mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 20:23:57 +08:00
e31cf2f4ca
Patch series "mm: consolidate definitions of page table accessors", v2. The low level page table accessors (pXY_index(), pXY_offset()) are duplicated across all architectures and sometimes more than once. For instance, we have 31 definition of pgd_offset() for 25 supported architectures. Most of these definitions are actually identical and typically it boils down to, e.g. static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } These definitions can be shared among 90% of the arches provided XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined. For architectures that really need a custom version there is always possibility to override the generic version with the usual ifdefs magic. These patches introduce include/linux/pgtable.h that replaces include/asm-generic/pgtable.h and add the definitions of the page table accessors to the new header. This patch (of 12): The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the functions involving page table manipulations, e.g. pte_alloc() and pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h> in the files that include <linux/mm.h>. The include statements in such cases are remove with a simple loop: for f in $(git grep -l "include <linux/mm.h>") ; do sed -i -e '/include <asm\/pgtable.h>/ d' $f done Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
623 lines
15 KiB
C
623 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* handle transition of Linux booting another kernel
|
|
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/string.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/io.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/efi.h>
|
|
|
|
#include <asm/init.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kexec-bzimage64.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/set_memory.h>
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Used while adding mapping for ACPI tables.
|
|
* Can be reused when other iomem regions need be mapped
|
|
*/
|
|
struct init_pgtable_data {
|
|
struct x86_mapping_info *info;
|
|
pgd_t *level4p;
|
|
};
|
|
|
|
static int mem_region_callback(struct resource *res, void *arg)
|
|
{
|
|
struct init_pgtable_data *data = arg;
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = res->start;
|
|
mend = mstart + resource_size(res) - 1;
|
|
|
|
return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
|
|
}
|
|
|
|
static int
|
|
map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
struct init_pgtable_data data;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
data.info = info;
|
|
data.level4p = level4p;
|
|
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
/* ACPI tables could be located in ACPI Non-volatile Storage region */
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
const struct kexec_file_ops * const kexec_file_loaders[] = {
|
|
&kexec_bzImage64_ops,
|
|
NULL
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
#ifdef CONFIG_EFI
|
|
unsigned long mstart, mend;
|
|
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return 0;
|
|
|
|
mstart = (boot_params.efi_info.efi_systab |
|
|
((u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
mend = mstart + sizeof(efi_system_table_64_t);
|
|
else
|
|
mend = mstart + sizeof(efi_system_table_32_t);
|
|
|
|
if (!mstart)
|
|
return 0;
|
|
|
|
return kernel_ident_mapping_init(info, level4p, mstart, mend);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void free_transition_pgtable(struct kimage *image)
|
|
{
|
|
free_page((unsigned long)image->arch.p4d);
|
|
image->arch.p4d = NULL;
|
|
free_page((unsigned long)image->arch.pud);
|
|
image->arch.pud = NULL;
|
|
free_page((unsigned long)image->arch.pmd);
|
|
image->arch.pmd = NULL;
|
|
free_page((unsigned long)image->arch.pte);
|
|
image->arch.pte = NULL;
|
|
}
|
|
|
|
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
|
|
{
|
|
pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
|
|
unsigned long vaddr, paddr;
|
|
int result = -ENOMEM;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
vaddr = (unsigned long)relocate_kernel;
|
|
paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
|
|
pgd += pgd_index(vaddr);
|
|
if (!pgd_present(*pgd)) {
|
|
p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!p4d)
|
|
goto err;
|
|
image->arch.p4d = p4d;
|
|
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
|
|
}
|
|
p4d = p4d_offset(pgd, vaddr);
|
|
if (!p4d_present(*p4d)) {
|
|
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pud)
|
|
goto err;
|
|
image->arch.pud = pud;
|
|
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
|
|
}
|
|
pud = pud_offset(p4d, vaddr);
