mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-16 01:04:08 +08:00
32d01dc7be
Pull cgroup updates from Tejun Heo: "A lot updates for cgroup: - The biggest one is cgroup's conversion to kernfs. cgroup took after the long abandoned vfs-entangled sysfs implementation and made it even more convoluted over time. cgroup's internal objects were fused with vfs objects which also brought in vfs locking and object lifetime rules. Naturally, there are places where vfs rules don't fit and nasty hacks, such as credential switching or lock dance interleaving inode mutex and cgroup_mutex with object serial number comparison thrown in to decide whether the operation is actually necessary, needed to be employed. After conversion to kernfs, internal object lifetime and locking rules are mostly isolated from vfs interactions allowing shedding of several nasty hacks and overall simplification. This will also allow implmentation of operations which may affect multiple cgroups which weren't possible before as it would have required nesting i_mutexes. - Various simplifications including dropping of module support, easier cgroup name/path handling, simplified cgroup file type handling and task_cg_lists optimization. - Prepatory changes for the planned unified hierarchy, which is still a patchset away from being actually operational. The dummy hierarchy is updated to serve as the default unified hierarchy. Controllers which aren't claimed by other hierarchies are associated with it, which BTW was what the dummy hierarchy was for anyway. - Various fixes from Li and others. This pull request includes some patches to add missing slab.h to various subsystems. This was triggered xattr.h include removal from cgroup.h. cgroup.h indirectly got included a lot of files which brought in xattr.h which brought in slab.h. There are several merge commits - one to pull in kernfs updates necessary for converting cgroup (already in upstream through driver-core), others for interfering changes in the fixes branch" * 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits) cgroup: remove useless argument from cgroup_exit() cgroup: fix spurious lockdep warning in cgroup_exit() cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c cgroup: break kernfs active_ref protection in cgroup directory operations cgroup: fix cgroup_taskset walking order cgroup: implement CFTYPE_ONLY_ON_DFL cgroup: make cgrp_dfl_root mountable cgroup: drop const from @buffer of cftype->write_string() cgroup: rename cgroup_dummy_root and related names cgroup: move ->subsys_mask from cgroupfs_root to cgroup cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}() cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root cgroup: reorganize cgroup bootstrapping cgroup: relocate setting of CGRP_DEAD cpuset: use rcu_read_lock() to protect task_cs() cgroup_freezer: document freezer_fork() subtleties cgroup: update cgroup_transfer_tasks() to either succeed or fail cgroup: drop task_lock() protection around task->cgroups cgroup: update how a newly forked task gets associated with css_set ...
376 lines
12 KiB
Plaintext
376 lines
12 KiB
Plaintext
#
|
|
# Network configuration
|
|
#
|
|
|
|
menuconfig NET
|
|
bool "Networking support"
|
|
select NLATTR
|
|
select GENERIC_NET_UTILS
|
|
---help---
|
|
Unless you really know what you are doing, you should say Y here.
|
|
The reason is that some programs need kernel networking support even
|
|
when running on a stand-alone machine that isn't connected to any
|
|
other computer.
|
|
|
|
If you are upgrading from an older kernel, you
|
|
should consider updating your networking tools too because changes
|
|
in the kernel and the tools often go hand in hand. The tools are
|
|
contained in the package net-tools, the location and version number
|
|
of which are given in <file:Documentation/Changes>.
|
|
|
|
For a general introduction to Linux networking, it is highly
|
|
recommended to read the NET-HOWTO, available from
|
|
<http://www.tldp.org/docs.html#howto>.
|
|
|
|
if NET
|
|
|
|
config WANT_COMPAT_NETLINK_MESSAGES
|
|
bool
|
|
help
|
|
This option can be selected by other options that need compat
|
|
netlink messages.
|
|
|
|
config COMPAT_NETLINK_MESSAGES
|
|
def_bool y
|
|
depends on COMPAT
|
|
depends on WEXT_CORE || WANT_COMPAT_NETLINK_MESSAGES
|
|
help
|
|
This option makes it possible to send different netlink messages
|
|
to tasks depending on whether the task is a compat task or not. To
|
|
achieve this, you need to set skb_shinfo(skb)->frag_list to the
|
|
compat skb before sending the skb, the netlink code will sort out
|
|
which message to actually pass to the task.
|
|
|
|
Newly written code should NEVER need this option but do
|
|
compat-independent messages instead!
