS32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select SWAP_IO_SPACE
|
|
|
|
config MIPS_COBALT
|
|
bool "Support for Cobalt Server (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select IRQ_CPU
|
|
|
|
config MACH_DECSTATION
|
|
bool "Support for DECstations"
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
depends on MIPS32 || EXPERIMENTAL
|
|
---help---
|
|
This enables support for DEC's MIPS based workstations. For details
|
|
see the Linux/MIPS FAQ on <http://www.linux-mips.org/> and the
|
|
DECstation porting pages on <http://decstation.unix-ag.org/>.
|
|
|
|
If you have one of the following DECstation Models you definitely
|
|
want to choose R4xx0 for the CPU Type:
|
|
|
|
DECstation 5000/50
|
|
DECstation 5000/150
|
|
DECstation 5000/260
|
|
DECsystem 5900/260
|
|
|
|
otherwise choose R3000.
|
|
|
|
config MIPS_EV64120
|
|
bool "Support for Galileo EV64120 Evaluation board (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select MIPS_GT64120
|
|
help
|
|
This is an evaluation board based on the Galileo GT-64120
|
|
single-chip system controller that contains a MIPS R5000 compatible
|
|
core running at 75/100MHz. Their website is located at
|
|
<http://www.marvell.com/>. Say Y here if you wish to build a
|
|
kernel for this platform.
|
|
|
|
config EVB_PCI1
|
|
bool "Enable Second PCI (PCI1)"
|
|
depends on MIPS_EV64120
|
|
|
|
config MIPS_EV96100
|
|
bool "Support for Galileo EV96100 Evaluation board (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select MIPS_GT96100
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
This is an evaluation board based on the Galileo GT-96100 LAN/WAN
|
|
communications controllers containing a MIPS R5000 compatible core
|
|
running at 83MHz. Their website is <http://www.marvell.com/>. Say Y
|
|
here if you wish to build a kernel for this platform.
|
|
|
|
config MIPS_IVR
|
|
bool "Support for Globespan IVR board"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
help
|
|
This is an evaluation board built by Globespan to showcase thir
|
|
iVR (Internet Video Recorder) design. It utilizes a QED RM5231
|
|
R5000 MIPS core. More information can be found out their website
|
|
located at <http://www.globespan.net/>. Say Y here if you wish to
|
|
build a kernel for this platform.
|
|
|
|
config LASAT
|
|
bool "Support for LASAT Networks platforms"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select MIPS_GT64120
|
|
select R5000_CPU_SCACHE
|
|
|
|
config PICVUE
|
|
tristate "PICVUE LCD display driver"
|
|
depends on LASAT
|
|
|
|
config PICVUE_PROC
|
|
tristate "PICVUE LCD display driver /proc interface"
|
|
depends on PICVUE
|
|
|
|
config DS1603
|
|
bool "DS1603 RTC driver"
|
|
depends on LASAT
|
|
|
|
config LASAT_SYSCTL
|
|
bool "LASAT sysctl interface"
|
|
depends on LASAT
|
|
|
|
config MIPS_ITE8172
|
|
bool "Support for ITE 8172G board"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
help
|
|
Ths is an evaluation board made by ITE <http://www.ite.com.tw/>
|
|
with ATX form factor that utilizes a MIPS R5000 to work with its
|
|
ITE8172G companion internet appliance chip. The MIPS core can be
|
|
either a NEC Vr5432 or QED RM5231. Say Y here if you wish to build
|
|
a kernel for this platform.
|
|
|
|
config IT8172_REVC
|
|
bool "Support for older IT8172 (Rev C)"
|
|
depends on MIPS_ITE8172
|
|
help
|
|
Say Y here to support the older, Revision C version of the Integrated
|
|
Technology Express, Inc. ITE8172 SBC. Vendor page at
|
|
<http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the
|
|
board at <http://www.mvista.com/partners/semiconductor/ite.html>.
|
|
|
|
config MIPS_ATLAS
|
|
bool "Support for MIPS Atlas board"
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select MIPS_GT64120
|
|
select SWAP_IO_SPACE
|
|
help
|
|
This enables support for the QED R5231-based MIPS Atlas evaluation
|
|
board.
|
|
|
|
config MIPS_MALTA
|
|
bool "Support for MIPS Malta board"
|
|
select BOOT_ELF32
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select MIPS_GT64120
|
|
select SWAP_IO_SPACE
|
|
help
|
|
This enables support for the VR5000-based MIPS Malta evaluation
|
|
board.
|
|
|
|
config MIPS_SEAD
|
|
bool "Support for MIPS SEAD board (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select IRQ_CPU
|
|
select DMA_NONCOHERENT
|
|
|
|
config MOMENCO_OCELOT
|
|
bool "Support for Momentum Ocelot board"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select MIPS_GT64120
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
The Ocelot is a MIPS-based Single Board Computer (SBC) made by
|
|
Momentum Computer <http://www.momenco.com/>.
|
|
|
|
config MOMENCO_OCELOT_G
|
|
bool "Support for Momentum Ocelot-G board"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select PCI_MARVELL
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
The Ocelot is a MIPS-based Single Board Computer (SBC) made by
|
|
Momentum Computer <http://www.momenco.com/>.
|
|
|
|
config MOMENCO_OCELOT_C
|
|
bool "Support for Momentum Ocelot-C board"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_MV64340
|
|
select PCI_MARVELL
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
The Ocelot is a MIPS-based Single Board Computer (SBC) made by
|
|
Momentum Computer <http://www.momenco.com/>.
|
|
|
|
config MOMENCO_OCELOT_3
|
|
bool "Support for Momentum Ocelot-3 board"
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select IRQ_MV64340
|
|
select PCI_MARVELL
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
The Ocelot-3 is based off Discovery III System Controller and
|
|
PMC-Sierra Rm79000 core.
|
|
|
|
config MOMENCO_JAGUAR_ATX
|
|
bool "Support for Momentum Jaguar board"
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select IRQ_MV64340
|
|
select LIMITED_DMA
|
|
select PCI_MARVELL
|
|
select RM7000_CPU_SCACHE
|
|
select SWAP_IO_SPACE
|
|
help
|
|
The Jaguar ATX is a MIPS-based Single Board Computer (SBC) made by
|
|
Momentum Computer <http://www.momenco.com/>.
|
|
|
|
config JAGUAR_DMALOW
|
|
bool "Low DMA Mode"
|
|
depends on MOMENCO_JAGUAR_ATX
|
|
help
|
|
Select to Y if jump JP5 is set on your board, N otherwise. Normally
|
|
the jumper is set, so if you feel unsafe, just say Y.