|
|
if (!pud_present(*pud)) {
|
|
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pmd)
|
|
goto err;
|
|
image->arch.pmd = pmd;
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (!pmd_present(*pmd)) {
|
|
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pte)
|
|
goto err;
|
|
image->arch.pte = pte;
|
|
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
|
|
}
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
|
|
if (sev_active())
|
|
prot = PAGE_KERNEL_EXEC;
|
|
|
|
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
|
|
return 0;
|
|
err:
|
|
return result;
|
|
}
|
|
|
|
static void *alloc_pgt_page(void *data)
|
|
{
|
|
struct kimage *image = (struct kimage *)data;
|
|
struct page *page;
|
|
void *p = NULL;
|
|
|
|
page = kimage_alloc_control_pages(image, 0);
|
|
if (page) {
|
|
p = page_address(page);
|
|
clear_page(p);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
|
|
{
|
|
struct x86_mapping_info info = {
|
|
.alloc_pgt_page = alloc_pgt_page,
|
|
.context = image,
|
|
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
|
|
.kernpg_flag = _KERNPG_TABLE_NOENC,
|
|
};
|
|
unsigned long mstart, mend;
|
|
pgd_t *level4p;
|
|
int result;
|
|
int i;
|
|
|
|
level4p = (pgd_t *)__va(start_pgtable);
|
|
clear_page(level4p);
|
|
|
|
if (sev_active()) {
|
|
info.page_flag |= _PAGE_ENC;
|
|
info.kernpg_flag |= _PAGE_ENC;
|
|
}
|
|
|
|
if (direct_gbpages)
|
|
info.direct_gbpages = true;
|
|
|
|
for (i = 0; i < nr_pfn_mapped; i++) {
|
|
mstart = pfn_mapped[i].start << PAGE_SHIFT;
|
|
mend = pfn_mapped[i].end << PAGE_SHIFT;
|
|
|
|
result = kernel_ident_mapping_init(&info,
|
|
level4p, mstart, mend);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* segments's mem ranges could be outside 0 ~ max_pfn,
|
|
* for example when jump back to original kernel from kexeced kernel.
|
|
* or first kernel is booted with user mem map, and second kernel
|
|
* could be loaded out of that range.
|
|
*/
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
|
|
result = kernel_ident_mapping_init(&info,
|
|
level4p, mstart, mend);
|
|
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Prepare EFI systab and ACPI tables for kexec kernel since they are
|
|
* not covered by pfn_mapped.
|
|
*/
|
|
result = map_efi_systab(&info, level4p);
|
|
if (result)
|
|
return result;
|
|
|
|
result = map_acpi_tables(&info, level4p);
|
|
if (result)
|
|
return result;
|
|
|
|
return init_transition_pgtable(image, level4p);
|
|
}
|
|
|
|
static void set_idt(void *newidt, u16 limit)
|
|
{
|
|
struct desc_ptr curidt;
|
|
|
|
/* x86-64 supports unaliged loads & stores */
|
|
curidt.size = limit;
|
|
curidt.address = (unsigned long)newidt;
|
|
|
|
__asm__ __volatile__ (
|
|
"lidtq %0\n"
|
|
: : "m" (curidt)
|
|
);
|
|
};
|
|
|
|
|
|
static void set_gdt(void *newgdt, u16 limit)
|
|
{
|
|
struct desc_ptr curgdt;
|
|
|
|
/* x86-64 supports unaligned loads & stores */
|
|
curgdt.size = limit;
|
|
curgdt.address = (unsigned long)newgdt;
|
|
|
|
__asm__ __volatile__ (
|
|
"lgdtq %0\n"
|
|
: : "m" (curgdt)
|
|
);
|
|
};
|
|
|
|
static void load_segments(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"\tmovl %0,%%ds\n"
|
|
"\tmovl %0,%%es\n"
|
|
"\tmovl %0,%%ss\n"
|
|
"\tmovl %0,%%fs\n"
|
|
"\tmovl %0,%%gs\n"
|
|
: : "a" (__KERNEL_DS) : "memory"
|
|
);
|
|
}
|
|
|
|
int machine_kexec_prepare(struct kimage *image)
|
|
{
|
|
unsigned long start_pgtable;
|
|
int result;
|
|
|
|
/* Calculate the offsets */
|
|
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
|
|
|
|
/* Setup the identity mapped 64bit page table */
|
|
result = init_pgtable(image, start_pgtable);
|
|
if (result)
|
|
return result;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void machine_kexec_cleanup(struct kimage *image)
|
|
{
|
|
free_transition_pgtable(image);
|
|
}
|
|
|
|
/*
|
|
* Do not allocate memory (or fail in any way) in machine_kexec().
|
|
* We are past the point of no return, committed to rebooting now.
|
|
*/
|
|
void machine_kexec(struct kimage *image)
|
|
{
|
|
unsigned long page_list[PAGES_NR];
|
|
void *control_page;
|
|
int save_ftrace_enabled;
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
save_processor_state();
|
|
#endif
|
|
|
|
save_ftrace_enabled = __ftrace_enabled_save();
|
|
|
|
/* Interrupts aren't acceptable while we reboot */
|
|
local_irq_disable();
|
|
hw_breakpoint_disable();
|
|
|
|
if (image->preserve_context) {
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/*
|
|
* We need to put APICs in legacy mode so that we can
|
|
* get timer interrupts in second kernel. kexec/kdump
|
|
* paths already have calls to restore_boot_irq_mode()
|
|
* in one form or other. kexec jump path also need one.