|
|
|
|
menu "Networking options"
|
|
|
|
source "net/packet/Kconfig"
|
|
source "net/unix/Kconfig"
|
|
source "net/xfrm/Kconfig"
|
|
source "net/iucv/Kconfig"
|
|
|
|
config INET
|
|
bool "TCP/IP networking"
|
|
select CRYPTO
|
|
select CRYPTO_AES
|
|
---help---
|
|
These are the protocols used on the Internet and on most local
|
|
Ethernets. It is highly recommended to say Y here (this will enlarge
|
|
your kernel by about 400 KB), since some programs (e.g. the X window
|
|
system) use TCP/IP even if your machine is not connected to any
|
|
other computer. You will get the so-called loopback device which
|
|
allows you to ping yourself (great fun, that!).
|
|
|
|
For an excellent introduction to Linux networking, please read the
|
|
Linux Networking HOWTO, available from
|
|
<http://www.tldp.org/docs.html#howto>.
|
|
|
|
If you say Y here and also to "/proc file system support" and
|
|
"Sysctl support" below, you can change various aspects of the
|
|
behavior of the TCP/IP code by writing to the (virtual) files in
|
|
/proc/sys/net/ipv4/*; the options are explained in the file
|
|
<file:Documentation/networking/ip-sysctl.txt>.
|
|
|
|
Short answer: say Y.
|
|
|
|
if INET
|
|
source "net/ipv4/Kconfig"
|
|
source "net/ipv6/Kconfig"
|
|
source "net/netlabel/Kconfig"
|
|
|
|
endif # if INET
|
|
|
|
config NETWORK_SECMARK
|
|
bool "Security Marking"
|
|
help
|
|
This enables security marking of network packets, similar
|
|
to nfmark, but designated for security purposes.
|
|
If you are unsure how to answer this question, answer N.
|
|
|
|
config NET_PTP_CLASSIFY
|
|
def_bool n
|
|
|
|
config NETWORK_PHY_TIMESTAMPING
|
|
bool "Timestamping in PHY devices"
|
|
select NET_PTP_CLASSIFY
|
|
help
|
|
This allows timestamping of network packets by PHYs with
|
|
hardware timestamping capabilities. This option adds some
|
|
overhead in the transmit and receive paths.
|
|
|
|
If you are unsure how to answer this question, answer N.
|
|
|
|
menuconfig NETFILTER
|
|
bool "Network packet filtering framework (Netfilter)"
|
|
---help---
|
|
Netfilter is a framework for filtering and mangling network packets
|
|
that pass through your Linux box.
|
|
|
|
The most common use of packet filtering is to run your Linux box as
|
|
a firewall protecting a local network from the Internet. The type of
|
|
firewall provided by this kernel support is called a "packet
|
|
filter", which means that it can reject individual network packets
|
|
based on type, source, destination etc. The other kind of firewall,
|
|
a "proxy-based" one, is more secure but more intrusive and more
|
|
bothersome to set up; it inspects the network traffic much more
|
|
closely, modifies it and has knowledge about the higher level
|
|
protocols, which a packet filter lacks. Moreover, proxy-based
|
|
firewalls often require changes to the programs running on the local
|
|
clients. Proxy-based firewalls don't need support by the kernel, but
|
|
they are often combined with a packet filter, which only works if
|
|
you say Y here.
|
|
|
|
You should also say Y here if you intend to use your Linux box as
|
|
the gateway to the Internet for a local network of machines without
|
|
globally valid IP addresses. This is called "masquerading": if one
|
|
of the computers on your local network wants to send something to
|
|
the outside, your box can "masquerade" as that computer, i.e. it
|
|
forwards the traffic to the intended outside destination, but
|
|
modifies the packets to make it look like they came from the
|
|
firewall box itself. It works both ways: if the outside host
|
|
replies, the Linux box will silently forward the traffic to the
|
|
correct local computer. This way, the computers on your local net
|
|
are completely invisible to the outside world, even though they can
|
|
reach the outside and can receive replies. It is even possible to
|
|
run globally visible servers from within a masqueraded local network
|
|
using a mechanism called portforwarding. Masquerading is also often
|
|
called NAT (Network Address Translation).
|
|
|
|
Another use of Netfilter is in transparent proxying: if a machine on
|
|
the local network tries to connect to an outside host, your Linux
|
|
box can transparently forward the traffic to a local server,
|
|
typically a caching proxy server.