|
|
|
|
config PMC_YOSEMITE
|
|
bool "Support for PMC-Sierra Yosemite eval board"
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select IRQ_CPU_RM9K
|
|
select SWAP_IO_SPACE
|
|
help
|
|
Yosemite is an evaluation board for the RM9000x2 processor
|
|
manufactured by PMC-Sierra
|
|
|
|
config HYPERTRANSPORT
|
|
bool "Hypertransport Support for PMC-Sierra Yosemite"
|
|
depends on PMC_YOSEMITE
|
|
|
|
config DDB5074
|
|
bool "Support for NEC DDB Vrc-5074 (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select I8259
|
|
select ISA
|
|
help
|
|
This enables support for the VR5000-based NEC DDB Vrc-5074
|
|
evaluation board.
|
|
|
|
config DDB5476
|
|
bool "Support for NEC DDB Vrc-5476"
|
|
select DMA_NONCOHERENT
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select I8259
|
|
select ISA
|
|
help
|
|
This enables support for the R5432-based NEC DDB Vrc-5476
|
|
evaluation board.
|
|
|
|
Features : kernel debugging, serial terminal, NFS root fs, on-board
|
|
ether port USB, AC97, PCI, PCI VGA card & framebuffer console,
|
|
IDE controller, PS2 keyboard, PS2 mouse, etc.
|
|
|
|
config DDB5477
|
|
bool "Support for NEC DDB Vrc-5477"
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select IRQ_CPU
|
|
help
|
|
This enables support for the R5432-based NEC DDB Vrc-5477,
|
|
or Rockhopper/SolutionGear boards with R5432/R5500 CPUs.
|
|
|
|
Features : kernel debugging, serial terminal, NFS root fs, on-board
|
|
ether port USB, AC97, PCI, etc.
|
|
|
|
config DDB5477_BUS_FREQUENCY
|
|
int "bus frequency (in kHZ, 0 for auto-detect)"
|
|
depends on DDB5477
|
|
default 0
|
|
|
|
config NEC_OSPREY
|
|
bool "Support for NEC Osprey board"
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
|
|
config SGI_IP22
|
|
bool "Support for SGI IP22 (Indy/Indigo2)"
|
|
select ARC
|
|
select ARC32
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select IP22_CPU_SCACHE
|
|
select IRQ_CPU
|
|
select SWAP_IO_SPACE
|
|
help
|
|
This are the SGI Indy, Challenge S and Indigo2, as well as certain
|
|
OEM variants like the Tandem CMN B006S. To compile a Linux kernel
|
|
that runs on these, say Y here.
|
|
|
|
config SGI_IP27
|
|
bool "Support for SGI IP27 (Origin200/2000)"
|
|
depends on MIPS64
|
|
select ARC
|
|
select ARC64
|
|
select DMA_IP27
|
|
select HW_HAS_PCI
|
|
select PCI_DOMAINS
|
|
help
|
|
This are the SGI Origin 200, Origin 2000 and Onyx 2 Graphics
|
|
workstations. To compile a Linux kernel that runs on these, say Y
|
|
here.
|
|
|
|
#config SGI_SN0_XXL
|
|
# bool "IP27 XXL"
|
|
# depends on SGI_IP27
|
|
# This options adds support for userspace processes upto 16TB size.
|
|
# Normally the limit is just .5TB.
|
|
|
|
config SGI_SN0_N_MODE
|
|
bool "IP27 N-Mode"
|
|
depends on SGI_IP27
|
|
help
|
|
The nodes of Origin 200, Origin 2000 and Onyx 2 systems can be
|
|
configured in either N-Modes which allows for more nodes or M-Mode
|
|
which allows for more memory. Your system is most probably
|
|
running in M-Mode, so you should say N here.
|
|
|
|
config DISCONTIGMEM
|
|
bool
|
|
default y if SGI_IP27
|
|
help
|
|
Say Y to upport efficient handling of discontiguous physical memory,
|
|
for architectures which are either NUMA (Non-Uniform Memory Access)
|
|
or have huge holes in the physical address space for other reasons.
|
|
See <file:Documentation/vm/numa> for more.
|
|
|
|
config NUMA
|
|
bool "NUMA Support"
|
|
depends on SGI_IP27
|
|
help
|
|
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
|
|
Access). This option is for configuring high-end multiprocessor
|
|
server machines. If in doubt, say N.
|
|
|
|
config MAPPED_KERNEL
|
|
bool "Mapped kernel support"
|
|
depends on SGI_IP27
|
|
help
|
|
Change the way a Linux kernel is loaded into memory on a MIPS64
|
|
machine. This is required in order to support text replication and
|
|
NUMA. If you need to understand it, read the source code.
|
|
|
|
config REPLICATE_KTEXT
|
|
bool "Kernel text replication support"
|
|
depends on SGI_IP27
|
|
help
|
|
Say Y here to enable replicating the kernel text across multiple
|
|
nodes in a NUMA cluster. This trades memory for speed.
|
|
|
|
config REPLICATE_EXHANDLERS
|
|
bool "Exception handler replication support"
|
|
depends on SGI_IP27
|
|
help
|
|
Say Y here to enable replicating the kernel exception handlers
|
|
across multiple nodes in a NUMA cluster. This trades memory for
|
|
speed.
|
|
|
|
config SGI_IP32
|
|
bool "Support for SGI IP32 (O2) (EXPERIMENTAL)"
|
|
depends on MIPS64 && EXPERIMENTAL
|
|
select ARC
|
|
select ARC32
|
|
select BOOT_ELF32
|
|
select OWN_DMA
|
|
select DMA_IP32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select R5000_CPU_SCACHE
|
|
select RM7000_CPU_SCACHE
|
|
help
|
|
If you want this kernel to run on SGI O2 workstation, say Y here.
|
|
|
|
config SOC_AU1X00
|
|
depends on MIPS32
|
|
bool "Support for AMD/Alchemy Au1X00 SOCs"
|
|
|
|
choice
|
|
prompt "Au1X00 SOC Type"
|
|
depends on SOC_AU1X00
|
|
help
|
|
Say Y here to enable support for one of three AMD/Alchemy
|
|
SOCs. For additional documentation see www.amd.com.