|
|
*/
|
|
clear_IO_APIC();
|
|
restore_boot_irq_mode();
|
|
#endif
|
|
}
|
|
|
|
control_page = page_address(image->control_code_page) + PAGE_SIZE;
|
|
memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
|
|
|
|
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
|
|
page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
|
|
page_list[PA_TABLE_PAGE] =
|
|
(unsigned long)__pa(page_address(image->control_code_page));
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT)
|
|
page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
|
|
<< PAGE_SHIFT);
|
|
|
|
/*
|
|
* The segment registers are funny things, they have both a
|
|
* visible and an invisible part. Whenever the visible part is
|
|
* set to a specific selector, the invisible part is loaded
|
|
* with from a table in memory. At no other time is the
|
|
* descriptor table in memory accessed.
|
|
*
|
|
* I take advantage of this here by force loading the
|
|
* segments, before I zap the gdt with an invalid value.
|
|
*/
|
|
load_segments();
|
|
/*
|
|
* The gdt & idt are now invalid.
|
|
* If you want to load them you must set up your own idt & gdt.
|
|
*/
|
|
set_gdt(phys_to_virt(0), 0);
|
|
set_idt(phys_to_virt(0), 0);
|
|
|
|
/* now call it */
|
|
image->start = relocate_kernel((unsigned long)image->head,
|
|
(unsigned long)page_list,
|
|
image->start,
|
|
image->preserve_context,
|
|
sme_active());
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
restore_processor_state();
|
|
#endif
|
|
|
|
__ftrace_enabled_restore(save_ftrace_enabled);
|
|
}
|
|
|
|
/* arch-dependent functionality related to kexec file-based syscall */
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
void *arch_kexec_kernel_image_load(struct kimage *image)
|
|
{
|
|
vfree(image->arch.elf_headers);
|
|
image->arch.elf_headers = NULL;
|
|
|
|
if (!image->fops || !image->fops->load)
|
|
return ERR_PTR(-ENOEXEC);
|
|
|
|
return image->fops->load(image, image->kernel_buf,
|
|
image->kernel_buf_len, image->initrd_buf,
|
|
image->initrd_buf_len, image->cmdline_buf,
|
|
image->cmdline_buf_len);
|
|
}
|
|
|
|
/*
|
|
* Apply purgatory relocations.
|
|
*
|
|
* @pi: Purgatory to be relocated.
|
|
* @section: Section relocations applying to.
|
|
* @relsec: Section containing RELAs.
|
|
* @symtabsec: Corresponding symtab.
|
|
*
|
|
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
|
|
*/
|
|
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
|
|
Elf_Shdr *section, const Elf_Shdr *relsec,
|
|
const Elf_Shdr *symtabsec)
|
|
{
|
|
unsigned int i;
|
|
Elf64_Rela *rel;
|
|
Elf64_Sym *sym;
|
|
void *location;
|
|
unsigned long address, sec_base, value;
|
|
const char *strtab, *name, *shstrtab;
|
|
const Elf_Shdr *sechdrs;
|
|
|
|
/* String & section header string table */
|
|
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
|
|
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
|
|
|
|
rel = (void *)pi->ehdr + relsec->sh_offset;
|
|
|
|
pr_debug("Applying relocate section %s to %u\n",
|
|
shstrtab + relsec->sh_name, relsec->sh_info);
|
|
|
|
for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
|
|
|
|
/*
|
|
* rel[i].r_offset contains byte offset from beginning
|
|
* of section to the storage unit affected.
|
|
*
|
|
* This is location to update. This is temporary buffer
|
|
* where section is currently loaded. This will finally be
|
|
* loaded to a different address later, pointed to by
|
|
* ->sh_addr. kexec takes care of moving it
|
|
* (kexec_load_segment()).
|
|
*/
|
|
location = pi->purgatory_buf;
|
|
location += section->sh_offset;
|
|
location += rel[i].r_offset;
|
|
|
|
/* Final address of the location */
|
|
address = section->sh_addr + rel[i].r_offset;
|
|
|
|
/*
|
|
* rel[i].r_info contains information about symbol table index
|
|
* w.r.t which relocation must be made and type of relocation
|
|
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
|
|
* these respectively.