|
|
|
|
Yet another use of Netfilter is building a bridging firewall. Using
|
|
a bridge with Network packet filtering enabled makes iptables "see"
|
|
the bridged traffic. For filtering on the lower network and Ethernet
|
|
protocols over the bridge, use ebtables (under bridge netfilter
|
|
configuration).
|
|
|
|
Various modules exist for netfilter which replace the previous
|
|
masquerading (ipmasqadm), packet filtering (ipchains), transparent
|
|
proxying, and portforwarding mechanisms. Please see
|
|
<file:Documentation/Changes> under "iptables" for the location of
|
|
these packages.
|
|
|
|
if NETFILTER
|
|
|
|
config NETFILTER_DEBUG
|
|
bool "Network packet filtering debugging"
|
|
depends on NETFILTER
|
|
help
|
|
You can say Y here if you want to get additional messages useful in
|
|
debugging the netfilter code.
|
|
|
|
config NETFILTER_ADVANCED
|
|
bool "Advanced netfilter configuration"
|
|
depends on NETFILTER
|
|
default y
|
|
help
|
|
If you say Y here you can select between all the netfilter modules.
|
|
If you say N the more unusual ones will not be shown and the
|
|
basic ones needed by most people will default to 'M'.
|
|
|
|
If unsure, say Y.
|
|
|
|
config BRIDGE_NETFILTER
|
|
bool "Bridged IP/ARP packets filtering"
|
|
depends on BRIDGE && NETFILTER && INET
|
|
depends on NETFILTER_ADVANCED
|
|
default y
|
|
---help---
|
|
Enabling this option will let arptables resp. iptables see bridged
|
|
ARP resp. IP traffic. If you want a bridging firewall, you probably
|
|
want this option enabled.
|
|
Enabling or disabling this option doesn't enable or disable
|
|
ebtables.
|
|
|
|
If unsure, say N.
|
|
|
|
source "net/netfilter/Kconfig"
|
|
source "net/ipv4/netfilter/Kconfig"
|
|
source "net/ipv6/netfilter/Kconfig"
|
|
source "net/decnet/netfilter/Kconfig"
|
|
source "net/bridge/netfilter/Kconfig"
|
|
|
|
endif
|
|
|
|
source "net/dccp/Kconfig"
|
|
source "net/sctp/Kconfig"
|
|
source "net/rds/Kconfig"
|
|
source "net/tipc/Kconfig"
|
|
source "net/atm/Kconfig"
|
|
source "net/l2tp/Kconfig"
|
|
source "net/802/Kconfig"
|
|
source "net/bridge/Kconfig"
|
|
source "net/dsa/Kconfig"
|
|
source "net/8021q/Kconfig"
|
|
source "net/decnet/Kconfig"
|
|
source "net/llc/Kconfig"
|
|
source "net/ipx/Kconfig"
|
|
source "drivers/net/appletalk/Kconfig"
|
|
source "net/x25/Kconfig"
|
|
source "net/lapb/Kconfig"
|
|
source "net/phonet/Kconfig"
|
|
source "net/ieee802154/Kconfig"
|
|
source "net/mac802154/Kconfig"
|
|
source "net/sched/Kconfig"
|
|
source "net/dcb/Kconfig"
|
|
source "net/dns_resolver/Kconfig"
|
|
source "net/batman-adv/Kconfig"
|
|
source "net/openvswitch/Kconfig"
|
|
source "net/vmw_vsock/Kconfig"
|
|
source "net/netlink/Kconfig"
|
|
source "net/mpls/Kconfig"
|
|
source "net/hsr/Kconfig"
|
|
|
|
config RPS
|
|
boolean
|
|
depends on SMP && SYSFS
|
|
default y
|
|
|
|
config RFS_ACCEL
|
|
boolean
|
|
depends on RPS
|
|
select CPU_RMAP
|
|
default y
|
|
|
|
config XPS
|
|
boolean
|
|
depends on SMP
|
|
default y
|
|
|
|
config CGROUP_NET_PRIO
|
|
bool "Network priority cgroup"
|
|
depends on CGROUPS
|
|
---help---
|
|
Cgroup subsystem for use in assigning processes to network priorities on
|
|
a per-interface basis.