|
|
|
|
config SOC_AU1000
|
|
bool "SOC_AU1000"
|
|
config SOC_AU1100
|
|
bool "SOC_AU1100"
|
|
config SOC_AU1500
|
|
bool "SOC_AU1500"
|
|
config SOC_AU1550
|
|
bool "SOC_AU1550"
|
|
|
|
endchoice
|
|
|
|
choice
|
|
prompt "AMD/Alchemy Au1x00 board support"
|
|
depends on SOC_AU1X00
|
|
help
|
|
These are evaluation boards built by AMD/Alchemy to
|
|
showcase their Au1X00 Internet Edge Processors. The SOC design
|
|
is based on the MIPS32 architecture running at 266/400/500MHz
|
|
with many integrated peripherals. Further information can be
|
|
found at their website, <http://www.amd.com/>. Say Y here if you
|
|
wish to build a kernel for this platform.
|
|
|
|
config MIPS_PB1000
|
|
bool "PB1000 board"
|
|
depends on SOC_AU1000
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select SWAP_IO_SPACE
|
|
|
|
config MIPS_PB1100
|
|
bool "PB1100 board"
|
|
depends on SOC_AU1100
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select SWAP_IO_SPACE
|
|
|
|
config MIPS_PB1500
|
|
bool "PB1500 board"
|
|
depends on SOC_AU1500
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
|
|
config MIPS_PB1550
|
|
bool "PB1550 board"
|
|
depends on SOC_AU1550
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
select MIPS_DISABLE_OBSOLETE_IDE
|
|
|
|
config MIPS_DB1000
|
|
bool "DB1000 board"
|
|
depends on SOC_AU1000
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
|
|
config MIPS_DB1100
|
|
bool "DB1100 board"
|
|
depends on SOC_AU1100
|
|
select DMA_NONCOHERENT
|
|
|
|
config MIPS_DB1500
|
|
bool "DB1500 board"
|
|
depends on SOC_AU1500
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
select MIPS_DISABLE_OBSOLETE_IDE
|
|
|
|
config MIPS_DB1550
|
|
bool "DB1550 board"
|
|
depends on SOC_AU1550
|
|
select HW_HAS_PCI
|
|
select DMA_COHERENT
|
|
select MIPS_DISABLE_OBSOLETE_IDE
|
|
|
|
config MIPS_BOSPORUS
|
|
bool "Bosporus board"
|
|
depends on SOC_AU1500
|
|
select DMA_NONCOHERENT
|
|
|
|
config MIPS_MIRAGE
|
|
bool "Mirage board"
|
|
depends on SOC_AU1500
|
|
select DMA_NONCOHERENT
|
|
|
|
config MIPS_XXS1500
|
|
bool "MyCable XXS1500 board"
|
|
depends on SOC_AU1500
|
|
select DMA_NONCOHERENT
|
|
|
|
config MIPS_MTX1
|
|
bool "4G Systems MTX-1 board"
|
|
depends on SOC_AU1500
|
|
select HW_HAS_PCI
|
|
select DMA_NONCOHERENT
|
|
|
|
endchoice
|
|
|
|
config SIBYTE_SB1xxx_SOC
|
|
bool "Support for Broadcom BCM1xxx SOCs (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select SWAP_IO_SPACE
|
|
|
|
choice
|
|
prompt "BCM1xxx SOC-based board"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
default SIBYTE_SWARM
|
|
help
|
|
Enable support for boards based on the SiByte line of SOCs
|
|
from Broadcom. There are configurations for the known
|
|
evaluation boards, or you can choose "Other" and add your
|
|
own board support code.
|
|
|
|
config SIBYTE_SWARM
|
|
bool "BCM91250A-SWARM"
|
|
select SIBYTE_SB1250
|
|
|
|
config SIBYTE_SENTOSA
|
|
bool "BCM91250E-Sentosa"
|
|
select SIBYTE_SB1250
|
|
|
|
config SIBYTE_RHONE
|
|
bool "BCM91125E-Rhone"
|
|
select SIBYTE_BCM1125H
|
|
|
|
config SIBYTE_CARMEL
|
|
bool "BCM91120x-Carmel"
|
|
select SIBYTE_BCM1120
|
|
|
|
config SIBYTE_PTSWARM
|
|
bool "BCM91250PT-PTSWARM"
|
|
select SIBYTE_SB1250
|
|
|
|
config SIBYTE_LITTLESUR
|
|
bool "BCM91250C2-LittleSur"
|
|
select SIBYTE_SB1250
|
|
|
|
config SIBYTE_CRHINE
|
|
bool "BCM91120C-CRhine"
|
|
select SIBYTE_BCM1120
|
|
|
|
config SIBYTE_CRHONE
|
|
bool "BCM91125C-CRhone"
|
|
select SIBYTE_BCM1125
|
|
|
|
config SIBYTE_UNKNOWN
|
|
bool "Other"
|
|
|
|
endchoice
|
|
|
|
config SIBYTE_BOARD
|
|
bool
|
|
depends on SIBYTE_SB1xxx_SOC && !SIBYTE_UNKNOWN
|
|
default y
|
|
|
|
choice
|
|
prompt "BCM1xxx SOC Type"
|
|
depends on SIBYTE_UNKNOWN
|
|
default SIBYTE_UNK_BCM1250
|
|
help
|
|
Since you haven't chosen a known evaluation board from
|
|
Broadcom, you must explicitly pick the SOC this kernel is
|
|
targetted for.
