mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
24aac480e7
Add support for the next generation of HP Smart Array SAS/SATA controllers. Shipping date is late Fall 2008. Bump the driver version to 3.6.20 to reflect the new hardware support from patch 1 of this set. Signed-off-by: Mike Miller <mike.miller@hp.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3753 lines
105 KiB
C
3753 lines
105 KiB
C
/*
|
|
* Disk Array driver for HP Smart Array controllers.
|
|
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
* 02111-1307, USA.
|
|
*
|
|
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/major.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/completion.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/sg.h>
|
|
#include <scsi/scsi_ioctl.h>
|
|
#include <linux/cdrom.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
|
|
#define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
|
|
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
|
|
|
|
/* Embedded module documentation macros - see modules.h */
|
|
MODULE_AUTHOR("Hewlett-Packard Company");
|
|
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
|
|
MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
|
|
" SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
|
|
" Smart Array G2 Series SAS/SATA Controllers");
|
|
MODULE_VERSION("3.6.20");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#include "cciss_cmd.h"
|
|
#include "cciss.h"
|
|
#include <linux/cciss_ioctl.h>
|
|
|
|
/* define the PCI info for the cards we can control */
|
|
static const struct pci_device_id cciss_pci_device_id[] = {
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
|
|
{PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
|
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
|
|
|
|
/* board_id = Subsystem Device ID & Vendor ID
|
|
* product = Marketing Name for the board
|
|
* access = Address of the struct of function pointers
|
|
* nr_cmds = Number of commands supported by controller
|
|
*/
|
|
static struct board_type products[] = {
|
|
{0x40700E11, "Smart Array 5300", &SA5_access, 512},
|
|
{0x40800E11, "Smart Array 5i", &SA5B_access, 512},
|
|
{0x40820E11, "Smart Array 532", &SA5B_access, 512},
|
|
{0x40830E11, "Smart Array 5312", &SA5B_access, 512},
|
|
{0x409A0E11, "Smart Array 641", &SA5_access, 512},
|
|
{0x409B0E11, "Smart Array 642", &SA5_access, 512},
|
|
{0x409C0E11, "Smart Array 6400", &SA5_access, 512},
|
|
{0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
|
|
{0x40910E11, "Smart Array 6i", &SA5_access, 512},
|
|
{0x3225103C, "Smart Array P600", &SA5_access, 512},
|
|
{0x3223103C, "Smart Array P800", &SA5_access, 512},
|
|
{0x3234103C, "Smart Array P400", &SA5_access, 512},
|
|
{0x3235103C, "Smart Array P400i", &SA5_access, 512},
|
|
{0x3211103C, "Smart Array E200i", &SA5_access, 120},
|
|
{0x3212103C, "Smart Array E200", &SA5_access, 120},
|
|
{0x3213103C, "Smart Array E200i", &SA5_access, 120},
|
|
{0x3214103C, "Smart Array E200i", &SA5_access, 120},
|
|
{0x3215103C, "Smart Array E200i", &SA5_access, 120},
|
|
{0x3237103C, "Smart Array E500", &SA5_access, 512},
|
|
{0x323D103C, "Smart Array P700m", &SA5_access, 512},
|
|
{0x3241103C, "Smart Array P212", &SA5_access, 384},
|
|
{0x3243103C, "Smart Array P410", &SA5_access, 384},
|
|
{0x3245103C, "Smart Array P410i", &SA5_access, 384},
|
|
{0x3247103C, "Smart Array P411", &SA5_access, 384},
|
|
{0x3249103C, "Smart Array P812", &SA5_access, 384},
|
|
{0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
|
|
};
|
|
|
|
/* How long to wait (in milliseconds) for board to go into simple mode */
|
|
#define MAX_CONFIG_WAIT 30000
|
|
#define MAX_IOCTL_CONFIG_WAIT 1000
|
|
|
|
/*define how many times we will try a command because of bus resets */
|
|
#define MAX_CMD_RETRIES 3
|
|
|
|
#define MAX_CTLR 32
|
|
|
|
/* Originally cciss driver only supports 8 major numbers */
|
|
#define MAX_CTLR_ORIG 8
|
|
|
|
static ctlr_info_t *hba[MAX_CTLR];
|
|
|
|
static void do_cciss_request(struct request_queue *q);
|
|
static irqreturn_t do_cciss_intr(int irq, void *dev_id);
|
|
static int cciss_open(struct inode *inode, struct file *filep);
|
|
static int cciss_release(struct inode *inode, struct file *filep);
|
|
static int cciss_ioctl(struct inode *inode, struct file *filep,
|
|
unsigned int cmd, unsigned long arg);
|
|
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
|
|
|
|
static int cciss_revalidate(struct gendisk *disk);
|
|
static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
|
|
static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
|
|
int clear_all);
|
|
|
|
static void cciss_read_capacity(int ctlr, int logvol, int withirq,
|
|
sector_t *total_size, unsigned int *block_size);
|
|
static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
|
|
sector_t *total_size, unsigned int *block_size);
|
|
static void cciss_geometry_inquiry(int ctlr, int logvol,
|
|
int withirq, sector_t total_size,
|
|
unsigned int block_size, InquiryData_struct *inq_buff,
|
|
drive_info_struct *drv);
|
|
static void cciss_getgeometry(int cntl_num);
|
|
static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
|
|
__u32);
|
|
static void start_io(ctlr_info_t *h);
|
|
static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
|
|
unsigned int use_unit_num, unsigned int log_unit,
|
|
__u8 page_code, unsigned char *scsi3addr, int cmd_type);
|
|
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
|
|
unsigned int use_unit_num, unsigned int log_unit,
|
|
__u8 page_code, int cmd_type);
|
|
|
|
static void fail_all_cmds(unsigned long ctlr);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void cciss_procinit(int i);
|
|
#else
|
|
static void cciss_procinit(int i)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
|
|
#endif
|
|
|
|
static struct block_device_operations cciss_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = cciss_open,
|
|
.release = cciss_release,
|
|
.ioctl = cciss_ioctl,
|
|
.getgeo = cciss_getgeo,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = cciss_compat_ioctl,
|
|
#endif
|
|
.revalidate_disk = cciss_revalidate,
|
|
};
|
|
|
|
/*
|
|
* Enqueuing and dequeuing functions for cmdlists.
|
|
*/
|
|
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
|
|
{
|
|
if (*Qptr == NULL) {
|
|
*Qptr = c;
|
|
c->next = c->prev = c;
|
|
} else {
|
|
c->prev = (*Qptr)->prev;
|
|
c->next = (*Qptr);
|
|
(*Qptr)->prev->next = c;
|
|
(*Qptr)->prev = c;
|
|
}
|
|
}
|
|
|
|
static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
|
|
CommandList_struct *c)
|
|
{
|
|
if (c && c->next != c) {
|
|
if (*Qptr == c)
|
|
*Qptr = c->next;
|
|
c->prev->next = c->next;
|
|
c->next->prev = c->prev;
|
|
} else {
|
|
*Qptr = NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
#include "cciss_scsi.c" /* For SCSI tape support */
|
|
|
|
#define RAID_UNKNOWN 6
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
/*
|
|
* Report information about this controller.
|
|
*/
|
|
#define ENG_GIG 1000000000
|
|
#define ENG_GIG_FACTOR (ENG_GIG/512)
|
|
#define ENGAGE_SCSI "engage scsi"
|
|
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
|
|
"UNKNOWN"
|
|
};
|
|
|
|
static struct proc_dir_entry *proc_cciss;
|
|
|
|
static void cciss_seq_show_header(struct seq_file *seq)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
seq_printf(seq, "%s: HP %s Controller\n"
|
|
"Board ID: 0x%08lx\n"
|
|
"Firmware Version: %c%c%c%c\n"
|
|
"IRQ: %d\n"
|
|
"Logical drives: %d\n"
|
|
"Current Q depth: %d\n"
|
|
"Current # commands on controller: %d\n"
|
|
"Max Q depth since init: %d\n"
|
|
"Max # commands on controller since init: %d\n"
|
|
"Max SG entries since init: %d\n",
|
|
h->devname,
|
|
h->product_name,
|
|
(unsigned long)h->board_id,
|
|
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
|
|
h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
|
|
h->num_luns,
|
|
h->Qdepth, h->commands_outstanding,
|
|
h->maxQsinceinit, h->max_outstanding, h->maxSG);
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
cciss_seq_tape_report(seq, h->ctlr);
|
|
#endif /* CONFIG_CISS_SCSI_TAPE */
|
|
}
|
|
|
|
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
unsigned ctlr = h->ctlr;
|
|
unsigned long flags;
|
|
|
|
/* prevent displaying bogus info during configuration
|
|
* or deconfiguration of a logical volume
|
|
*/
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
h->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
|
|
if (*pos == 0)
|
|
cciss_seq_show_header(seq);
|
|
|
|
return pos;
|
|
}
|
|
|
|
static int cciss_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
sector_t vol_sz, vol_sz_frac;
|
|
ctlr_info_t *h = seq->private;
|
|
unsigned ctlr = h->ctlr;
|
|
loff_t *pos = v;
|
|
drive_info_struct *drv = &h->drv[*pos];
|
|
|
|
if (*pos > h->highest_lun)
|
|
return 0;
|
|
|
|
if (drv->heads == 0)
|
|
return 0;
|
|
|
|
vol_sz = drv->nr_blocks;
|
|
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
|
|
vol_sz_frac *= 100;
|
|
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
|
|
|
|
if (drv->raid_level > 5)
|
|
drv->raid_level = RAID_UNKNOWN;
|
|
seq_printf(seq, "cciss/c%dd%d:"
|
|
"\t%4u.%02uGB\tRAID %s\n",
|
|
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
|
|
raid_label[drv->raid_level]);
|
|
return 0;
|
|
}
|
|
|
|
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
if (*pos > h->highest_lun)
|
|
return NULL;
|
|
*pos += 1;
|
|
|
|
return pos;
|
|
}
|
|
|
|
static void cciss_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
/* Only reset h->busy_configuring if we succeeded in setting
|
|
* it during cciss_seq_start. */
|
|
if (v == ERR_PTR(-EBUSY))
|
|
return;
|
|
|
|
h->busy_configuring = 0;
|
|
}
|
|
|
|
static struct seq_operations cciss_seq_ops = {
|
|
.start = cciss_seq_start,
|
|
.show = cciss_seq_show,
|
|
.next = cciss_seq_next,
|
|
.stop = cciss_seq_stop,
|
|
};
|
|
|
|
static int cciss_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
int ret = seq_open(file, &cciss_seq_ops);
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
if (!ret)
|
|
seq->private = PDE(inode)->data;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t
|
|
cciss_proc_write(struct file *file, const char __user *buf,
|
|
size_t length, loff_t *ppos)
|
|
{
|
|
int err;
|
|
char *buffer;
|
|
|
|
#ifndef CONFIG_CISS_SCSI_TAPE
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
if (!buf || length > PAGE_SIZE - 1)
|
|
return -EINVAL;
|
|
|
|
buffer = (char *)__get_free_page(GFP_KERNEL);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
err = -EFAULT;
|
|
if (copy_from_user(buffer, buf, length))
|
|
goto out;
|
|
buffer[length] = '\0';
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
|
|
struct seq_file *seq = file->private_data;
|
|
ctlr_info_t *h = seq->private;
|
|
int rc;
|
|
|
|
rc = cciss_engage_scsi(h->ctlr);
|
|
if (rc != 0)
|
|
err = -rc;
|
|
else
|
|
err = length;
|
|
} else
|
|
#endif /* CONFIG_CISS_SCSI_TAPE */
|
|
err = -EINVAL;
|
|
/* might be nice to have "disengage" too, but it's not
|
|
safely possible. (only 1 module use count, lock issues.) */
|
|
|
|
out:
|
|
free_page((unsigned long)buffer);
|
|
return err;
|
|
}
|
|
|
|
static struct file_operations cciss_proc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = cciss_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
.write = cciss_proc_write,
|
|
};
|
|
|
|
static void __devinit cciss_procinit(int i)
|
|
{
|
|
struct proc_dir_entry *pde;
|
|
|
|
if (proc_cciss == NULL)
|
|
proc_cciss = proc_mkdir("driver/cciss", NULL);
|
|
if (!proc_cciss)
|
|
return;
|
|
pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
|
|
S_IROTH, proc_cciss,
|
|
&cciss_proc_fops, hba[i]);
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
/*
|
|
* For operations that cannot sleep, a command block is allocated at init,
|
|
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
|
|
* which ones are free or in use. For operations that can wait for kmalloc
|
|
* to possible sleep, this routine can be called with get_from_pool set to 0.
