2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/kernel/kcmp.c
Rasmus Villemoes acbbe6fbb2 kcmp: fix standard comparison bug
The C operator <= defines a perfectly fine total ordering on the set of
values representable in a long.  However, unlike its namesake in the
integers, it is not translation invariant, meaning that we do not have
"b <= c" iff "a+b <= a+c" for all a,b,c.

This means that it is always wrong to try to boil down the relationship
between two longs to a question about the sign of their difference,
because the resulting relation [a LEQ b iff a-b <= 0] is neither
anti-symmetric or transitive.  The former is due to -LONG_MIN==LONG_MIN
(take any two a,b with a-b = LONG_MIN; then a LEQ b and b LEQ a, but a !=
b).  The latter can either be seen observing that x LEQ x+1 for all x,
implying x LEQ x+1 LEQ x+2 ...  LEQ x-1 LEQ x; or more directly with the
simple example a=LONG_MIN, b=0, c=1, for which a-b < 0, b-c < 0, but a-c >
0.

Note that it makes absolutely no difference that a transmogrying bijection
has been applied before the comparison is done.  In fact, had the
obfuscation not been done, one could probably not observe the bug
(assuming all values being compared always lie in one half of the address
space, the mathematical value of a-b is always representable in a long).
As it stands, one can easily obtain three file descriptors exhibiting the
non-transitivity of kcmp().

Side note 1: I can't see that ensuring the MSB of the multiplier is
set serves any purpose other than obfuscating the obfuscating code.

Side note 2:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include <sys/syscall.h>

enum kcmp_type {
        KCMP_FILE,
        KCMP_VM,
        KCMP_FILES,
        KCMP_FS,
        KCMP_SIGHAND,
        KCMP_IO,
        KCMP_SYSVSEM,
        KCMP_TYPES,
};
pid_t pid;

int kcmp(pid_t pid1, pid_t pid2, int type,
	 unsigned long idx1, unsigned long idx2)
{
	return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
}
int cmp_fd(int fd1, int fd2)
{
	int c = kcmp(pid, pid, KCMP_FILE, fd1, fd2);
	if (c < 0) {
		perror("kcmp");
		exit(1);
	}
	assert(0 <= c && c < 3);
	return c;
}
int cmp_fdp(const void *a, const void *b)
{
	static const int normalize[] = {0, -1, 1};
	return normalize[cmp_fd(*(int*)a, *(int*)b)];
}
#define MAX 100 /* This is plenty; I've seen it trigger for MAX==3 */
int main(int argc, char *argv[])
{
	int r, s, count = 0;
	int REL[3] = {0,0,0};
	int fd[MAX];
	pid = getpid();
	while (count < MAX) {
		r = open("/dev/null", O_RDONLY);
		if (r < 0)
			break;
		fd[count++] = r;
	}
	printf("opened %d file descriptors\n", count);
	for (r = 0; r < count; ++r) {
		for (s = r+1; s < count; ++s) {
			REL[cmp_fd(fd[r], fd[s])]++;
		}
	}
	printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]);
	qsort(fd, count, sizeof(fd[0]), cmp_fdp);
	memset(REL, 0, sizeof(REL));

	for (r = 0; r < count; ++r) {
		for (s = r+1; s < count; ++s) {
			REL[cmp_fd(fd[r], fd[s])]++;
		}
	}
	printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]);
	return (REL[0] + REL[2] != 0);
}

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
"Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-10 15:42:12 -07:00