|
|
|
|
config SIBYTE_UNK_BCM1250
|
|
bool "BCM1250"
|
|
select SIBYTE_SB1250
|
|
|
|
config SIBYTE_UNK_BCM1120
|
|
bool "BCM1120"
|
|
select SIBYTE_BCM1120
|
|
|
|
config SIBYTE_UNK_BCM1125
|
|
bool "BCM1125"
|
|
select SIBYTE_BCM1125
|
|
|
|
config SIBYTE_UNK_BCM1125H
|
|
bool "BCM1125H"
|
|
select SIBYTE_BCM1125H
|
|
|
|
endchoice
|
|
|
|
config SIBYTE_SB1250
|
|
bool
|
|
select HW_HAS_PCI
|
|
|
|
config SIBYTE_BCM1120
|
|
bool
|
|
select SIBYTE_BCM112X
|
|
|
|
config SIBYTE_BCM1125
|
|
bool
|
|
select HW_HAS_PCI
|
|
select SIBYTE_BCM112X
|
|
|
|
config SIBYTE_BCM1125H
|
|
bool
|
|
select HW_HAS_PCI
|
|
select SIBYTE_BCM112X
|
|
|
|
config SIBYTE_BCM112X
|
|
bool
|
|
|
|
choice
|
|
prompt "SiByte SOC Stepping"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
|
|
config CPU_SB1_PASS_1
|
|
bool "1250 Pass1"
|
|
depends on SIBYTE_SB1250
|
|
select CPU_HAS_PREFETCH
|
|
|
|
config CPU_SB1_PASS_2_1250
|
|
bool "1250 An"
|
|
depends on SIBYTE_SB1250
|
|
select CPU_SB1_PASS_2
|
|
help
|
|
Also called BCM1250 Pass 2
|
|
|
|
config CPU_SB1_PASS_2_2
|
|
bool "1250 Bn"
|
|
depends on SIBYTE_SB1250
|
|
select CPU_HAS_PREFETCH
|
|
help
|
|
Also called BCM1250 Pass 2.2
|
|
|
|
config CPU_SB1_PASS_4
|
|
bool "1250 Cn"
|
|
depends on SIBYTE_SB1250
|
|
select CPU_HAS_PREFETCH
|
|
help
|
|
Also called BCM1250 Pass 3
|
|
|
|
config CPU_SB1_PASS_2_112x
|
|
bool "112x Hybrid"
|
|
depends on SIBYTE_BCM112X
|
|
select CPU_SB1_PASS_2
|
|
|
|
config CPU_SB1_PASS_3
|
|
bool "112x An"
|
|
depends on SIBYTE_BCM112X
|
|
select CPU_HAS_PREFETCH
|
|
|
|
endchoice
|
|
|
|
config CPU_SB1_PASS_2
|
|
bool
|
|
|
|
config SIBYTE_HAS_LDT
|
|
bool
|
|
depends on PCI && (SIBYTE_SB1250 || SIBYTE_BCM1125H)
|
|
default y
|
|
|
|
config SIMULATION
|
|
bool "Running under simulation"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
help
|
|
Build a kernel suitable for running under the GDB simulator.
|
|
Primarily adjusts the kernel's notion of time.
|
|
|
|
config SIBYTE_CFE
|
|
bool "Booting from CFE"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
help
|
|
Make use of the CFE API for enumerating available memory,
|
|
controlling secondary CPUs, and possibly console output.
|
|
|
|
config SIBYTE_CFE_CONSOLE
|
|
bool "Use firmware console"
|
|
depends on SIBYTE_CFE
|
|
help
|
|
Use the CFE API's console write routines during boot. Other console
|
|
options (VT console, sb1250 duart console, etc.) should not be
|
|
configured.
|
|
|
|
config SIBYTE_STANDALONE
|
|
bool
|
|
depends on SIBYTE_SB1xxx_SOC && !SIBYTE_CFE
|
|
default y
|
|
|
|
config SIBYTE_STANDALONE_RAM_SIZE
|
|
int "Memory size (in megabytes)"
|
|
depends on SIBYTE_STANDALONE
|
|
default "32"
|
|
|
|
config SIBYTE_BUS_WATCHER
|
|
bool "Support for Bus Watcher statistics"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
help
|
|
Handle and keep statistics on the bus error interrupts (COR_ECC,
|
|
BAD_ECC, IO_BUS).
|
|
|
|
config SIBYTE_BW_TRACE
|
|
bool "Capture bus trace before bus error"
|
|
depends on SIBYTE_BUS_WATCHER
|
|
help
|
|
Run a continuous bus trace, dumping the raw data as soon as
|
|
a ZBbus error is detected. Cannot work if ZBbus profiling
|
|
is turned on, and also will interfere with JTAG-based trace
|
|
buffer activity. Raw buffer data is dumped to console, and
|
|
must be processed off-line.
|
|
|
|
config SIBYTE_SB1250_PROF
|
|
bool "Support for SB1/SOC profiling - SB1/SCD perf counters"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
|
|
config SIBYTE_TBPROF
|
|
bool "Support for ZBbus profiling"
|
|
depends on SIBYTE_SB1xxx_SOC
|
|
|
|
config SNI_RM200_PCI
|
|
bool "Support for SNI RM200 PCI"
|
|
select ARC
|
|
select ARC32
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select ISA
|
|
help
|
|
The SNI RM200 PCI was a MIPS-based platform manufactured by Siemens
|
|
Nixdorf Informationssysteme (SNI), parent company of Pyramid
|
|
Technology and now in turn merged with Fujitsu. Say Y here to
|
|
support this machine type.
|
|
|
|
config TOSHIBA_RBTX4927
|
|
bool "Support for Toshiba TBTX49[23]7 board"
|
|
depends on MIPS32
|
|
select DMA_NONCOHERENT
|
|
select HAS_TXX9_SERIAL
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select ISA
|
|
select SWAP_IO_SPACE
|
|
help
|
|
This Toshiba board is based on the TX4927 processor. Say Y here to
|
|
support this machine type
|
|
|
|
config TOSHIBA_FPCIB0
|
|
bool "FPCIB0 Backplane Support"
|
|
depends on TOSHIBA_RBTX4927
|
|
|
|
config RWSEM_GENERIC_SPINLOCK
|
|
bool
|
|
default y
|
|
|
|
config RWSEM_XCHGADD_ALGORITHM
|
|
bool
|
|
|
|
config GENERIC_CALIBRATE_DELAY
|
|
bool
|
|
default y
|
|
|
|
config HAVE_DEC_LOCK
|
|
bool
|
|
default y
|
|
|
|
#
|
|
# Select some configuration options automatically based on user selections.
|
|
#
|
|
config ARC
|
|
bool
|
|
depends on SNI_RM200_PCI || SGI_IP32 || SGI_IP27 || SGI_IP22 || MIPS_MAGNUM_4000 || OLIVETTI_M700 || ACER_PICA_61
|
|
default y
|
|
|
|
config DMA_COHERENT
|
|
bool
|
|
|
|
config DMA_IP27
|
|
bool
|
|
|
|
config DMA_NONCOHERENT
|
|
bool
|
|
|
|
config EARLY_PRINTK
|
|
bool
|
|
depends on MACH_DECSTATION
|
|
default y
|
|
|
|
config GENERIC_ISA_DMA
|
|
bool
|
|
depends on SNI_RM200_PCI || MIPS_MAGNUM_4000 || OLIVETTI_M700 || ACER_PICA_61 || MIPS_MALTA
|
|
default y
|
|
|
|
config I8259
|
|
bool
|
|
depends on SNI_RM200_PCI || DDB5477 || DDB5476 || DDB5074 || MACH_JAZZ || MIPS_MALTA || MIPS_COBALT
|
|
default y
|
|
|
|
config LIMITED_DMA
|
|
bool
|
|
select HIGHMEM
|
|
|
|
config MIPS_BONITO64
|
|
bool
|
|
depends on MIPS_ATLAS || MIPS_MALTA
|
|
default y
|
|
|
|
config MIPS_MSC
|
|
bool
|
|
depends on MIPS_ATLAS || MIPS_MALTA
|
|
default y
|
|
|
|
config MIPS_NILE4
|
|
bool
|
|
depends on LASAT
|
|
default y
|
|
|
|
config MIPS_DISABLE_OBSOLETE_IDE
|
|
bool
|
|
|
|
config CPU_LITTLE_ENDIAN
|
|
bool "Generate little endian code"
|
|
default y if ACER_PICA_61 || CASIO_E55 || DDB5074 || DDB5476 || DDB5477 || MACH_DECSTATION || IBM_WORKPAD || LASAT || MIPS_COBALT || MIPS_ITE8172 || MIPS_IVR || SOC_AU1X00 || NEC_OSPREY || OLIVETTI_M700 || SNI_RM200_PCI || VICTOR_MPC30X || ZAO_CAPCELLA
|
|
default n if MIPS_EV64120 || MIPS_EV96100 || MOMENCO_OCELOT || MOMENCO_OCELOT_G || SGI_IP22 || SGI_IP27 || SGI_IP32 || TOSHIBA_JMR3927
|
|
help
|
|
Some MIPS machines can be configured for either little or big endian
|
|
byte order. These modes require different kernels. Say Y if your
|
|
machine is little endian, N if it's a big endian machine.