|
|
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
|
|
*/
|
|
static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
|
|
{
|
|
CommandList_struct *c;
|
|
int i;
|
|
u64bit temp64;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
|
|
if (!get_from_pool) {
|
|
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
|
|
sizeof(CommandList_struct), &cmd_dma_handle);
|
|
if (c == NULL)
|
|
return NULL;
|
|
memset(c, 0, sizeof(CommandList_struct));
|
|
|
|
c->cmdindex = -1;
|
|
|
|
c->err_info = (ErrorInfo_struct *)
|
|
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
|
|
&err_dma_handle);
|
|
|
|
if (c->err_info == NULL) {
|
|
pci_free_consistent(h->pdev,
|
|
sizeof(CommandList_struct), c, cmd_dma_handle);
|
|
return NULL;
|
|
}
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
} else { /* get it out of the controllers pool */
|
|
|
|
do {
|
|
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
|
|
if (i == h->nr_cmds)
|
|
return NULL;
|
|
} while (test_and_set_bit
|
|
(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
|
|
#endif
|
|
c = h->cmd_pool + i;
|
|
memset(c, 0, sizeof(CommandList_struct));
|
|
cmd_dma_handle = h->cmd_pool_dhandle
|
|
+ i * sizeof(CommandList_struct);
|
|
c->err_info = h->errinfo_pool + i;
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
err_dma_handle = h->errinfo_pool_dhandle
|
|
+ i * sizeof(ErrorInfo_struct);
|
|
h->nr_allocs++;
|
|
|
|
c->cmdindex = i;
|
|
}
|
|
|
|
c->busaddr = (__u32) cmd_dma_handle;
|
|
temp64.val = (__u64) err_dma_handle;
|
|
c->ErrDesc.Addr.lower = temp64.val32.lower;
|
|
c->ErrDesc.Addr.upper = temp64.val32.upper;
|
|
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
|
|
|
|
c->ctlr = h->ctlr;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Frees a command block that was previously allocated with cmd_alloc().
|
|
*/
|
|
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
|
|
{
|
|
int i;
|
|
u64bit temp64;
|
|
|
|
if (!got_from_pool) {
|
|
temp64.val32.lower = c->ErrDesc.Addr.lower;
|
|
temp64.val32.upper = c->ErrDesc.Addr.upper;
|
|
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
|
|
c->err_info, (dma_addr_t) temp64.val);
|
|
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
|
|
c, (dma_addr_t) c->busaddr);
|
|
} else {
|
|
i = c - h->cmd_pool;
|
|
clear_bit(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG));
|
|
h->nr_frees++;
|
|
}
|
|
}
|
|
|
|
static inline ctlr_info_t *get_host(struct gendisk *disk)
|
|
{
|
|
return disk->queue->queuedata;
|
|
}
|
|
|
|
static inline drive_info_struct *get_drv(struct gendisk *disk)
|
|
{
|
|
return disk->private_data;
|
|
}
|
|
|
|
/*
|
|
* Open. Make sure the device is really there.
|
|
*/
|
|
static int cciss_open(struct inode *inode, struct file *filep)
|
|
{
|
|
ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
|
|
drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
if (host->busy_initializing || drv->busy_configuring)
|
|
return -EBUSY;
|
|
/*
|
|
* Root is allowed to open raw volume zero even if it's not configured
|
|
* so array config can still work. Root is also allowed to open any
|
|
* volume that has a LUN ID, so it can issue IOCTL to reread the
|
|
* disk information. I don't think I really like this
|
|
* but I'm already using way to many device nodes to claim another one
|
|
* for "raw controller".
|
|
*/
|
|
if (drv->heads == 0) {
|
|
if (iminor(inode) != 0) { /* not node 0? */
|
|
/* if not node 0 make sure it is a partition = 0 */
|
|
if (iminor(inode) & 0x0f) {
|
|
return -ENXIO;
|
|
/* if it is, make sure we have a LUN ID */
|
|
} else if (drv->LunID == 0) {
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
}
|
|
drv->usage_count++;
|
|
host->usage_count++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Close. Sync first.
|
|
*/
|
|
static int cciss_release(struct inode *inode, struct file *filep)
|
|
{
|
|
ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
|
|
drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_release %s\n",
|
|
inode->i_bdev->bd_disk->disk_name);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
drv->usage_count--;
|
|
host->usage_count--;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
|
|
{
|
|
int ret;
|
|
lock_kernel();
|
|
ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
|
|
static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
|
|
unsigned long arg);
|
|
static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
|
|
unsigned long arg);
|
|
|
|
static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
case CCISS_GETINTINFO:
|
|
case CCISS_SETINTINFO:
|
|
case CCISS_GETNODENAME:
|
|
case CCISS_SETNODENAME:
|
|
case CCISS_GETHEARTBEAT:
|
|
case CCISS_GETBUSTYPES:
|
|
case CCISS_GETFIRMVER:
|
|
case CCISS_GETDRIVVER:
|
|
case CCISS_REVALIDVOLS:
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
case CCISS_RESCANDISK:
|
|
case CCISS_GETLUNINFO:
|
|
return do_ioctl(f, cmd, arg);
|
|
|
|
case CCISS_PASSTHRU32:
|
|
return cciss_ioctl32_passthru(f, cmd, arg);
|
|
case CCISS_BIG_PASSTHRU32:
|
|
return cciss_ioctl32_big_passthru(f, cmd, arg);
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
|
|
unsigned long arg)
|
|
{
|
|
IOCTL32_Command_struct __user *arg32 =
|
|
(IOCTL32_Command_struct __user *) arg;
|
|
IOCTL_Command_struct arg64;
|
|
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |=
|
|
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |=
|
|
copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |=
|
|
copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
|
|
if (err)
|
|
return err;
|
|
err |=
|
|
copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
|
|
unsigned long arg)
|
|
{
|
|
BIG_IOCTL32_Command_struct __user *arg32 =
|
|
(BIG_IOCTL32_Command_struct __user *) arg;
|
|
BIG_IOCTL_Command_struct arg64;
|
|
BIG_IOCTL_Command_struct __user *p =
|
|
compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |=
|
|
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |=
|
|
copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |=
|
|
copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
|
|
if (err)
|
|
return err;
|
|
err |=
|
|
copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
drive_info_struct *drv = get_drv(bdev->bd_disk);
|
|
|
|
if (!drv->cylinders)
|
|
return -ENXIO;
|
|
|
|
geo->heads = drv->heads;
|
|
geo->sectors = drv->sectors;
|
|
geo->cylinders = drv->cylinders;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ioctl
|
|
*/
|
|
static int cciss_ioctl(struct inode *inode, struct file *filep,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct block_device *bdev = inode->i_bdev;
|
|
struct gendisk *disk = bdev->bd_disk;
|
|
ctlr_info_t *host = get_host(disk);
|
|
drive_info_struct *drv = get_drv(disk);
|
|
int ctlr = host->ctlr;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
{
|
|
cciss_pci_info_struct pciinfo;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
pciinfo.domain = pci_domain_nr(host->pdev->bus);
|
|
pciinfo.bus = host->pdev->bus->number;
|
|
pciinfo.dev_fn = host->pdev->devfn;
|
|
pciinfo.board_id = host->board_id;
|
|
if (copy_to_user
|
|
(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETINTINFO:
|
|
{
|
|
cciss_coalint_struct intinfo;
|
|
if (!arg)
|
|
return -EINVAL;
|
|
intinfo.delay =
|
|
readl(&host->cfgtable->HostWrite.CoalIntDelay);
|
|
intinfo.count =
|
|
readl(&host->cfgtable->HostWrite.CoalIntCount);
|
|
if (copy_to_user
|
|
(argp, &intinfo, sizeof(cciss_coalint_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_SETINTINFO:
|
|
{
|
|
cciss_coalint_struct intinfo;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (copy_from_user
|
|
(&intinfo, argp, sizeof(cciss_coalint_struct)))
|
|
return -EFAULT;
|
|
if ((intinfo.delay == 0) && (intinfo.count == 0))
|
|
{
|
|
// printk("cciss_ioctl: delay and count cannot be 0\n");
|
|
return -EINVAL;
|
|
}
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
/* Update the field, and then ring the doorbell */
|
|
writel(intinfo.delay,
|
|
&(host->cfgtable->HostWrite.CoalIntDelay));
|
|
writel(intinfo.count,
|
|
&(host->cfgtable->HostWrite.CoalIntCount));
|
|
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
|
|
|
|
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
|
|
if (!(readl(host->vaddr + SA5_DOORBELL)
|
|
& CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
udelay(1000);
|
|
}
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
if (i >= MAX_IOCTL_CONFIG_WAIT)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
case CCISS_GETNODENAME:
|
|
{
|
|
NodeName_type NodeName;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
for (i = 0; i < 16; i++)
|
|
NodeName[i] =
|
|
readb(&host->cfgtable->ServerName[i]);
|
|
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_SETNODENAME:
|
|
{
|
|
NodeName_type NodeName;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user
|
|
(NodeName, argp, sizeof(NodeName_type)))
|
|
return -EFAULT;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
|
|
/* Update the field, and then ring the doorbell */
|
|
for (i = 0; i < 16; i++)
|
|
writeb(NodeName[i],
|
|
&host->cfgtable->ServerName[i]);
|
|
|
|
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
|
|
|
|
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
|
|
if (!(readl(host->vaddr + SA5_DOORBELL)
|
|
& CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
udelay(1000);
|
|
}
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
if (i >= MAX_IOCTL_CONFIG_WAIT)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
case CCISS_GETHEARTBEAT:
|
|
{
|
|
Heartbeat_type heartbeat;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
heartbeat = readl(&host->cfgtable->HeartBeat);
|
|
if (copy_to_user
|
|
(argp, &heartbeat, sizeof(Heartbeat_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETBUSTYPES:
|
|
{
|
|
BusTypes_type BusTypes;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
BusTypes = readl(&host->cfgtable->BusTypes);
|
|
if (copy_to_user
|
|
(argp, &BusTypes, sizeof(BusTypes_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETFIRMVER:
|
|
{
|
|
FirmwareVer_type firmware;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
memcpy(firmware, host->firm_ver, 4);
|
|
|
|
if (copy_to_user
|
|
(argp, firmware, sizeof(FirmwareVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETDRIVVER:
|
|
{
|
|
DriverVer_type DriverVer = DRIVER_VERSION;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user
|
|
(argp, &DriverVer, sizeof(DriverVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