199 lines
4.3 KiB
C

#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/fdtable.h>
#include <linux/string.h>
#include <linux/random.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/cache.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/kcmp.h>
#include <asm/unistd.h>
/*
* We don't expose the real in-memory order of objects for security reasons.
* But still the comparison results should be suitable for sorting. So we
* obfuscate kernel pointers values and compare the production instead.
*
* The obfuscation is done in two steps. First we xor the kernel pointer with
* a random value, which puts pointer into a new position in a reordered space.
* Secondly we multiply the xor production with a large odd random number to
* permute its bits even more (the odd multiplier guarantees that the product
* is unique ever after the high bits are truncated, since any odd number is
* relative prime to 2^n).
*
* Note also that the obfuscation itself is invisible to userspace and if needed
* it can be changed to an alternate scheme.
*/
static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
static long kptr_obfuscate(long v, int type)
{
return (v ^ cookies[type][0]) * cookies[type][1];
}
/*
* 0 - equal, i.e. v1 = v2
* 1 - less than, i.e. v1 < v2
* 2 - greater than, i.e. v1 > v2
* 3 - not equal but ordering unavailable (reserved for future)
*/
static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
{
long t1, t2;
t1 = kptr_obfuscate((long)v1, type);
t2 = kptr_obfuscate((long)v2, type);
return (t1 < t2) | ((t1 > t2) << 1);
}
/* The caller must have pinned the task */
static struct file *
get_file_raw_ptr(struct task_struct *task, unsigned int idx)
{
struct file *file = NULL;
task_lock(task);
rcu_read_lock();
if (task->files)
file = fcheck_files(task->files, idx);
rcu_read_unlock();
task_unlock(task);
return file;
}
static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
{
if (likely(m2 != m1))
mutex_unlock(m2);
mutex_unlock(m1);
}
static int kcmp_lock(struct mutex *m1, struct mutex *m2)
{
int err;
if (m2 > m1)
swap(m1, m2);
err = mutex_lock_killable(m1);
if (!err && likely(m1 != m2)) {
err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
if (err)
mutex_unlock(m1);
}
return err;
}
SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
unsigned long, idx1, unsigned long, idx2)
{
struct task_struct *task1, *task2;
int ret;
rcu_read_lock();
/*
* Tasks are looked up in caller's PID namespace only.
*/
task1 = find_task_by_vpid(pid1);
task2 = find_task_by_vpid(pid2);
if (!task1 || !task2)
goto err_no_task;
get_task_struct(task1);
get_task_struct(task2);
rcu_read_unlock();
/*
* One should have enough rights to inspect task details.
*/
ret = kcmp_lock(&task1->signal->cred_guard_mutex,
&task2->signal->cred_guard_mutex);
if (ret)
goto err;
if (!ptrace_may_access(task1, PTRACE_MODE_READ) ||
!ptrace_may_access(task2, PTRACE_MODE_READ)) {
ret = -EPERM;
goto err_unlock;
}
switch (type) {
case KCMP_FILE: {
struct file *filp1, *filp2;
filp1 = get_file_raw_ptr(task1, idx1);
filp2 = get_file_raw_ptr(task2, idx2);
if (filp1 && filp2)
ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
else
ret = -EBADF;
break;
}
case KCMP_VM:
ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
break;
case KCMP_FILES:
ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
break;
case KCMP_FS:
ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
break;
case KCMP_SIGHAND:
ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
break;
case KCMP_IO:
ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
break;
case KCMP_SYSVSEM:
#ifdef CONFIG_SYSVIPC
ret = kcmp_ptr(task1->sysvsem.undo_list,
task2->sysvsem.undo_list,
KCMP_SYSVSEM);
#else
ret = -EOPNOTSUPP;
#endif
break;
default:
ret = -EINVAL;
break;
}
err_unlock:
kcmp_unlock(&task1->signal->cred_guard_mutex,
&task2->signal->cred_guard_mutex);
err:
put_task_struct(task1);
put_task_struct(task2);
return ret;
err_no_task:
rcu_read_unlock();
return -ESRCH;
}
static __init int kcmp_cookies_init(void)
{
int i;
get_random_bytes(cookies, sizeof(cookies));
for (i = 0; i < KCMP_TYPES; i++)
cookies[i][1] |= (~(~0UL >> 1) | 1);
return 0;
}
arch_initcall(kcmp_cookies_init);