|
|
|
|
config IRQ_CPU
|
|
bool
|
|
|
|
config IRQ_CPU_RM7K
|
|
bool
|
|
|
|
config IRQ_MV64340
|
|
bool
|
|
|
|
config DDB5XXX_COMMON
|
|
bool
|
|
depends on DDB5074 || DDB5476 || DDB5477
|
|
default y
|
|
|
|
config MIPS_BOARDS_GEN
|
|
bool
|
|
depends on MIPS_ATLAS || MIPS_MALTA || MIPS_SEAD
|
|
default y
|
|
|
|
config MIPS_GT64111
|
|
bool
|
|
depends on MIPS_COBALT
|
|
default y
|
|
|
|
config MIPS_GT64120
|
|
bool
|
|
depends on MIPS_EV64120 || MIPS_EV96100 || LASAT || MIPS_ATLAS || MIPS_MALTA || MOMENCO_OCELOT
|
|
default y
|
|
|
|
config MIPS_TX3927
|
|
bool
|
|
depends on TOSHIBA_JMR3927
|
|
select HAS_TXX9_SERIAL
|
|
default y
|
|
|
|
config PCI_MARVELL
|
|
bool
|
|
|
|
config ITE_BOARD_GEN
|
|
bool
|
|
depends on MIPS_IVR || MIPS_ITE8172
|
|
default y
|
|
|
|
config SWAP_IO_SPACE
|
|
bool
|
|
|
|
#
|
|
# Unfortunately not all GT64120 systems run the chip at the same clock.
|
|
# As the user for the clock rate and try to minimize the available options.
|
|
#
|
|
choice
|
|
prompt "Galileo Chip Clock"
|
|
#default SYSCLK_83 if MIPS_EV64120
|
|
depends on MIPS_EV64120 || MOMENCO_OCELOT || MOMENCO_OCELOT_G
|
|
default SYSCLK_83 if MIPS_EV64120
|
|
default SYSCLK_100 if MOMENCO_OCELOT || MOMENCO_OCELOT_G
|
|
|
|
config SYSCLK_75
|
|
bool "75" if MIPS_EV64120
|
|
|
|
config SYSCLK_83
|
|
bool "83.3" if MIPS_EV64120
|
|
|
|
config SYSCLK_100
|
|
bool "100" if MIPS_EV64120 || MOMENCO_OCELOT || MOMENCO_OCELOT_G
|
|
|
|
endchoice
|
|
|
|
config AU1X00_USB_DEVICE
|
|
bool
|
|
depends on MIPS_PB1500 || MIPS_PB1100 || MIPS_PB1000
|
|
default n
|
|
|
|
config MIPS_GT96100
|
|
bool
|
|
depends on MIPS_EV96100
|
|
default y
|
|
help
|
|
Say Y here to support the Galileo Technology GT96100 communications
|
|
controller card. There is a web page at <http://www.galileot.com/>.
|
|
|
|
config IT8172_CIR
|
|
bool
|
|
depends on MIPS_ITE8172 || MIPS_IVR
|
|
default y
|
|
|
|
config IT8712
|
|
bool
|
|
depends on MIPS_ITE8172
|
|
default y
|
|
|
|
config BOOT_ELF32
|
|
bool
|
|
depends on MACH_DECSTATION || MIPS_ATLAS || MIPS_MALTA || MOMENCO_JAGUAR_ATX || MOMENCO_OCELOT_3 || SIBYTE_SB1xxx_SOC || SGI_IP32 || SGI_IP22 || SNI_RM200_PCI
|
|
default y
|
|
|
|
config MIPS_L1_CACHE_SHIFT
|
|
int
|
|
default "4" if MACH_DECSTATION
|
|
default "7" if SGI_IP27
|
|
default "5"
|
|
|
|
config ARC32
|
|
bool
|
|
depends on MACH_JAZZ || SNI_RM200_PCI || SGI_IP22 || SGI_IP32
|
|
default y
|
|
|
|
config FB
|
|
bool
|
|
depends on MIPS_MAGNUM_4000 || OLIVETTI_M700
|
|
default y
|
|
---help---
|
|
The frame buffer device provides an abstraction for the graphics
|
|
hardware. It represents the frame buffer of some video hardware and
|
|
allows application software to access the graphics hardware through
|
|
a well-defined interface, so the software doesn't need to know
|
|
anything about the low-level (hardware register) stuff.
|
|
|
|
Frame buffer devices work identically across the different
|
|
architectures supported by Linux and make the implementation of
|
|
application programs easier and more portable; at this point, an X
|
|
server exists which uses the frame buffer device exclusively.
|
|
On several non-X86 architectures, the frame buffer device is the
|
|
only way to use the graphics hardware.
|
|
|
|
The device is accessed through special device nodes, usually located
|
|
in the /dev directory, i.e. /dev/fb*.
|
|
|
|
You need an utility program called fbset to make full use of frame
|
|
buffer devices. Please read <file:Documentation/fb/framebuffer.txt>
|
|
and the Framebuffer-HOWTO at <http://www.tldp.org/docs.html#howto>
|
|
for more information.
|
|
|
|
Say Y here and to the driver for your graphics board below if you
|
|
are compiling a kernel for a non-x86 architecture.