case CCISS_REVALIDVOLS:
|
|
return rebuild_lun_table(host, NULL);
|
|
|
|
case CCISS_GETLUNINFO:{
|
|
LogvolInfo_struct luninfo;
|
|
|
|
luninfo.LunID = drv->LunID;
|
|
luninfo.num_opens = drv->usage_count;
|
|
luninfo.num_parts = 0;
|
|
if (copy_to_user(argp, &luninfo,
|
|
sizeof(LogvolInfo_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_DEREGDISK:
|
|
return rebuild_lun_table(host, disk);
|
|
|
|
case CCISS_REGNEWD:
|
|
return rebuild_lun_table(host, NULL);
|
|
|
|
case CCISS_PASSTHRU:
|
|
{
|
|
IOCTL_Command_struct iocommand;
|
|
CommandList_struct *c;
|
|
char *buff = NULL;
|
|
u64bit temp64;
|
|
unsigned long flags;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user
|
|
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
|
|
return -EFAULT;
|
|
if ((iocommand.buf_size < 1) &&
|
|
(iocommand.Request.Type.Direction != XFER_NONE)) {
|
|
return -EINVAL;
|
|
}
|
|
#if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
|
|
/* Check kmalloc limits */
|
|
if (iocommand.buf_size > 128000)
|
|
return -EINVAL;
|
|
#endif
|
|
if (iocommand.buf_size > 0) {
|
|
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
|
|
if (buff == NULL)
|
|
return -EFAULT;
|
|
}
|
|
if (iocommand.Request.Type.Direction == XFER_WRITE) {
|
|
/* Copy the data into the buffer we created */
|
|
if (copy_from_user
|
|
(buff, iocommand.buf, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
return -EFAULT;
|
|
}
|
|
} else {
|
|
memset(buff, 0, iocommand.buf_size);
|
|
}
|
|
if ((c = cmd_alloc(host, 0)) == NULL) {
|
|
kfree(buff);
|
|
return -ENOMEM;
|
|
}
|
|
// Fill in the command type
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
// Fill in Command Header
|
|
c->Header.ReplyQueue = 0; // unused in simple mode
|
|
if (iocommand.buf_size > 0) // buffer to fill
|
|
{
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else // no buffers to fill
|
|
{
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.LUN = iocommand.LUN_info;
|
|
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
|
|
|
|
// Fill in Request block
|
|
c->Request = iocommand.Request;
|
|
|
|
// Fill in the scatter gather information
|
|
if (iocommand.buf_size > 0) {
|
|
temp64.val = pci_map_single(host->pdev, buff,
|
|
iocommand.buf_size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[0].Addr.lower = temp64.val32.lower;
|
|
c->SG[0].Addr.upper = temp64.val32.upper;
|
|
c->SG[0].Len = iocommand.buf_size;
|
|
c->SG[0].Ext = 0; // we are not chaining
|
|
}
|
|
c->waiting = &wait;
|
|
|
|
/* Put the request on the tail of the request queue */
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
addQ(&host->reqQ, c);
|
|
host->Qdepth++;
|
|
start_io(host);
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
|
|
wait_for_completion(&wait);
|
|
|
|
/* unlock the buffers from DMA */
|
|
temp64.val32.lower = c->SG[0].Addr.lower;
|
|
temp64.val32.upper = c->SG[0].Addr.upper;
|
|
pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
|
|
iocommand.buf_size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
/* Copy the error information out */
|
|
iocommand.error_info = *(c->err_info);
|
|
if (copy_to_user
|
|
(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (iocommand.Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
if (copy_to_user
|
|
(iocommand.buf, buff, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return 0;
|
|
}
|
|
case CCISS_BIG_PASSTHRU:{
|
|
BIG_IOCTL_Command_struct *ioc;
|
|
CommandList_struct *c;
|
|
unsigned char **buff = NULL;
|
|
int *buff_size = NULL;
|
|
u64bit temp64;
|
|
unsigned long flags;
|
|
BYTE sg_used = 0;
|
|
int status = 0;
|
|
int i;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
__u32 left;
|
|
__u32 sz;
|
|
BYTE __user *data_ptr;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
ioc = (BIG_IOCTL_Command_struct *)
|
|
kmalloc(sizeof(*ioc), GFP_KERNEL);
|
|
if (!ioc) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if ((ioc->buf_size < 1) &&
|
|
(ioc->Request.Type.Direction != XFER_NONE)) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
/* Check kmalloc limits using all SGs */
|
|
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
buff =
|
|
kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
|
|
if (!buff) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
|
|
GFP_KERNEL);
|
|
if (!buff_size) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
left = ioc->buf_size;
|
|
data_ptr = ioc->buf;
|
|
while (left) {
|
|
sz = (left >
|
|
ioc->malloc_size) ? ioc->
|
|
malloc_size : left;
|
|
buff_size[sg_used] = sz;
|
|
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
|
|
if (buff[sg_used] == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_WRITE) {
|
|
if (copy_from_user
|
|
(buff[sg_used], data_ptr, sz)) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
} else {
|
|
memset(buff[sg_used], 0, sz);
|
|
}
|
|
left -= sz;
|
|
data_ptr += sz;
|
|
sg_used++;
|
|
}
|
|
if ((c = cmd_alloc(host, 0)) == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
|
|
if (ioc->buf_size > 0) {
|
|
c->Header.SGList = sg_used;
|
|
c->Header.SGTotal = sg_used;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.LUN = ioc->LUN_info;
|
|
c->Header.Tag.lower = c->busaddr;
|
|
|
|
c->Request = ioc->Request;
|
|
if (ioc->buf_size > 0) {
|
|
int i;
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64.val =
|
|
pci_map_single(host->pdev, buff[i],
|
|
buff_size[i],
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[i].Addr.lower =
|
|
temp64.val32.lower;
|
|
c->SG[i].Addr.upper =
|
|
temp64.val32.upper;
|
|
c->SG[i].Len = buff_size[i];
|
|
c->SG[i].Ext = 0; /* we are not chaining */
|
|
}
|
|
}
|
|
c->waiting = &wait;
|
|
/* Put the request on the tail of the request queue */
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
addQ(&host->reqQ, c);
|
|
host->Qdepth++;
|
|
start_io(host);
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
wait_for_completion(&wait);
|
|
/* unlock the buffers from DMA */
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64.val32.lower = c->SG[i].Addr.lower;
|
|
temp64.val32.upper = c->SG[i].Addr.upper;
|
|
pci_unmap_single(host->pdev,
|
|
(dma_addr_t) temp64.val, buff_size[i],
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
/* Copy the error information out */
|
|
ioc->error_info = *(c->err_info);
|
|
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
|
|
cmd_free(host, c, 0);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
BYTE __user *ptr = ioc->buf;
|
|
for (i = 0; i < sg_used; i++) {
|
|
if (copy_to_user
|
|
(ptr, buff[i], buff_size[i])) {
|
|
cmd_free(host, c, 0);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
ptr += buff_size[i];
|
|
}
|
|
}
|
|
cmd_free(host, c, 0);
|
|
status = 0;
|
|
cleanup1:
|
|
if (buff) {
|
|
for (i = 0; i < sg_used; i++)
|
|
kfree(buff[i]);
|
|
kfree(buff);
|
|
}
|
|
kfree(buff_size);
|
|
kfree(ioc);
|
|
return status;
|
|
}
|
|
|
|
/* scsi_cmd_ioctl handles these, below, though some are not */
|
|
/* very meaningful for cciss. SG_IO is the main one people want. */
|
|
|
|
case SG_GET_VERSION_NUM:
|
|
case SG_SET_TIMEOUT:
|
|
case SG_GET_TIMEOUT:
|
|
case SG_GET_RESERVED_SIZE:
|
|
case SG_SET_RESERVED_SIZE:
|
|
case SG_EMULATED_HOST:
|
|
case SG_IO:
|
|
case SCSI_IOCTL_SEND_COMMAND:
|
|
return scsi_cmd_ioctl(filep, disk->queue, disk, cmd, argp);
|
|
|
|
/* scsi_cmd_ioctl would normally handle these, below, but */
|
|
/* they aren't a good fit for cciss, as CD-ROMs are */
|
|
/* not supported, and we don't have any bus/target/lun */
|
|
/* which we present to the kernel. */
|
|
|
|
case CDROM_SEND_PACKET:
|
|
case CDROMCLOSETRAY:
|
|
case CDROMEJECT:
|
|
case SCSI_IOCTL_GET_IDLUN:
|
|
case SCSI_IOCTL_GET_BUS_NUMBER:
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static void cciss_check_queues(ctlr_info_t *h)
|
|
{
|
|
int start_queue = h->next_to_run;
|
|
int i;
|
|
|
|
/* check to see if we have maxed out the number of commands that can
|
|
* be placed on the queue. If so then exit. We do this check here
|
|
* in case the interrupt we serviced was from an ioctl and did not
|
|
* free any new commands.
|
|
*/
|
|
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
|
|
return;
|
|
|
|
/* We have room on the queue for more commands. Now we need to queue
|
|
* them up. We will also keep track of the next queue to run so
|
|
* that every queue gets a chance to be started first.
|
|
*/
|
|
for (i = 0; i < h->highest_lun + 1; i++) {
|
|
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
|
|
/* make sure the disk has been added and the drive is real
|
|
* because this can be called from the middle of init_one.
|
|
*/
|
|
if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
|
|
continue;
|
|
blk_start_queue(h->gendisk[curr_queue]->queue);
|
|
|
|
/* check to see if we have maxed out the number of commands
|
|
* that can be placed on the queue.
|
|
*/
|
|
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
|
|
if (curr_queue == start_queue) {
|
|
h->next_to_run =
|
|
(start_queue + 1) % (h->highest_lun + 1);
|
|
break;
|
|
} else {
|
|
h->next_to_run = curr_queue;
|
|
break;
|
|
}
|
|
} else {
|
|
curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cciss_softirq_done(struct request *rq)
|
|
{
|
|
CommandList_struct *cmd = rq->completion_data;
|
|
ctlr_info_t *h = hba[cmd->ctlr];
|
|
unsigned long flags;
|
|
u64bit temp64;
|
|
int i, ddir;
|
|
|
|
if (cmd->Request.Type.Direction == XFER_READ)
|
|
ddir = PCI_DMA_FROMDEVICE;
|
|
else
|
|
ddir = PCI_DMA_TODEVICE;
|
|
|
|
/* command did not need to be retried */
|
|
/* unmap the DMA mapping for all the scatter gather elements */
|
|
for (i = 0; i < cmd->Header.SGList; i++) {
|
|
temp64.val32.lower = cmd->SG[i].Addr.lower;
|
|
temp64.val32.upper = cmd->SG[i].Addr.upper;
|
|
pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("Done with %p\n", rq);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
|
|
BUG();
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
cmd_free(h, cmd, 1);
|
|
cciss_check_queues(h);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
/* This function will check the usage_count of the drive to be updated/added.
|
|
* If the usage_count is zero then the drive information will be updated and
|
|
* the disk will be re-registered with the kernel. If not then it will be
|
|
* left alone for the next reboot. The exception to this is disk 0 which
|
|
* will always be left registered with the kernel since it is also the
|
|
* controller node. Any changes to disk 0 will show up on the next
|
|
* reboot.