|
|
|
|
config CGROUP_NET_CLASSID
|
|
boolean "Network classid cgroup"
|
|
depends on CGROUPS
|
|
---help---
|
|
Cgroup subsystem for use as general purpose socket classid marker that is
|
|
being used in cls_cgroup and for netfilter matching.
|
|
|
|
config NET_RX_BUSY_POLL
|
|
boolean
|
|
default y
|
|
|
|
config BQL
|
|
boolean
|
|
depends on SYSFS
|
|
select DQL
|
|
default y
|
|
|
|
config BPF_JIT
|
|
bool "enable BPF Just In Time compiler"
|
|
depends on HAVE_BPF_JIT
|
|
depends on MODULES
|
|
---help---
|
|
Berkeley Packet Filter filtering capabilities are normally handled
|
|
by an interpreter. This option allows kernel to generate a native
|
|
code when filter is loaded in memory. This should speedup
|
|
packet sniffing (libpcap/tcpdump). Note : Admin should enable
|
|
this feature changing /proc/sys/net/core/bpf_jit_enable
|
|
|
|
config NET_FLOW_LIMIT
|
|
boolean
|
|
depends on RPS
|
|
default y
|
|
---help---
|
|
The network stack has to drop packets when a receive processing CPU's
|
|
backlog reaches netdev_max_backlog. If a few out of many active flows
|
|
generate the vast majority of load, drop their traffic earlier to
|
|
maintain capacity for the other flows. This feature provides servers
|
|
with many clients some protection against DoS by a single (spoofed)
|
|
flow that greatly exceeds average workload.
|
|
|
|
menu "Network testing"
|
|
|
|
config NET_PKTGEN
|
|
tristate "Packet Generator (USE WITH CAUTION)"
|
|
depends on INET && PROC_FS
|
|
---help---
|
|
This module will inject preconfigured packets, at a configurable
|
|
rate, out of a given interface. It is used for network interface
|
|
stress testing and performance analysis. If you don't understand
|
|
what was just said, you don't need it: say N.
|
|
|
|
Documentation on how to use the packet generator can be found
|
|
at <file:Documentation/networking/pktgen.txt>.
|
|
|
|
To compile this code as a module, choose M here: the
|
|
module will be called pktgen.
|
|
|
|
config NET_TCPPROBE
|
|
tristate "TCP connection probing"
|
|
depends on INET && PROC_FS && KPROBES
|
|
---help---
|
|
This module allows for capturing the changes to TCP connection
|
|
state in response to incoming packets. It is used for debugging
|
|
TCP congestion avoidance modules. If you don't understand
|
|
what was just said, you don't need it: say N.
|
|
|
|
Documentation on how to use TCP connection probing can be found
|
|
at:
|
|
|
|
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
|
|
|
|
To compile this code as a module, choose M here: the
|
|
module will be called tcp_probe.
|
|
|
|
config NET_DROP_MONITOR
|
|
tristate "Network packet drop alerting service"
|
|
depends on INET && TRACEPOINTS
|
|
---help---
|
|
This feature provides an alerting service to userspace in the
|
|
event that packets are discarded in the network stack. Alerts
|
|
are broadcast via netlink socket to any listening user space
|
|
process. If you don't need network drop alerts, or if you are ok
|
|
just checking the various proc files and other utilities for
|
|
drop statistics, say N here.
|
|
|
|
endmenu
|
|
|
|
endmenu
|
|
|
|
source "net/ax25/Kconfig"
|
|
source "net/can/Kconfig"
|
|
source "net/irda/Kconfig"
|
|
source "net/bluetooth/Kconfig"
|
|
source "net/rxrpc/Kconfig"
|
|
|
|
config FIB_RULES
|
|
bool
|
|
|
|
menuconfig WIRELESS
|
|
bool "Wireless"
|
|
depends on !S390
|
|
default y
|
|
|
|
if WIRELESS
|
|
|
|
source "net/wireless/Kconfig"
|
|
source "net/mac80211/Kconfig"
|
|
|
|
endif # WIRELESS
|
|
|
|
source "net/wimax/Kconfig"
|
|
|
|
source "net/rfkill/Kconfig"
|
|
source "net/9p/Kconfig"
|
|
source "net/caif/Kconfig"
|
|
source "net/ceph/Kconfig"
|
|
source "net/nfc/Kconfig"
|
|
|
|
|
|
endif # if NET
|
|
|
|
# Used by archs to tell that they support BPF_JIT
|
|
config HAVE_BPF_JIT
|
|
bool
|