|
|
|
|
If you are compiling for the x86 architecture, you can say Y if you
|
|
want to play with it, but it is not essential. Please note that
|
|
running graphical applications that directly touch the hardware
|
|
(e.g. an accelerated X server) and that are not frame buffer
|
|
device-aware may cause unexpected results. If unsure, say N.
|
|
|
|
config HAVE_STD_PC_SERIAL_PORT
|
|
bool
|
|
|
|
config VR4181
|
|
bool
|
|
depends on NEC_OSPREY
|
|
default y
|
|
|
|
config ARC_CONSOLE
|
|
bool "ARC console support"
|
|
depends on SGI_IP22 || SNI_RM200_PCI
|
|
|
|
config ARC_MEMORY
|
|
bool
|
|
depends on MACH_JAZZ || SNI_RM200_PCI || SGI_IP32
|
|
default y
|
|
|
|
config ARC_PROMLIB
|
|
bool
|
|
depends on MACH_JAZZ || SNI_RM200_PCI || SGI_IP22 || SGI_IP32
|
|
default y
|
|
|
|
config ARC64
|
|
bool
|
|
depends on SGI_IP27
|
|
default y
|
|
|
|
config BOOT_ELF64
|
|
bool
|
|
depends on SGI_IP27
|
|
default y
|
|
|
|
#config MAPPED_PCI_IO y
|
|
# bool
|
|
# depends on SGI_IP27
|
|
# default y
|
|
|
|
config QL_ISP_A64
|
|
bool
|
|
depends on SGI_IP27
|
|
default y
|
|
|
|
config TOSHIBA_BOARDS
|
|
bool
|
|
depends on TOSHIBA_JMR3927 || TOSHIBA_RBTX4927
|
|
default y
|
|
|
|
endmenu
|
|
|
|
menu "CPU selection"
|
|
|
|
choice
|
|
prompt "CPU type"
|
|
default CPU_R4X00
|
|
|
|
config CPU_MIPS32
|
|
bool "MIPS32"
|
|
|
|
config CPU_MIPS64
|
|
bool "MIPS64"
|
|
|
|
config CPU_R3000
|
|
bool "R3000"
|
|
depends on MIPS32
|
|
help
|
|
Please make sure to pick the right CPU type. Linux/MIPS is not
|
|
designed to be generic, i.e. Kernels compiled for R3000 CPUs will
|
|
*not* work on R4000 machines and vice versa. However, since most
|
|
of the supported machines have an R4000 (or similar) CPU, R4x00
|
|
might be a safe bet. If the resulting kernel does not work,
|
|
try to recompile with R3000.
|
|
|
|
config CPU_TX39XX
|
|
bool "R39XX"
|
|
depends on MIPS32
|
|
|
|
config CPU_VR41XX
|
|
bool "R41xx"
|
|
help
|
|
The options selects support for the NEC VR41xx series of processors.
|
|
Only choose this option if you have one of these processors as a
|
|
kernel built with this option will not run on any other type of
|
|
processor or vice versa.
|
|
|
|
config CPU_R4300
|
|
bool "R4300"
|
|
help
|
|
MIPS Technologies R4300-series processors.
|
|
|
|
config CPU_R4X00
|
|
bool "R4x00"
|
|
help
|
|
MIPS Technologies R4000-series processors other than 4300, including
|
|
the R4000, R4400, R4600, and 4700.
|
|
|
|
config CPU_TX49XX
|
|
bool "R49XX"
|
|
|
|
config CPU_R5000
|
|
bool "R5000"
|
|
help
|
|
MIPS Technologies R5000-series processors other than the Nevada.
|
|
|
|
config CPU_R5432
|
|
bool "R5432"
|
|
|
|
config CPU_R6000
|
|
bool "R6000"
|
|
depends on MIPS32 && EXPERIMENTAL
|
|
help
|
|
MIPS Technologies R6000 and R6000A series processors. Note these
|
|
processors are extremly rare and the support for them is incomplete.
|
|
|
|
config CPU_NEVADA
|
|
bool "RM52xx"
|
|
help
|
|
QED / PMC-Sierra RM52xx-series ("Nevada") processors.
|
|
|
|
config CPU_R8000
|
|
bool "R8000"
|
|
depends on MIPS64 && EXPERIMENTAL
|
|
help
|
|
MIPS Technologies R8000 processors. Note these processors are
|
|
uncommon and the support for them is incomplete.
|
|
|
|
config CPU_R10000
|
|
bool "R10000"
|
|
help
|
|
MIPS Technologies R10000-series processors.
|
|
|
|
config CPU_RM7000
|
|
bool "RM7000"
|
|
|
|
config CPU_RM9000
|
|
bool "RM9000"
|
|
|
|
config CPU_SB1
|
|
bool "SB1"
|
|
|
|
endchoice
|
|
|
|
choice
|
|
prompt "Kernel page size"
|
|
default PAGE_SIZE_4KB
|
|
|
|
config PAGE_SIZE_4KB
|
|
bool "4kB"
|
|
help
|
|
This option select the standard 4kB Linux page size. On some
|
|
R3000-family processors this is the only available page size. Using
|
|
4kB page size will minimize memory consumption and is therefore
|
|
recommended for low memory systems.
|
|
|
|
config PAGE_SIZE_8KB
|
|
bool "8kB"
|
|
depends on EXPERIMENTAL && CPU_R8000
|
|
help
|
|
Using 8kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available
|
|
only on the R8000 processor. Not that at the time of this writing
|
|
this option is still high experimental; there are also issues with
|
|
compatibility of user applications.
|
|
|
|
config PAGE_SIZE_16KB
|
|
bool "16kB"
|
|
depends on EXPERIMENTAL && !CPU_R3000 && !CPU_TX39XX
|
|
help
|
|
Using 16kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available on
|
|
all non-R3000 family processor. Not that at the time of this
|
|
writing this option is still high experimental; there are also
|
|
issues with compatibility of user applications.
|
|
|
|
config PAGE_SIZE_64KB
|
|
bool "64kB"
|
|
depends on EXPERIMENTAL && !CPU_R3000 && !CPU_TX39XX
|
|
help
|
|
Using 64kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available on
|
|
all non-R3000 family processor. Not that at the time of this
|
|
writing this option is still high experimental; there are also
|
|
issues with compatibility of user applications.
|
|
|
|
endchoice
|
|
|
|
config BOARD_SCACHE
|
|
bool
|
|
|
|
config IP22_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config R5000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config RM7000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config SIBYTE_DMA_PAGEOPS
|
|
bool "Use DMA to clear/copy pages"
|
|
depends on CPU_SB1
|
|
help
|
|
Instead of using the CPU to zero and copy pages, use a Data Mover
|
|
channel. These DMA channels are otherwise unused by the standard
|
|
SiByte Linux port. Seems to give a small performance benefit.