|
|
*/
|
|
static void cciss_update_drive_info(int ctlr, int drv_index)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
struct gendisk *disk;
|
|
InquiryData_struct *inq_buff = NULL;
|
|
unsigned int block_size;
|
|
sector_t total_size;
|
|
unsigned long flags = 0;
|
|
int ret = 0;
|
|
|
|
/* if the disk already exists then deregister it before proceeding */
|
|
if (h->drv[drv_index].raid_level != -1) {
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
h->drv[drv_index].busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
/* deregister_disk sets h->drv[drv_index].queue = NULL */
|
|
/* which keeps the interrupt handler from starting */
|
|
/* the queue. */
|
|
ret = deregister_disk(h->gendisk[drv_index],
|
|
&h->drv[drv_index], 0);
|
|
h->drv[drv_index].busy_configuring = 0;
|
|
}
|
|
|
|
/* If the disk is in use return */
|
|
if (ret)
|
|
return;
|
|
|
|
/* Get information about the disk and modify the driver structure */
|
|
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (inq_buff == NULL)
|
|
goto mem_msg;
|
|
|
|
/* testing to see if 16-byte CDBs are already being used */
|
|
if (h->cciss_read == CCISS_READ_16) {
|
|
cciss_read_capacity_16(h->ctlr, drv_index, 1,
|
|
&total_size, &block_size);
|
|
goto geo_inq;
|
|
}
|
|
|
|
cciss_read_capacity(ctlr, drv_index, 1,
|
|
&total_size, &block_size);
|
|
|
|
/* if read_capacity returns all F's this volume is >2TB in size */
|
|
/* so we switch to 16-byte CDB's for all read/write ops */
|
|
if (total_size == 0xFFFFFFFFULL) {
|
|
cciss_read_capacity_16(ctlr, drv_index, 1,
|
|
&total_size, &block_size);
|
|
h->cciss_read = CCISS_READ_16;
|
|
h->cciss_write = CCISS_WRITE_16;
|
|
} else {
|
|
h->cciss_read = CCISS_READ_10;
|
|
h->cciss_write = CCISS_WRITE_10;
|
|
}
|
|
geo_inq:
|
|
cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
|
|
inq_buff, &h->drv[drv_index]);
|
|
|
|
++h->num_luns;
|
|
disk = h->gendisk[drv_index];
|
|
set_capacity(disk, h->drv[drv_index].nr_blocks);
|
|
|
|
/* if it's the controller it's already added */
|
|
if (drv_index) {
|
|
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
|
|
sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
|
|
disk->major = h->major;
|
|
disk->first_minor = drv_index << NWD_SHIFT;
|
|
disk->fops = &cciss_fops;
|
|
disk->private_data = &h->drv[drv_index];
|
|
|
|
/* Set up queue information */
|
|
blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
|
|
|
|
/* This is a hardware imposed limit. */
|
|
blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
|
|
|
|
/* This is a limit in the driver and could be eliminated. */
|
|
blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
|
|
|
|
blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
|
|
|
|
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
|
|
|
|
disk->queue->queuedata = hba[ctlr];
|
|
|
|
blk_queue_hardsect_size(disk->queue,
|
|
hba[ctlr]->drv[drv_index].block_size);
|
|
|
|
/* Make sure all queue data is written out before */
|
|
/* setting h->drv[drv_index].queue, as setting this */
|
|
/* allows the interrupt handler to start the queue */
|
|
wmb();
|
|
h->drv[drv_index].queue = disk->queue;
|
|
add_disk(disk);
|
|
}
|
|
|
|
freeret:
|
|
kfree(inq_buff);
|
|
return;
|
|
mem_msg:
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
goto freeret;
|
|
}
|
|
|
|
/* This function will find the first index of the controllers drive array
|
|
* that has a -1 for the raid_level and will return that index. This is
|
|
* where new drives will be added. If the index to be returned is greater
|
|
* than the highest_lun index for the controller then highest_lun is set
|
|
* to this new index. If there are no available indexes then -1 is returned.
|
|
*/
|
|
static int cciss_find_free_drive_index(int ctlr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CISS_MAX_LUN; i++) {
|
|
if (hba[ctlr]->drv[i].raid_level == -1) {
|
|
if (i > hba[ctlr]->highest_lun)
|
|
hba[ctlr]->highest_lun = i;
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* This function will add and remove logical drives from the Logical
|
|
* drive array of the controller and maintain persistency of ordering
|
|
* so that mount points are preserved until the next reboot. This allows
|
|
* for the removal of logical drives in the middle of the drive array
|
|
* without a re-ordering of those drives.
|
|
* INPUT
|
|
* h = The controller to perform the operations on
|
|
* del_disk = The disk to remove if specified. If the value given
|
|
* is NULL then no disk is removed.
|
|
*/
|
|
static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
|
|
{
|
|
int ctlr = h->ctlr;
|
|
int num_luns;
|
|
ReportLunData_struct *ld_buff = NULL;
|
|
drive_info_struct *drv = NULL;
|
|
int return_code;
|
|
int listlength = 0;
|
|
int i;
|
|
int drv_found;
|
|
int drv_index = 0;
|
|
__u32 lunid = 0;
|
|
unsigned long flags;
|
|
|
|
/* Set busy_configuring flag for this operation */
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -EBUSY;
|
|
}
|
|
h->busy_configuring = 1;
|
|
|
|
/* if del_disk is NULL then we are being called to add a new disk
|
|
* and update the logical drive table. If it is not NULL then
|
|
* we will check if the disk is in use or not.
|
|
*/
|
|
if (del_disk != NULL) {
|
|
drv = get_drv(del_disk);
|
|
drv->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return_code = deregister_disk(del_disk, drv, 1);
|
|
drv->busy_configuring = 0;
|
|
h->busy_configuring = 0;
|
|
return return_code;
|
|
} else {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
|
|
if (ld_buff == NULL)
|
|
goto mem_msg;
|
|
|
|
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
|
|
sizeof(ReportLunData_struct), 0,
|
|
0, 0, TYPE_CMD);
|
|
|
|
if (return_code == IO_OK) {
|
|
listlength =
|
|
be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
|
|
} else { /* reading number of logical volumes failed */
|
|
printk(KERN_WARNING "cciss: report logical volume"
|
|
" command failed\n");
|
|
listlength = 0;
|
|
goto freeret;
|
|
}
|
|
|
|
num_luns = listlength / 8; /* 8 bytes per entry */
|
|
if (num_luns > CISS_MAX_LUN) {
|
|
num_luns = CISS_MAX_LUN;
|
|
printk(KERN_WARNING "cciss: more luns configured"
|
|
" on controller than can be handled by"
|
|
" this driver.\n");
|
|
}
|
|
|
|
/* Compare controller drive array to drivers drive array.
|
|
* Check for updates in the drive information and any new drives
|
|
* on the controller.
|
|
*/
|
|
for (i = 0; i < num_luns; i++) {
|
|
int j;
|
|
|
|
drv_found = 0;
|
|
|
|
lunid = (0xff &
|
|
(unsigned int)(ld_buff->LUN[i][3])) << 24;
|
|
lunid |= (0xff &
|
|
(unsigned int)(ld_buff->LUN[i][2])) << 16;
|
|
lunid |= (0xff &
|
|
(unsigned int)(ld_buff->LUN[i][1])) << 8;
|
|
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
|
|
|
|
/* Find if the LUN is already in the drive array
|
|
* of the controller. If so then update its info
|
|
* if not is use. If it does not exist then find
|
|
* the first free index and add it.
|
|
*/
|
|
for (j = 0; j <= h->highest_lun; j++) {
|
|
if (h->drv[j].LunID == lunid) {
|
|
drv_index = j;
|
|
drv_found = 1;
|
|
}
|
|
}
|
|
|
|
/* check if the drive was found already in the array */
|
|
if (!drv_found) {
|
|
drv_index = cciss_find_free_drive_index(ctlr);
|
|
if (drv_index == -1)
|
|
goto freeret;
|
|
|
|
/*Check if the gendisk needs to be allocated */
|
|
if (!h->gendisk[drv_index]){
|
|
h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
|
|
if (!h->gendisk[drv_index]){
|
|
printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
|
|
goto mem_msg;
|
|
}
|
|
}
|
|
}
|
|
h->drv[drv_index].LunID = lunid;
|
|
cciss_update_drive_info(ctlr, drv_index);
|
|
} /* end for */
|
|
} /* end else */
|
|
|
|
freeret:
|
|
kfree(ld_buff);
|
|
h->busy_configuring = 0;
|
|
/* We return -1 here to tell the ACU that we have registered/updated
|
|
* all of the drives that we can and to keep it from calling us
|
|
* additional times.
|
|
*/
|
|
return -1;
|
|
mem_msg:
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
goto freeret;
|
|
}
|
|
|
|
/* This function will deregister the disk and it's queue from the
|
|
* kernel. It must be called with the controller lock held and the
|
|
* drv structures busy_configuring flag set. It's parameters are:
|
|
*
|
|
* disk = This is the disk to be deregistered
|
|
* drv = This is the drive_info_struct associated with the disk to be
|
|
* deregistered. It contains information about the disk used
|
|
* by the driver.
|
|
* clear_all = This flag determines whether or not the disk information
|
|
* is going to be completely cleared out and the highest_lun
|
|
* reset. Sometimes we want to clear out information about
|
|
* the disk in preparation for re-adding it. In this case
|
|
* the highest_lun should be left unchanged and the LunID
|
|
* should not be cleared.
|
|
*/
|
|
static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
|
|
int clear_all)
|
|
{
|
|
int i;
|
|
ctlr_info_t *h = get_host(disk);
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
/* make sure logical volume is NOT is use */
|
|
if (clear_all || (h->gendisk[0] == disk)) {
|
|
if (drv->usage_count > 1)
|
|
return -EBUSY;
|
|
} else if (drv->usage_count > 0)
|
|
return -EBUSY;
|
|
|
|
/* invalidate the devices and deregister the disk. If it is disk
|
|
* zero do not deregister it but just zero out it's values. This
|
|
* allows us to delete disk zero but keep the controller registered.
|
|
*/
|
|
if (h->gendisk[0] != disk) {
|
|
struct request_queue *q = disk->queue;
|
|
if (disk->flags & GENHD_FL_UP)
|
|
del_gendisk(disk);
|
|
if (q) {
|
|
blk_cleanup_queue(q);
|
|
/* Set drv->queue to NULL so that we do not try
|
|
* to call blk_start_queue on this queue in the
|
|
* interrupt handler
|
|
*/
|
|
drv->queue = NULL;
|
|
}
|
|
/* If clear_all is set then we are deleting the logical
|
|
* drive, not just refreshing its info. For drives
|
|
* other than disk 0 we will call put_disk. We do not
|
|
* do this for disk 0 as we need it to be able to
|
|
* configure the controller.
|
|
*/
|
|
if (clear_all){
|
|
/* This isn't pretty, but we need to find the
|
|
* disk in our array and NULL our the pointer.
|
|
* This is so that we will call alloc_disk if
|
|
* this index is used again later.
|
|
*/
|
|
for (i=0; i < CISS_MAX_LUN; i++){
|
|
if(h->gendisk[i] == disk){
|
|
h->gendisk[i] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
put_disk(disk);
|
|
}
|
|
} else {
|
|
set_capacity(disk, 0);
|
|
}
|
|
|
|
--h->num_luns;
|
|
/* zero out the disk size info */
|
|
drv->nr_blocks = 0;
|
|
drv->block_size = 0;
|
|
drv->heads = 0;
|
|
drv->sectors = 0;
|
|
drv->cylinders = 0;
|
|
drv->raid_level = -1; /* This can be used as a flag variable to
|
|
* indicate that this element of the drive
|
|
* array is free.
|
|
*/
|
|
|
|
if (clear_all) {
|
|
/* check to see if it was the last disk */
|
|
if (drv == h->drv + h->highest_lun) {
|
|
/* if so, find the new hightest lun */
|
|
int i, newhighest = -1;
|
|
for (i = 0; i < h->highest_lun; i++) {
|
|
/* if the disk has size > 0, it is available */
|
|
if (h->drv[i].heads)
|
|
newhighest = i;
|
|
}
|
|
h->highest_lun = newhighest;
|
|
}
|
|
|
|
drv->LunID = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
|
|
1: address logical volume log_unit,
|
|
2: periph device address is scsi3addr */
|
|
unsigned int log_unit, __u8 page_code,
|
|
unsigned char *scsi3addr, int cmd_type)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
u64bit buff_dma_handle;
|
|
int status = IO_OK;
|
|
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
if (buff != NULL) {
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.Tag.lower = c->busaddr;
|
|
|
|
c->Request.Type.Type = cmd_type;
|
|
if (cmd_type == TYPE_CMD) {
|
|
switch (cmd) {
|
|
case CISS_INQUIRY:
|
|
/* If the logical unit number is 0 then, this is going
|
|
to controller so It's a physical command
|
|
mode = 0 target = 0. So we have nothing to write.