|
|
*/
|
|
sym = (void *)pi->ehdr + symtabsec->sh_offset;
|
|
sym += ELF64_R_SYM(rel[i].r_info);
|
|
|
|
if (sym->st_name)
|
|
name = strtab + sym->st_name;
|
|
else
|
|
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
|
|
|
|
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
|
|
name, sym->st_info, sym->st_shndx, sym->st_value,
|
|
sym->st_size);
|
|
|
|
if (sym->st_shndx == SHN_UNDEF) {
|
|
pr_err("Undefined symbol: %s\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_COMMON) {
|
|
pr_err("symbol '%s' in common section\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_ABS)
|
|
sec_base = 0;
|
|
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
|
|
pr_err("Invalid section %d for symbol %s\n",
|
|
sym->st_shndx, name);
|
|
return -ENOEXEC;
|
|
} else
|
|
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
|
|
|
|
value = sym->st_value;
|
|
value += sec_base;
|
|
value += rel[i].r_addend;
|
|
|
|
switch (ELF64_R_TYPE(rel[i].r_info)) {
|
|
case R_X86_64_NONE:
|
|
break;
|
|
case R_X86_64_64:
|
|
*(u64 *)location = value;
|
|
break;
|
|
case R_X86_64_32:
|
|
*(u32 *)location = value;
|
|
if (value != *(u32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_32S:
|
|
*(s32 *)location = value;
|
|
if ((s64)value != *(s32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PLT32:
|
|
value -= (u64)address;
|
|
*(u32 *)location = value;
|
|
break;
|
|
default:
|
|
pr_err("Unknown rela relocation: %llu\n",
|
|
ELF64_R_TYPE(rel[i].r_info));
|
|
return -ENOEXEC;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
overflow:
|
|
pr_err("Overflow in relocation type %d value 0x%lx\n",
|
|
(int)ELF64_R_TYPE(rel[i].r_info), value);
|
|
return -ENOEXEC;
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
static int
|
|
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
|
|
{
|
|
struct page *page;
|
|
unsigned int nr_pages;
|
|
|
|
/*
|
|
* For physical range: [start, end]. We must skip the unassigned
|
|
* crashk resource with zero-valued "end" member.
|
|
*/
|
|
if (!end || start > end)
|
|
return 0;
|
|
|
|
page = pfn_to_page(start >> PAGE_SHIFT);
|
|
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
|
|
if (protect)
|
|
return set_pages_ro(page, nr_pages);
|
|
else
|
|
return set_pages_rw(page, nr_pages);
|
|
}
|
|
|
|
static void kexec_mark_crashkres(bool protect)
|
|
{
|
|
unsigned long control;
|
|
|
|
kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
|
|
|
|
/* Don't touch the control code page used in crash_kexec().*/
|
|
control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
|
|
/* Control code page is located in the 2nd page. */
|
|
kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
|
|
control += KEXEC_CONTROL_PAGE_SIZE;
|
|
kexec_mark_range(control, crashk_res.end, protect);
|
|
}
|
|
|
|
void arch_kexec_protect_crashkres(void)
|
|
{
|
|
kexec_mark_crashkres(true);
|
|
}
|
|
|
|
void arch_kexec_unprotect_crashkres(void)
|
|
{
|
|
kexec_mark_crashkres(false);
|
|
}
|
|
|
|
/*
|
|
* During a traditional boot under SME, SME will encrypt the kernel,
|
|
* so the SME kexec kernel also needs to be un-encrypted in order to
|
|
* replicate a normal SME boot.
|
|
*
|
|
* During a traditional boot under SEV, the kernel has already been
|
|
* loaded encrypted, so the SEV kexec kernel needs to be encrypted in
|
|
* order to replicate a normal SEV boot.
|
|
*/
|
|
int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
|
|
{
|
|
if (sev_active())
|
|
return 0;
|
|
|
|
/*
|
|
* If SME is active we need to be sure that kexec pages are
|
|
* not encrypted because when we boot to the new kernel the
|
|
* pages won't be accessed encrypted (initially).
|
|
*/
|
|
return set_memory_decrypted((unsigned long)vaddr, pages);
|
|
}
|
|
|
|
void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
|
|
{
|
|
if (sev_active())
|
|
return;
|
|
|
|
/*
|
|
* If SME is active we need to reset the pages back to being
|
|
* an encrypted mapping before freeing them.
|
|
*/
|
|
set_memory_encrypted((unsigned long)vaddr, pages);
|
|
}
|