|
|
|
|
config CPU_HAS_PREFETCH
|
|
bool "Enable prefetches" if CPU_SB1 && !CPU_SB1_PASS_2
|
|
default y if CPU_MIPS32 || CPU_MIPS64 || CPU_RM7000 || CPU_RM9000 || CPU_R10000
|
|
|
|
config VTAG_ICACHE
|
|
bool "Support for Virtual Tagged I-cache" if CPU_MIPS64 || CPU_MIPS32
|
|
default y if CPU_SB1
|
|
|
|
config SB1_PASS_1_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1_PASS_1
|
|
default y
|
|
|
|
config SB1_PASS_2_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && (CPU_SB1_PASS_2_2 || CPU_SB1_PASS_2)
|
|
default y
|
|
|
|
config SB1_PASS_2_1_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && CPU_SB1_PASS_2
|
|
default y
|
|
|
|
config 64BIT_PHYS_ADDR
|
|
bool "Support for 64-bit physical address space"
|
|
depends on (CPU_R4X00 || CPU_R5000 || CPU_RM7000 || CPU_RM9000 || CPU_R10000 || CPU_SB1 || CPU_MIPS32 || CPU_MIPS64) && MIPS32
|
|
|
|
config CPU_ADVANCED
|
|
bool "Override CPU Options"
|
|
depends on MIPS32
|
|
help
|
|
Saying yes here allows you to select support for various features
|
|
your CPU may or may not have. Most people should say N here.
|
|
|
|
config CPU_HAS_LLSC
|
|
bool "ll/sc Instructions available" if CPU_ADVANCED
|
|
default y if !CPU_ADVANCED && !CPU_R3000 && !CPU_VR41XX && !CPU_TX39XX
|
|
help
|
|
MIPS R4000 series and later provide the Load Linked (ll)
|
|
and Store Conditional (sc) instructions. More information is
|
|
available at <http://www.go-ecs.com/mips/miptek1.htm>.
|
|
|
|
Say Y here if your CPU has the ll and sc instructions. Say Y here
|
|
for better performance, N if you don't know. You must say Y here
|
|
for multiprocessor machines.
|
|
|
|
config CPU_HAS_LLDSCD
|
|
bool "lld/scd Instructions available" if CPU_ADVANCED
|
|
default y if !CPU_ADVANCED && !CPU_R3000 && !CPU_VR41XX && !CPU_TX39XX && !CPU_MIPS32
|
|
help
|
|
Say Y here if your CPU has the lld and scd instructions, the 64-bit
|
|
equivalents of ll and sc. Say Y here for better performance, N if
|
|
you don't know. You must say Y here for multiprocessor machines.
|
|
|
|
config CPU_HAS_WB
|
|
bool "Writeback Buffer available" if CPU_ADVANCED
|
|
default y if !CPU_ADVANCED && CPU_R3000 && MACH_DECSTATION
|
|
help
|
|
Say N here for slightly better performance. You must say Y here for
|
|
machines which require flushing of write buffers in software. Saying
|
|
Y is the safe option; N may result in kernel malfunction and crashes.
|
|
|
|
config CPU_HAS_SYNC
|
|
bool
|
|
depends on !CPU_R3000
|
|
default y
|
|
|
|
#
|
|
# - Highmem only makes sense for the 32-bit kernel.
|
|
# - The current highmem code will only work properly on physically indexed
|
|
# caches such as R3000, SB1, R7000 or those that look like they're virtually
|
|
# indexed such as R4000/R4400 SC and MC versions or R10000. So for the
|
|
# moment we protect the user and offer the highmem option only on machines
|
|
# where it's known to be safe. This will not offer highmem on a few systems
|
|
# such as MIPS32 and MIPS64 CPUs which may have virtual and physically
|
|
# indexed CPUs but we're playing safe.
|
|
# - We should not offer highmem for system of which we already know that they
|
|
# don't have memory configurations that could gain from highmem support in
|
|
# the kernel because they don't support configurations with RAM at physical
|
|
# addresses > 0x20000000.
|
|
#
|
|
config HIGHMEM
|
|
bool "High Memory Support"
|
|
depends on MIPS32 && (CPU_R3000 || CPU_SB1 || CPU_R7000 || CPU_RM9000 || CPU_R10000) && !(MACH_DECSTATION || MOMENCO_JAGUAR_ATX)
|
|
|
|
config SMP
|
|
bool "Multi-Processing support"
|
|
depends on CPU_RM9000 || (SIBYTE_SB1250 && !SIBYTE_STANDALONE) || SGI_IP27
|
|
---help---
|
|
This enables support for systems with more than one CPU. If you have
|
|
a system with only one CPU, like most personal computers, say N. If
|
|
you have a system with more than one CPU, say Y.
|
|
|
|
If you say N here, the kernel will run on single and multiprocessor
|
|
machines, but will use only one CPU of a multiprocessor machine. If
|
|
you say Y here, the kernel will run on many, but not all,
|
|
singleprocessor machines. On a singleprocessor machine, the kernel
|
|
will run faster if you say N here.
|
|
|
|
People using multiprocessor machines who say Y here should also say
|
|
Y to "Enhanced Real Time Clock Support", below.
|
|
|
|
See also the <file:Documentation/smp.txt> and the SMP-HOWTO
|
|
available at <http://www.tldp.org/docs.html#howto>.
|
|
|
|
If you don't know what to do here, say N.
|
|
|
|
config NR_CPUS
|
|
int "Maximum number of CPUs (2-64)"
|
|
range 2 64
|
|
depends on SMP
|
|
default "64" if SGI_IP27
|
|
default "2"
|
|
help
|
|
This allows you to specify the maximum number of CPUs which this
|
|
kernel will support. The maximum supported value is 32 for 32-bit
|
|
kernel and 64 for 64-bit kernels; the minimum value which makes
|
|
sense is 2.
|
|
|
|
This is purely to save memory - each supported CPU adds
|
|
approximately eight kilobytes to the kernel image.
|
|
|
|
config PREEMPT
|
|
bool "Preemptible Kernel"
|
|
help
|
|
This option reduces the latency of the kernel when reacting to
|
|
real-time or interactive events by allowing a low priority process to
|
|
be preempted even if it is in kernel mode executing a system call.
|
|
This allows applications to run more reliably even when the system is
|
|
under load.