|
|
otherwise, if use_unit_num == 1,
|
|
mode = 1(volume set addressing) target = LUNID
|
|
otherwise, if use_unit_num == 2,
|
|
mode = 0(periph dev addr) target = scsi3addr */
|
|
if (use_unit_num == 1) {
|
|
c->Header.LUN.LogDev.VolId =
|
|
h->drv[log_unit].LunID;
|
|
c->Header.LUN.LogDev.Mode = 1;
|
|
} else if (use_unit_num == 2) {
|
|
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
|
|
8);
|
|
c->Header.LUN.LogDev.Mode = 0;
|
|
}
|
|
/* are we trying to read a vital product page */
|
|
if (page_code != 0) {
|
|
c->Request.CDB[1] = 0x01;
|
|
c->Request.CDB[2] = page_code;
|
|
}
|
|
c->Request.CDBLen = 6;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = CISS_INQUIRY;
|
|
c->Request.CDB[4] = size & 0xFF;
|
|
break;
|
|
case CISS_REPORT_LOG:
|
|
case CISS_REPORT_PHYS:
|
|
/* Talking to controller so It's a physical command
|
|
mode = 00 target = 0. Nothing to write.
|
|
*/
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[9] = size & 0xFF;
|
|
break;
|
|
|
|
case CCISS_READ_CAPACITY:
|
|
c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
|
|
c->Header.LUN.LogDev.Mode = 1;
|
|
c->Request.CDBLen = 10;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
case CCISS_READ_CAPACITY_16:
|
|
c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
|
|
c->Header.LUN.LogDev.Mode = 1;
|
|
c->Request.CDBLen = 16;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[1] = 0x10;
|
|
c->Request.CDB[10] = (size >> 24) & 0xFF;
|
|
c->Request.CDB[11] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[12] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[13] = size & 0xFF;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
case CCISS_CACHE_FLUSH:
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = BMIC_WRITE;
|
|
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
|
|
return IO_ERROR;
|
|
}
|
|
} else if (cmd_type == TYPE_MSG) {
|
|
switch (cmd) {
|
|
case 0: /* ABORT message */
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd; /* abort */
|
|
c->Request.CDB[1] = 0; /* abort a command */
|
|
/* buff contains the tag of the command to abort */
|
|
memcpy(&c->Request.CDB[4], buff, 8);
|
|
break;
|
|
case 1: /* RESET message */
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
|
|
c->Request.CDB[0] = cmd; /* reset */
|
|
c->Request.CDB[1] = 0x04; /* reset a LUN */
|
|
break;
|
|
case 3: /* No-Op message */
|
|
c->Request.CDBLen = 1;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"cciss%d: unknown message type %d\n", ctlr, cmd);
|
|
return IO_ERROR;
|
|
}
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"cciss%d: unknown command type %d\n", ctlr, cmd_type);
|
|
return IO_ERROR;
|
|
}
|
|
/* Fill in the scatter gather information */
|
|
if (size > 0) {
|
|
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
|
|
buff, size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
|
|
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
|
|
c->SG[0].Len = size;
|
|
c->SG[0].Ext = 0; /* we are not chaining */
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int sendcmd_withirq(__u8 cmd,
|
|
int ctlr,
|
|
void *buff,
|
|
size_t size,
|
|
unsigned int use_unit_num,
|
|
unsigned int log_unit, __u8 page_code, int cmd_type)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
CommandList_struct *c;
|
|
u64bit buff_dma_handle;
|
|
unsigned long flags;
|
|
int return_status;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
if ((c = cmd_alloc(h, 0)) == NULL)
|
|
return -ENOMEM;
|
|
return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
|
|
log_unit, page_code, NULL, cmd_type);
|
|
if (return_status != IO_OK) {
|
|
cmd_free(h, c, 0);
|
|
return return_status;
|
|
}
|
|
resend_cmd2:
|
|
c->waiting = &wait;
|
|
|
|
/* Put the request on the tail of the queue and send it */
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
start_io(h);
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
|
|
wait_for_completion(&wait);
|
|
|
|
if (c->err_info->CommandStatus != 0) { /* an error has occurred */
|
|
switch (c->err_info->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
printk(KERN_WARNING "cciss: cmd %p has "
|
|
" completed with errors\n", c);
|
|
if (c->err_info->ScsiStatus) {
|
|
printk(KERN_WARNING "cciss: cmd %p "
|
|
"has SCSI Status = %x\n",
|
|
c, c->err_info->ScsiStatus);
|
|
}
|
|
|
|
break;
|
|
case CMD_DATA_UNDERRUN:
|
|
case CMD_DATA_OVERRUN:
|
|
/* expected for inquire and report lun commands */
|
|
break;
|
|
case CMD_INVALID:
|
|
printk(KERN_WARNING "cciss: Cmd %p is "
|
|
"reported invalid\n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p has "
|
|
"protocol error \n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
" hardware error\n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
"connection lost\n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_ABORTED:
|
|
printk(KERN_WARNING "cciss: cmd %p was "
|
|
"aborted\n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
printk(KERN_WARNING "cciss: cmd %p reports "
|
|
"abort failed\n", c);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
printk(KERN_WARNING
|
|
"cciss%d: unsolicited abort %p\n", ctlr, c);
|
|
if (c->retry_count < MAX_CMD_RETRIES) {
|
|
printk(KERN_WARNING
|
|
"cciss%d: retrying %p\n", ctlr, c);
|
|
c->retry_count++;
|
|
/* erase the old error information */
|
|
memset(c->err_info, 0,
|
|
sizeof(ErrorInfo_struct));
|
|
return_status = IO_OK;
|
|
INIT_COMPLETION(wait);
|
|
goto resend_cmd2;
|
|
}
|
|
return_status = IO_ERROR;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss: cmd %p returned "
|
|
"unknown status %x\n", c,
|
|
c->err_info->CommandStatus);
|
|
return_status = IO_ERROR;
|
|
}
|
|
}
|
|
/* unlock the buffers from DMA */
|
|
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
|
|
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
|
|
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
|
|
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
|
|
cmd_free(h, c, 0);
|
|
return return_status;
|
|
}
|
|
|
|
static void cciss_geometry_inquiry(int ctlr, int logvol,
|
|
int withirq, sector_t total_size,
|
|
unsigned int block_size,
|
|
InquiryData_struct *inq_buff,
|
|
drive_info_struct *drv)
|
|
{
|
|
int return_code;
|
|
unsigned long t;
|
|
|
|
memset(inq_buff, 0, sizeof(InquiryData_struct));
|
|
if (withirq)
|
|
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
|
|
inq_buff, sizeof(*inq_buff), 1,
|
|
logvol, 0xC1, TYPE_CMD);
|
|
else
|
|
return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
|
|
sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
|
|
TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
if (inq_buff->data_byte[8] == 0xFF) {
|
|
printk(KERN_WARNING
|
|
"cciss: reading geometry failed, volume "
|
|
"does not support reading geometry\n");
|
|
drv->heads = 255;
|
|
drv->sectors = 32; // Sectors per track
|
|
drv->cylinders = total_size + 1;
|
|
drv->raid_level = RAID_UNKNOWN;
|
|
} else {
|
|
drv->heads = inq_buff->data_byte[6];
|
|
drv->sectors = inq_buff->data_byte[7];
|
|
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
|
|
drv->cylinders += inq_buff->data_byte[5];
|
|
drv->raid_level = inq_buff->data_byte[8];
|
|
}
|
|
drv->block_size = block_size;
|
|
drv->nr_blocks = total_size + 1;
|
|
t = drv->heads * drv->sectors;
|
|
if (t > 1) {
|
|
sector_t real_size = total_size + 1;
|
|
unsigned long rem = sector_div(real_size, t);
|
|
if (rem)
|
|
real_size++;
|
|
drv->cylinders = real_size;
|
|
}
|
|
} else { /* Get geometry failed */
|
|
printk(KERN_WARNING "cciss: reading geometry failed\n");
|
|
}
|
|
printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
|
|
drv->heads, drv->sectors, drv->cylinders);
|
|
}
|
|
|
|
static void
|
|
cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
|
|
unsigned int *block_size)
|
|
{
|
|
ReadCapdata_struct *buf;
|
|
int return_code;
|
|
|
|
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return;
|
|
}
|
|
|
|
if (withirq)
|
|
return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
|
|
ctlr, buf, sizeof(ReadCapdata_struct),
|
|
1, logvol, 0, TYPE_CMD);
|
|
else
|
|
return_code = sendcmd(CCISS_READ_CAPACITY,
|
|
ctlr, buf, sizeof(ReadCapdata_struct),
|
|
1, logvol, 0, NULL, TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
|
|
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
|
|
} else { /* read capacity command failed */
|
|
printk(KERN_WARNING "cciss: read capacity failed\n");
|
|
*total_size = 0;
|
|
*block_size = BLOCK_SIZE;
|
|
}
|
|
if (*total_size != 0)
|
|
printk(KERN_INFO " blocks= %llu block_size= %d\n",
|
|
(unsigned long long)*total_size+1, *block_size);
|
|
kfree(buf);
|
|
}
|
|
|
|
static void
|
|
cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
|
|
{
|
|
ReadCapdata_struct_16 *buf;
|
|
int return_code;
|
|
|
|
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return;
|
|
}
|
|
|
|
if (withirq) {
|
|
return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
|
|
ctlr, buf, sizeof(ReadCapdata_struct_16),
|
|
1, logvol, 0, TYPE_CMD);
|
|
}
|
|
else {
|
|
return_code = sendcmd(CCISS_READ_CAPACITY_16,
|
|
ctlr, buf, sizeof(ReadCapdata_struct_16),
|
|
1, logvol, 0, NULL, TYPE_CMD);
|
|
}
|
|
if (return_code == IO_OK) {
|
|
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
|
|
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
|
|
} else { /* read capacity command failed */
|
|
printk(KERN_WARNING "cciss: read capacity failed\n");
|
|
*total_size = 0;
|
|
*block_size = BLOCK_SIZE;
|
|
}
|
|
printk(KERN_INFO " blocks= %llu block_size= %d\n",
|
|
(unsigned long long)*total_size+1, *block_size);
|
|
kfree(buf);
|
|
}
|
|
|
|
static int cciss_revalidate(struct gendisk *disk)
|
|
{
|
|
ctlr_info_t *h = get_host(disk);
|
|
drive_info_struct *drv = get_drv(disk);
|
|
int logvol;
|
|
int FOUND = 0;
|
|
unsigned int block_size;
|
|
sector_t total_size;
|
|
InquiryData_struct *inq_buff = NULL;
|
|
|
|
for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
|
|
if (h->drv[logvol].LunID == drv->LunID) {
|
|
FOUND = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!FOUND)
|
|
return 1;
|
|
|
|
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (inq_buff == NULL) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return 1;
|
|
}
|
|
if (h->cciss_read == CCISS_READ_10) {
|
|
cciss_read_capacity(h->ctlr, logvol, 1,
|
|
&total_size, &block_size);
|
|
} else {
|
|
cciss_read_capacity_16(h->ctlr, logvol, 1,
|
|
&total_size, &block_size);
|
|
}
|
|
cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
|
|
inq_buff, drv);
|
|
|
|
blk_queue_hardsect_size(drv->queue, drv->block_size);
|
|
set_capacity(disk, drv->nr_blocks);
|
|
|
|
kfree(inq_buff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait polling for a command to complete.