|
|
|
|
config RTC_DS1742
|
|
bool "DS1742 BRAM/RTC support"
|
|
depends on TOSHIBA_JMR3927 || TOSHIBA_RBTX4927
|
|
|
|
config MIPS_INSANE_LARGE
|
|
bool "Support for large 64-bit configurations"
|
|
depends on CPU_R10000 && MIPS64
|
|
help
|
|
MIPS R10000 does support a 44 bit / 16TB address space as opposed to
|
|
previous 64-bit processors which only supported 40 bit / 1TB. If you
|
|
need processes of more than 1TB virtual address space, say Y here.
|
|
This will result in additional memory usage, so it is not
|
|
recommended for normal users.
|
|
|
|
config RWSEM_GENERIC_SPINLOCK
|
|
bool
|
|
default y
|
|
|
|
endmenu
|
|
|
|
menu "Bus options (PCI, PCMCIA, EISA, ISA, TC)"
|
|
|
|
config HW_HAS_PCI
|
|
bool
|
|
|
|
config PCI
|
|
bool "Support for PCI controller"
|
|
depends on HW_HAS_PCI
|
|
help
|
|
Find out whether you have a PCI motherboard. PCI is the name of a
|
|
bus system, i.e. the way the CPU talks to the other stuff inside
|
|
your box. Other bus systems are ISA, EISA, or VESA. If you have PCI,
|
|
say Y, otherwise N.
|
|
|
|
The PCI-HOWTO, available from
|
|
<http://www.tldp.org/docs.html#howto>, contains valuable
|
|
information about which PCI hardware does work under Linux and which
|
|
doesn't.
|
|
|
|
config PCI_DOMAINS
|
|
bool
|
|
depends on PCI
|
|
|
|
source "drivers/pci/Kconfig"
|
|
|
|
#
|
|
# ISA support is now enabled via select. Too many systems still have the one
|
|
# or other ISA chip on the board that users don't know about so don't expect
|
|
# users to choose the right thing ...
|
|
#
|
|
config ISA
|
|
bool
|
|
|
|
config EISA
|
|
bool "EISA support"
|
|
depends on SGI_IP22 || SNI_RM200_PCI
|
|
select ISA
|
|
---help---
|
|
The Extended Industry Standard Architecture (EISA) bus was
|
|
developed as an open alternative to the IBM MicroChannel bus.
|
|
|
|
The EISA bus provided some of the features of the IBM MicroChannel
|
|
bus while maintaining backward compatibility with cards made for
|
|
the older ISA bus. The EISA bus saw limited use between 1988 and
|
|
1995 when it was made obsolete by the PCI bus.
|
|
|
|
Say Y here if you are building a kernel for an EISA-based machine.
|
|
|
|
Otherwise, say N.
|
|
|
|
source "drivers/eisa/Kconfig"
|
|
|
|
config TC
|
|
bool "TURBOchannel support"
|
|
depends on MACH_DECSTATION
|
|
help
|
|
TurboChannel is a DEC (now Compaq (now HP)) bus for Alpha and MIPS
|
|
processors. Documentation on writing device drivers for TurboChannel
|
|
is available at:
|
|
<http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-PS3HD-TET1_html/TITLE.html>.
|
|
|
|
#config ACCESSBUS
|
|
# bool "Access.Bus support"
|
|
# depends on TC
|
|
|
|
config MMU
|
|
bool
|
|
default y
|
|
|
|
config MCA
|
|
bool
|
|
|
|
config SBUS
|
|
bool
|
|
|
|
source "drivers/pcmcia/Kconfig"
|
|
|
|
source "drivers/pci/hotplug/Kconfig"
|
|
|
|
endmenu
|
|
|
|
menu "Executable file formats"
|
|
|
|
source "fs/Kconfig.binfmt"
|
|
|
|
config TRAD_SIGNALS
|
|
bool
|
|
default y if MIPS32
|
|
|
|
config BUILD_ELF64
|
|
bool "Use 64-bit ELF format for building"
|
|
depends on MIPS64
|
|
help
|
|
A 64-bit kernel is usually built using the 64-bit ELF binary object
|
|
format as it's one that allows arbitrary 64-bit constructs. For
|
|
kernels that are loaded within the KSEG compatibility segments the
|
|
32-bit ELF format can optionally be used resulting in a somewhat
|
|
smaller binary, but this option is not explicitly supported by the
|
|
toolchain and since binutils 2.14 it does not even work at all.
|
|
|
|
Say Y to use the 64-bit format or N to use the 32-bit one.
|
|
|
|
If unsure say Y.
|
|
|
|
config BINFMT_IRIX
|
|
bool "Include IRIX binary compatibility"
|
|
depends on !CPU_LITTLE_ENDIAN && MIPS32 && BROKEN
|
|
|
|
config MIPS32_COMPAT
|
|
bool "Kernel support for Linux/MIPS 32-bit binary compatibility"
|
|
depends on MIPS64
|
|
help
|
|
Select this option if you want Linux/MIPS 32-bit binary
|
|
compatibility. Since all software available for Linux/MIPS is
|
|
currently 32-bit you should say Y here.
|
|
|
|
config COMPAT
|
|
bool
|
|
depends on MIPS32_COMPAT
|
|
default y
|
|
|
|
config MIPS32_O32
|
|
bool "Kernel support for o32 binaries"
|
|
depends on MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run o32 binaries. These are pure
|
|
32-bit binaries as used by the 32-bit Linux/MIPS port. Most of
|
|
existing binaries are in this format.
|
|
|
|
If unsure, say Y.
|
|
|
|
config MIPS32_N32
|
|
bool "Kernel support for n32 binaries"
|
|
depends on MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run n32 binaries. These are
|
|
64-bit binaries using 32-bit quantities for addressing and certain
|
|
data that would normally be 64-bit. They are used in special
|
|
cases.
|
|
|
|
If unsure, say N.
|
|
|
|
config BINFMT_ELF32
|
|
bool
|
|
default y if MIPS32_O32 || MIPS32_N32
|
|
|
|
config PM
|
|
bool "Power Management support (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL && MACH_AU1X00
|
|
|
|
endmenu
|
|
|
|
source "drivers/Kconfig"
|
|
|
|
source "fs/Kconfig"
|
|
|
|
source "arch/mips/Kconfig.debug"
|
|
|
|
source "security/Kconfig"
|
|
|
|
source "crypto/Kconfig"
|
|
|
|
source "lib/Kconfig"
|
|
|
|
#
|
|
# Use the generic interrupt handling code in kernel/irq/:
|
|
#
|
|
config GENERIC_HARDIRQS
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_IRQ_PROBE
|
|
bool
|
|
default y
|