|
|
* The memory mapped FIFO is polled for the completion.
|
|
* Used only at init time, interrupts from the HBA are disabled.
|
|
*/
|
|
static unsigned long pollcomplete(int ctlr)
|
|
{
|
|
unsigned long done;
|
|
int i;
|
|
|
|
/* Wait (up to 20 seconds) for a command to complete */
|
|
|
|
for (i = 20 * HZ; i > 0; i--) {
|
|
done = hba[ctlr]->access.command_completed(hba[ctlr]);
|
|
if (done == FIFO_EMPTY)
|
|
schedule_timeout_uninterruptible(1);
|
|
else
|
|
return done;
|
|
}
|
|
/* Invalid address to tell caller we ran out of time */
|
|
return 1;
|
|
}
|
|
|
|
static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
|
|
{
|
|
/* We get in here if sendcmd() is polling for completions
|
|
and gets some command back that it wasn't expecting --
|
|
something other than that which it just sent down.
|
|
Ordinarily, that shouldn't happen, but it can happen when
|
|
the scsi tape stuff gets into error handling mode, and
|
|
starts using sendcmd() to try to abort commands and
|
|
reset tape drives. In that case, sendcmd may pick up
|
|
completions of commands that were sent to logical drives
|
|
through the block i/o system, or cciss ioctls completing, etc.
|
|
In that case, we need to save those completions for later
|
|
processing by the interrupt handler.
|
|
*/
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
|
|
|
|
/* If it's not the scsi tape stuff doing error handling, (abort */
|
|
/* or reset) then we don't expect anything weird. */
|
|
if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
|
|
#endif
|
|
printk(KERN_WARNING "cciss cciss%d: SendCmd "
|
|
"Invalid command list address returned! (%lx)\n",
|
|
ctlr, complete);
|
|
/* not much we can do. */
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
return 1;
|
|
}
|
|
|
|
/* We've sent down an abort or reset, but something else
|
|
has completed */
|
|
if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
|
|
/* Uh oh. No room to save it for later... */
|
|
printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
|
|
"reject list overflow, command lost!\n", ctlr);
|
|
return 1;
|
|
}
|
|
/* Save it for later */
|
|
srl->complete[srl->ncompletions] = complete;
|
|
srl->ncompletions++;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a command to the controller, and wait for it to complete.
|
|
* Only used at init time.
|
|
*/
|
|
static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
|
|
1: address logical volume log_unit,
|
|
2: periph device address is scsi3addr */
|
|
unsigned int log_unit,
|
|
__u8 page_code, unsigned char *scsi3addr, int cmd_type)
|
|
{
|
|
CommandList_struct *c;
|
|
int i;
|
|
unsigned long complete;
|
|
ctlr_info_t *info_p = hba[ctlr];
|
|
u64bit buff_dma_handle;
|
|
int status, done = 0;
|
|
|
|
if ((c = cmd_alloc(info_p, 1)) == NULL) {
|
|
printk(KERN_WARNING "cciss: unable to get memory");
|
|
return IO_ERROR;
|
|
}
|
|
status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
|
|
log_unit, page_code, scsi3addr, cmd_type);
|
|
if (status != IO_OK) {
|
|
cmd_free(info_p, c, 1);
|
|
return status;
|
|
}
|
|
resend_cmd1:
|
|
/*
|
|
* Disable interrupt
|
|
*/
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: turning intr off\n");
|
|
#endif /* CCISS_DEBUG */
|
|
info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
|
|
|
|
/* Make sure there is room in the command FIFO */
|
|
/* Actually it should be completely empty at this time */
|
|
/* unless we are in here doing error handling for the scsi */
|
|
/* tape side of the driver. */
|
|
for (i = 200000; i > 0; i--) {
|
|
/* if fifo isn't full go */
|
|
if (!(info_p->access.fifo_full(info_p))) {
|
|
|
|
break;
|
|
}
|
|
udelay(10);
|
|
printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
|
|
" waiting!\n", ctlr);
|
|
}
|
|
/*
|
|
* Send the cmd
|
|
*/
|
|
info_p->access.submit_command(info_p, c);
|
|
done = 0;
|
|
do {
|
|
complete = pollcomplete(ctlr);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: command completed\n");
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
if (complete == 1) {
|
|
printk(KERN_WARNING
|
|
"cciss cciss%d: SendCmd Timeout out, "
|
|
"No command list address returned!\n", ctlr);
|
|
status = IO_ERROR;
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
/* This will need to change for direct lookup completions */
|
|
if ((complete & CISS_ERROR_BIT)
|
|
&& (complete & ~CISS_ERROR_BIT) == c->busaddr) {
|
|
/* if data overrun or underun on Report command
|
|
ignore it
|
|
*/
|
|
if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
|
|
(c->Request.CDB[0] == CISS_REPORT_PHYS) ||
|
|
(c->Request.CDB[0] == CISS_INQUIRY)) &&
|
|
((c->err_info->CommandStatus ==
|
|
CMD_DATA_OVERRUN) ||
|
|
(c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
|
|
)) {
|
|
complete = c->busaddr;
|
|
} else {
|
|
if (c->err_info->CommandStatus ==
|
|
CMD_UNSOLICITED_ABORT) {
|
|
printk(KERN_WARNING "cciss%d: "
|
|
"unsolicited abort %p\n",
|
|
ctlr, c);
|
|
if (c->retry_count < MAX_CMD_RETRIES) {
|
|
printk(KERN_WARNING
|
|
"cciss%d: retrying %p\n",
|
|
ctlr, c);
|
|
c->retry_count++;
|
|
/* erase the old error */
|
|
/* information */
|
|
memset(c->err_info, 0,
|
|
sizeof
|
|
(ErrorInfo_struct));
|
|
goto resend_cmd1;
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"cciss%d: retried %p too "
|
|
"many times\n", ctlr, c);
|
|
status = IO_ERROR;
|
|
goto cleanup1;
|
|
}
|
|
} else if (c->err_info->CommandStatus ==
|
|
CMD_UNABORTABLE) {
|
|
printk(KERN_WARNING
|
|
"cciss%d: command could not be aborted.\n",
|
|
ctlr);
|
|
status = IO_ERROR;
|
|
goto cleanup1;
|
|
}
|
|
printk(KERN_WARNING "ciss ciss%d: sendcmd"
|
|
" Error %x \n", ctlr,
|
|
c->err_info->CommandStatus);
|
|
printk(KERN_WARNING "ciss ciss%d: sendcmd"
|
|
" offensive info\n"
|
|
" size %x\n num %x value %x\n",
|
|
ctlr,
|
|
c->err_info->MoreErrInfo.Invalid_Cmd.
|
|
offense_size,
|
|
c->err_info->MoreErrInfo.Invalid_Cmd.
|
|
offense_num,
|
|
c->err_info->MoreErrInfo.Invalid_Cmd.
|
|
offense_value);
|
|
status = IO_ERROR;
|
|
goto cleanup1;
|
|
}
|
|
}
|
|
/* This will need changing for direct lookup completions */
|
|
if (complete != c->busaddr) {
|
|
if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
|
|
BUG(); /* we are pretty much hosed if we get here. */
|
|
}
|
|
continue;
|
|
} else
|
|
done = 1;
|
|
} while (!done);
|
|
|
|
cleanup1:
|
|
/* unlock the data buffer from DMA */
|
|
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
|
|
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
|
|
pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
|
|
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
/* if we saved some commands for later, process them now. */
|
|
if (info_p->scsi_rejects.ncompletions > 0)
|
|
do_cciss_intr(0, info_p);
|
|
#endif
|
|
cmd_free(info_p, c, 1);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Map (physical) PCI mem into (virtual) kernel space
|
|
*/
|
|
static void __iomem *remap_pci_mem(ulong base, ulong size)
|
|
{
|
|
ulong page_base = ((ulong) base) & PAGE_MASK;
|
|
ulong page_offs = ((ulong) base) - page_base;
|
|
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
|
|
|
|
return page_remapped ? (page_remapped + page_offs) : NULL;
|
|
}
|
|
|
|
/*
|
|
* Takes jobs of the Q and sends them to the hardware, then puts it on
|
|
* the Q to wait for completion.
|
|
*/
|
|
static void start_io(ctlr_info_t *h)
|
|
{
|
|
CommandList_struct *c;
|
|
|
|
while ((c = h->reqQ) != NULL) {
|
|
/* can't do anything if fifo is full */
|
|
if ((h->access.fifo_full(h))) {
|
|
printk(KERN_WARNING "cciss: fifo full\n");
|
|
break;
|
|
}
|
|
|
|
/* Get the first entry from the Request Q */
|
|
removeQ(&(h->reqQ), c);
|
|
h->Qdepth--;
|
|
|
|
/* Tell the controller execute command */
|
|
h->access.submit_command(h, c);
|
|
|
|
/* Put job onto the completed Q */
|
|
addQ(&(h->cmpQ), c);
|
|
}
|
|
}
|
|
|
|
/* Assumes that CCISS_LOCK(h->ctlr) is held. */
|
|
/* Zeros out the error record and then resends the command back */
|
|
/* to the controller */
|
|
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
/* erase the old error information */
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
|
|
/* add it to software queue and then send it to the controller */
|
|
addQ(&(h->reqQ), c);
|
|
h->Qdepth++;
|
|
if (h->Qdepth > h->maxQsinceinit)
|
|
h->maxQsinceinit = h->Qdepth;
|
|
|
|
start_io(h);
|
|
}
|
|
|
|
static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
|
|
unsigned int msg_byte, unsigned int host_byte,
|
|
unsigned int driver_byte)
|
|
{
|
|
/* inverse of macros in scsi.h */
|
|
return (scsi_status_byte & 0xff) |
|
|
((msg_byte & 0xff) << 8) |
|
|
((host_byte & 0xff) << 16) |
|
|
((driver_byte & 0xff) << 24);
|
|
}
|
|
|
|
static inline int evaluate_target_status(CommandList_struct *cmd)
|
|
{
|
|
unsigned char sense_key;
|
|
unsigned char status_byte, msg_byte, host_byte, driver_byte;
|
|
int error_value;
|
|
|
|
/* If we get in here, it means we got "target status", that is, scsi status */
|
|
status_byte = cmd->err_info->ScsiStatus;
|
|
driver_byte = DRIVER_OK;
|
|
msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
|
|
|
|
if (blk_pc_request(cmd->rq))
|
|
host_byte = DID_PASSTHROUGH;
|
|
else
|
|
host_byte = DID_OK;
|
|
|
|
error_value = make_status_bytes(status_byte, msg_byte,
|
|
host_byte, driver_byte);
|
|
|
|
if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
|
|
if (!blk_pc_request(cmd->rq))
|
|
printk(KERN_WARNING "cciss: cmd %p "
|
|
"has SCSI Status 0x%x\n",
|
|
cmd, cmd->err_info->ScsiStatus);
|
|
return error_value;
|
|
}
|
|
|
|
/* check the sense key */
|
|
sense_key = 0xf & cmd->err_info->SenseInfo[2];
|
|
/* no status or recovered error */
|
|
if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
|
|
error_value = 0;
|
|
|
|
if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
|
|
if (error_value != 0)
|
|
printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
|
|
" sense key = 0x%x\n", cmd, sense_key);
|
|
return error_value;
|
|
}
|
|
|
|
/* SG_IO or similar, copy sense data back */
|
|
if (cmd->rq->sense) {
|
|
if (cmd->rq->sense_len > cmd->err_info->SenseLen)
|
|
cmd->rq->sense_len = cmd->err_info->SenseLen;
|
|
memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
|
|
cmd->rq->sense_len);
|
|
} else
|
|
cmd->rq->sense_len = 0;
|
|
|
|
return error_value;
|
|
}
|
|
|
|
/* checks the status of the job and calls complete buffers to mark all
|
|
* buffers for the completed job. Note that this function does not need
|
|
* to hold the hba/queue lock.
|
|
*/
|
|
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
|
|
int timeout)
|
|
{
|
|
int retry_cmd = 0;
|
|
struct request *rq = cmd->rq;
|
|
|
|
rq->errors = 0;
|
|
|
|
if (timeout)
|
|
rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
|
|
|
|
if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
|
|
goto after_error_processing;
|
|
|
|
switch (cmd->err_info->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
rq->errors = evaluate_target_status(cmd);
|
|
break;
|
|
case CMD_DATA_UNDERRUN:
|
|
if (blk_fs_request(cmd->rq)) {
|
|
printk(KERN_WARNING "cciss: cmd %p has"
|
|
" completed with data underrun "
|
|
"reported\n", cmd);
|
|
cmd->rq->data_len = cmd->err_info->ResidualCnt;
|
|
}
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
if (blk_fs_request(cmd->rq))
|
|
printk(KERN_WARNING "cciss: cmd %p has"
|
|
" completed with data overrun "
|
|
"reported\n", cmd);
|
|
break;
|
|
case CMD_INVALID:
|
|
printk(KERN_WARNING "cciss: cmd %p is "
|
|
"reported invalid\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p has "
|
|
"protocol error \n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
" hardware error\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
"connection lost\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_ABORTED:
|
|
printk(KERN_WARNING "cciss: cmd %p was "
|
|
"aborted\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
printk(KERN_WARNING "cciss: cmd %p reports "
|
|
"abort failed\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
printk(KERN_WARNING "cciss%d: unsolicited "
|
|
"abort %p\n", h->ctlr, cmd);
|
|
if (cmd->retry_count < MAX_CMD_RETRIES) {
|
|
retry_cmd = 1;
|
|
printk(KERN_WARNING
|
|
"cciss%d: retrying %p\n", h->ctlr, cmd);
|
|
cmd->retry_count++;
|
|
} else
|
|
printk(KERN_WARNING
|
|
"cciss%d: %p retried too "
|
|
"many times\n", h->ctlr, cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss: cmd %p returned "
|
|
"unknown status %x\n", cmd,
|
|
cmd->err_info->CommandStatus);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
}
|
|
|
|
after_error_processing:
|
|
|
|
/* We need to return this command */
|
|
if (retry_cmd) {
|
|
resend_cciss_cmd(h, cmd);
|
|
return;
|
|
}
|
|
cmd->rq->completion_data = cmd;
|
|
blk_complete_request(cmd->rq);
|
|
}
|
|
|
|
/*
|
|
* Get a request and submit it to the controller.
|
|
*/
|
|
static void do_cciss_request(struct request_queue *q)
|
|
{
|
|
ctlr_info_t *h = q->queuedata;
|
|
CommandList_struct *c;
|
|
sector_t start_blk;
|
|
int seg;
|
|
struct request *creq;
|
|
u64bit temp64;
|
|
struct scatterlist tmp_sg[MAXSGENTRIES];
|
|
drive_info_struct *drv;
|
|
int i, dir;
|
|
|
|
/* We call start_io here in case there is a command waiting on the
|
|
* queue that has not been sent.
|
|
*/
|
|
if (blk_queue_plugged(q))
|
|
goto startio;
|
|
|
|
queue:
|
|
creq = elv_next_request(q);
|
|
if (!creq)
|
|
goto startio;
|
|
|
|
BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
|
|
|
|
if ((c = cmd_alloc(h, 1)) == NULL)
|
|
goto full;
|
|
|
|
blkdev_dequeue_request(creq);
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
c->cmd_type = CMD_RWREQ;
|
|
c->rq = creq;
|
|
|
|
/* fill in the request */
|
|
drv = creq->rq_disk->private_data;
|
|
c->Header.ReplyQueue = 0; // unused in simple mode
|
|
/* got command from pool, so use the command block index instead */
|
|
/* for direct lookups. */
|
|
/* The first 2 bits are reserved for controller error reporting. */
|
|
c->Header.Tag.lower = (c->cmdindex << 3);
|
|
c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
|
|
c->Header.LUN.LogDev.VolId = drv->LunID;
|
|
c->Header.LUN.LogDev.Mode = 1;
|
|
c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
|
|
c->Request.Type.Type = TYPE_CMD; // It is a command.
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction =
|
|
(rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
|
|
c->Request.Timeout = 0; // Don't time out
|
|
c->Request.CDB[0] =
|
|
(rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
|
|
start_blk = creq->sector;
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
|
|
(int)creq->nr_sectors);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
sg_init_table(tmp_sg, MAXSGENTRIES);
|
|
seg = blk_rq_map_sg(q, creq, tmp_sg);
|
|
|
|
/* get the DMA records for the setup */
|
|
if (c->Request.Type.Direction == XFER_READ)
|
|
dir = PCI_DMA_FROMDEVICE;
|
|
else
|
|
dir = PCI_DMA_TODEVICE;
|
|
|
|
for (i = 0; i < seg; i++) {
|
|
c->SG[i].Len = tmp_sg[i].length;
|
|
temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
|
|
tmp_sg[i].offset,
|
|
tmp_sg[i].length, dir);
|
|
c->SG[i].Addr.lower = temp64.val32.lower;
|
|
c->SG[i].Addr.upper = temp64.val32.upper;
|
|
c->SG[i].Ext = 0; // we are not chaining
|
|
}
|
|
/* track how many SG entries we are using */
|
|
if (seg > h->maxSG)
|
|
h->maxSG = seg;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
|
|
creq->nr_sectors, seg);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
c->Header.SGList = c->Header.SGTotal = seg;
|
|
if (likely(blk_fs_request(creq))) {
|
|
if(h->cciss_read == CCISS_READ_10) {
|
|
c->Request.CDB[1] = 0;
|
|
c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
|
|
c->Request.CDB[3] = (start_blk >> 16) & 0xff;
|
|
c->Request.CDB[4] = (start_blk >> 8) & 0xff;
|
|
c->Request.CDB[5] = start_blk & 0xff;
|
|
c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
|
|
c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
|
|
c->Request.CDB[8] = creq->nr_sectors & 0xff;
|
|
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
|
|
} else {
|
|
u32 upper32 = upper_32_bits(start_blk);
|
|
|
|
c->Request.CDBLen = 16;
|
|
c->Request.CDB[1]= 0;
|
|
c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
|
|
c->Request.CDB[3]= (upper32 >> 16) & 0xff;
|
|
c->Request.CDB[4]= (upper32 >> 8) & 0xff;
|
|
c->Request.CDB[5]= upper32 & 0xff;
|
|
c->Request.CDB[6]= (start_blk >> 24) & 0xff;
|
|
c->Request.CDB[7]= (start_blk >> 16) & 0xff;
|
|
c->Request.CDB[8]= (start_blk >> 8) & 0xff;
|
|
c->Request.CDB[9]= start_blk & 0xff;
|
|
c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
|
|
c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
|
|
c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
|
|
c->Request.CDB[13]= creq->nr_sectors & 0xff;
|
|
c->Request.CDB[14] = c->Request.CDB[15] = 0;
|
|
}
|
|
} else if (blk_pc_request(creq)) {
|
|
c->Request.CDBLen = creq->cmd_len;
|
|
memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
|
|
} else {
|
|
printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
|
|
BUG();
|
|
}
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
addQ(&(h->reqQ), c);
|
|
h->Qdepth++;
|
|
if (h->Qdepth > h->maxQsinceinit)
|
|
h->maxQsinceinit = h->Qdepth;
|
|
|
|
goto queue;
|
|
full:
|
|
blk_stop_queue(q);
|
|
startio:
|
|
/* We will already have the driver lock here so not need
|
|
* to lock it.
|
|
*/
|
|
start_io(h);
|
|
}
|
|
|
|
static inline unsigned long get_next_completion(ctlr_info_t *h)
|
|
{
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
/* Any rejects from sendcmd() lying around? Process them first */
|
|
if (h->scsi_rejects.ncompletions == 0)
|
|
return h->access.command_completed(h);
|
|
else {
|
|
struct sendcmd_reject_list *srl;
|
|
int n;
|
|
srl = &h->scsi_rejects;
|
|
n = --srl->ncompletions;
|
|
/* printk("cciss%d: processing saved reject\n", h->ctlr); */
|
|
printk("p");
|
|
return srl->complete[n];
|
|
}
|
|
#else
|
|
return h->access.command_completed(h);
|
|
#endif
|
|
}
|
|
|
|
static inline int interrupt_pending(ctlr_info_t *h)
|
|
{
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
return (h->access.intr_pending(h)
|
|
|| (h->scsi_rejects.ncompletions > 0));
|
|
#else
|
|
return h->access.intr_pending(h);
|
|
#endif
|
|
}
|
|
|
|
static inline long interrupt_not_for_us(ctlr_info_t *h)
|
|
{
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
return (((h->access.intr_pending(h) == 0) ||
|
|
(h->interrupts_enabled == 0))
|
|
&& (h->scsi_rejects.ncompletions == 0));
|
|
#else
|
|
return (((h->access.intr_pending(h) == 0) ||
|
|
(h->interrupts_enabled == 0)));
|
|
#endif
|
|
}
|
|
|
|
static irqreturn_t do_cciss_intr(int irq, void *dev_id)
|
|
{
|
|
ctlr_info_t *h = dev_id;
|
|
CommandList_struct *c;
|
|
unsigned long flags;
|
|
__u32 a, a1, a2;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
/*
|
|
* If there are completed commands in the completion queue,
|
|
* we had better do something about it.
|
|
*/
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
while (interrupt_pending(h)) {
|
|
while ((a = get_next_completion(h)) != FIFO_EMPTY) {
|
|
a1 = a;
|
|
if ((a & 0x04)) {
|
|
a2 = (a >> 3);
|
|
if (a2 >= h->nr_cmds) {
|
|
printk(KERN_WARNING
|
|
"cciss: controller cciss%d failed, stopping.\n",
|
|
h->ctlr);
|
|
fail_all_cmds(h->ctlr);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
c = h->cmd_pool + a2;
|
|
a = c->busaddr;
|
|
|
|
} else {
|
|
a &= ~3;
|
|
if ((c = h->cmpQ) == NULL) {
|
|
printk(KERN_WARNING
|
|
"cciss: Completion of %08x ignored\n",
|
|
a1);
|
|
continue;
|
|
}
|
|
while (c->busaddr != a) {
|
|
c = c->next;
|
|
if (c == h->cmpQ)
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If we've found the command, take it off the
|
|
* completion Q and free it
|
|
*/
|
|
if (c->busaddr == a) {
|
|
removeQ(&h->cmpQ, c);
|
|
if (c->cmd_type == CMD_RWREQ) {
|
|
complete_command(h, c, 0);
|
|
} else if (c->cmd_type == CMD_IOCTL_PEND) {
|
|
complete(c->waiting);
|
|
}
|
|
# ifdef CONFIG_CISS_SCSI_TAPE
|
|
else if (c->cmd_type == CMD_SCSI)
|
|
complete_scsi_command(c, 0, a1);
|
|
# endif
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* We cannot read the structure directly, for portability we must use
|
|
* the io functions.
|
|
* This is for debug only.
|
|
*/
|
|
#ifdef CCISS_DEBUG
|
|
static void print_cfg_table(CfgTable_struct *tb)
|
|
{
|
|
int i;
|
|
char temp_name[17];
|
|
|
|
printk("Controller Configuration information\n");
|
|
printk("------------------------------------\n");
|
|
for (i = 0; i < 4; i++)
|
|
temp_name[i] = readb(&(tb->Signature[i]));
|
|
temp_name[4] = '\0';
|
|
printk(" Signature = %s\n", temp_name);
|
|
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
|
|
printk(" Transport methods supported = 0x%x\n",
|
|
readl(&(tb->TransportSupport)));
|
|
printk(" Transport methods active = 0x%x\n",
|
|
readl(&(tb->TransportActive)));
|
|
printk(" Requested transport Method = 0x%x\n",
|
|
readl(&(tb->HostWrite.TransportRequest)));
|
|
printk(" Coalesce Interrupt Delay = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntDelay)));
|
|
printk(" Coalesce Interrupt Count = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntCount)));
|
|
printk(" Max outstanding commands = 0x%d\n",
|
|
readl(&(tb->CmdsOutMax)));
|
|
printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
|
|
for (i = 0; i < 16; i++)
|
|
temp_name[i] = readb(&(tb->ServerName[i]));
|
|
temp_name[16] = '\0';
|
|
printk(" Server Name = %s\n", temp_name);
|
|
printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
|
|
}
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
|
|
{
|
|
int i, offset, mem_type, bar_type;
|
|
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
|
|
return 0;
|
|
offset = 0;
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
|
|
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
|
|
offset += 4;
|
|
else {
|
|
mem_type = pci_resource_flags(pdev, i) &
|
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
|
|
switch (mem_type) {
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_32:
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
|
|
offset += 4; /* 32 bit */
|
|
break;
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_64:
|
|
offset += 8;
|
|
break;
|
|
default: /* reserved in PCI 2.2 */
|
|
printk(KERN_WARNING
|
|
"Base address is invalid\n");
|
|
return -1;
|
|
break;
|
|
}
|
|
}
|
|
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
|
|
return i + 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
|
|
* controllers that are capable. If not, we use IO-APIC mode.
|
|
*/
|
|
|
|
static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
|
|
struct pci_dev *pdev, __u32 board_id)
|
|
{
|
|
#ifdef CONFIG_PCI_MSI
|
|
int err;
|
|
struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
|
|
{0, 2}, {0, 3}
|
|
};
|
|
|
|
/* Some boards advertise MSI but don't really support it */
|
|
if ((board_id == 0x40700E11) ||
|
|
(board_id == 0x40800E11) ||
|
|
(board_id == 0x40820E11) || (board_id == 0x40830E11))
|
|
goto default_int_mode;
|
|
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
|
|
err = pci_enable_msix(pdev, cciss_msix_entries, 4);
|
|
if (!err) {
|
|
c->intr[0] = cciss_msix_entries[0].vector;
|
|
c->intr[1] = cciss_msix_entries[1].vector;
|
|
c->intr[2] = cciss_msix_entries[2].vector;
|
|
c->intr[3] = cciss_msix_entries[3].vector;
|
|
c->msix_vector = 1;
|
|
return;
|
|
}
|
|
if (err > 0) {
|
|
printk(KERN_WARNING "cciss: only %d MSI-X vectors "
|
|
"available\n", err);
|
|
goto default_int_mode;
|
|
} else {
|
|
printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
|
|
err);
|
|
goto default_int_mode;
|
|
}
|
|
}
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
|
|
if (!pci_enable_msi(pdev)) {
|
|
c->msi_vector = 1;
|
|
} else {
|
|
printk(KERN_WARNING "cciss: MSI init failed\n");
|
|
}
|
|
}
|
|
default_int_mode:
|
|
#endif /* CONFIG_PCI_MSI */
|
|
/* if we get here we're going to use the default interrupt mode */
|
|
c->intr[SIMPLE_MODE_INT] = pdev->irq;
|
|
return;
|
|
}
|
|
|
|
static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
|
|
{
|
|
ushort subsystem_vendor_id, subsystem_device_id, command;
|
|
__u32 board_id, scratchpad = 0;
|
|
__u64 cfg_offset;
|
|
__u32 cfg_base_addr;
|
|
__u64 cfg_base_addr_index;
|
|
int i, err;
|
|
|
|
/* check to see if controller has been disabled */
|
|
/* BEFORE trying to enable it */
|
|
(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
|
|
if (!(command & 0x02)) {
|
|
printk(KERN_WARNING
|
|
"cciss: controller appears to be disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err) {
|
|
printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
|
|
return err;
|
|
}
|
|
|
|
err = pci_request_regions(pdev, "cciss");
|
|
if (err) {
|
|
printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
|
|
"aborting\n");
|
|
return err;
|
|
}
|
|
|
|
subsystem_vendor_id = pdev->subsystem_vendor;
|
|
subsystem_device_id = pdev->subsystem_device;
|
|
board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
|
|
subsystem_vendor_id);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("command = %x\n", command);
|
|
printk("irq = %x\n", pdev->irq);
|
|
printk("board_id = %x\n", board_id);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
|
|
* else we use the IO-APIC interrupt assigned to us by system ROM.
|
|
*/
|
|
cciss_interrupt_mode(c, pdev, board_id);
|
|
|
|
/*
|
|
* Memory base addr is first addr , the second points to the config
|
|
* table
|
|
*/
|
|
|
|
c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
|
|
#ifdef CCISS_DEBUG
|
|
printk("address 0 = %x\n", c->paddr);
|
|
#endif /* CCISS_DEBUG */
|
|
c->vaddr = remap_pci_mem(c->paddr, 0x250);
|
|
|
|
/* Wait for the board to become ready. (PCI hotplug needs this.)
|
|
* We poll for up to 120 secs, once per 100ms. */
|
|
for (i = 0; i < 1200; i++) {
|
|
scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
|
|
if (scratchpad == CCISS_FIRMWARE_READY)
|
|
break;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ / 10); /* wait 100ms */
|
|
}
|
|
if (scratchpad != CCISS_FIRMWARE_READY) {
|
|
printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
/* get the address index number */
|
|
cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
|
|
cfg_base_addr &= (__u32) 0x0000ffff;
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg base address = %x\n", cfg_base_addr);
|
|
#endif /* CCISS_DEBUG */
|
|
cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg base address index = %x\n", cfg_base_addr_index);
|
|
#endif /* CCISS_DEBUG */
|
|
if (cfg_base_addr_index == -1) {
|
|
printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg offset = %x\n", cfg_offset);
|
|
#endif /* CCISS_DEBUG */
|
|
c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
|
|
cfg_base_addr_index) +
|
|
cfg_offset, sizeof(CfgTable_struct));
|
|
c->board_id = board_id;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
print_cfg_table(c->cfgtable);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(products); i++) {
|
|
if (board_id == products[i].board_id) {
|
|
c->product_name = products[i].product_name;
|
|
c->access = *(products[i].access);
|
|
c->nr_cmds = products[i].nr_cmds;
|
|
break;
|
|
}
|
|
}
|
|
if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
|
|
(readb(&c->cfgtable->Signature[1]) != 'I') ||
|
|
(readb(&c->cfgtable->Signature[2]) != 'S') ||
|
|
(readb(&c->cfgtable->Signature[3]) != 'S')) {
|
|
printk("Does not appear to be a valid CISS config table\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
/* We didn't find the controller in our list. We know the
|
|
* signature is valid. If it's an HP device let's try to
|
|
* bind to the device and fire it up. Otherwise we bail.
|
|
*/
|
|
if (i == ARRAY_SIZE(products)) {
|
|
if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
|
|
c->product_name = products[i-1].product_name;
|
|
c->access = *(products[i-1].access);
|
|
c->nr_cmds = products[i-1].nr_cmds;
|
|
printk(KERN_WARNING "cciss: This is an unknown "
|
|
"Smart Array controller.\n"
|
|
"cciss: Please update to the latest driver "
|
|
"available from www.hp.com.\n");
|
|
} else {
|
|
printk(KERN_WARNING "cciss: Sorry, I don't know how"
|
|
" to access the Smart Array controller %08lx\n"
|
|
, (unsigned long)board_id);
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
}
|
|
#ifdef CONFIG_X86
|
|
{
|
|
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
|
|
__u32 prefetch;
|
|
prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
|
|
prefetch |= 0x100;
|
|
writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
|
|
}
|
|
#endif
|
|
|
|
/* Disabling DMA prefetch and refetch for the P600.
|
|
* An ASIC bug may result in accesses to invalid memory addresses.
|
|
* We've disabled prefetch for some time now. Testing with XEN
|
|
* kernels revealed a bug in the refetch if dom0 resides on a P600.
|
|
*/
|
|
if(board_id == 0x3225103C) {
|
|
__u32 dma_prefetch;
|
|
__u32 dma_refetch;
|
|
dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
|
|
dma_prefetch |= 0x8000;
|
|
writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
|
|
pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
|
|
dma_refetch |= 0x1;
|
|
pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("Trying to put board into Simple mode\n");
|
|
#endif /* CCISS_DEBUG */
|
|
c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
|
|
/* Update the field, and then ring the doorbell */
|
|
writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
|
|
writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
|
|
|
|
/* under certain very rare conditions, this can take awhile.
|
|
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
|
|
* as we enter this code.) */
|
|
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
|
|
if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(10);
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "I counter got to %d %x\n", i,
|
|
readl(c->vaddr + SA5_DOORBELL));
|
|
#endif /* CCISS_DEBUG */
|
|
#ifdef CCISS_DEBUG
|
|
print_cfg_table(c->cfgtable);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
|
|
printk(KERN_WARNING "cciss: unable to get board into"
|
|
" simple mode\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
return 0;
|
|
|
|
err_out_free_res:
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Gets information about the local volumes attached to the controller.
|
|
*/
|
|
static void cciss_getgeometry(int cntl_num)
|
|
{
|
|
ReportLunData_struct *ld_buff;
|
|
InquiryData_struct *inq_buff;
|
|
int return_code;
|
|
int i;
|
|
int listlength = 0;
|
|
__u32 lunid = 0;
|
|
unsigned block_size;
|
|
sector_t total_size;
|
|
|
|
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
|
|
if (ld_buff == NULL) {
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
return;
|
|
}
|
|
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (inq_buff == NULL) {
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
kfree(ld_buff);
|
|
return;
|
|
}
|
|
/* Get the firmware version */
|
|
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
|
|
sizeof(InquiryData_struct), 0, 0, 0, NULL,
|
|
TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
|
|
hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
|
|
hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
|
|
hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
|
|
} else { /* send command failed */
|
|
|
|
printk(KERN_WARNING "cciss: unable to determine firmware"
|
|
" version of controller\n");
|
|
}
|
|
/* Get the number of logical volumes */
|
|
return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
|
|
sizeof(ReportLunData_struct), 0, 0, 0, NULL,
|
|
TYPE_CMD);
|
|
|
|
if (return_code == IO_OK) {
|
|
#ifdef CCISS_DEBUG
|
|
printk("LUN Data\n--------------------------\n");
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
listlength |=
|
|
(0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
|
|
listlength |=
|
|
(0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
|
|
listlength |=
|
|
(0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
|
|
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
|
|
} else { /* reading number of logical volumes failed */
|
|
|
|
printk(KERN_WARNING "cciss: report logical volume"
|
|
" command failed\n");
|
|
listlength = 0;
|
|
}
|
|
hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
|
|
if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
|
|
printk(KERN_ERR
|
|
"ciss: only %d number of logical volumes supported\n",
|
|
CISS_MAX_LUN);
|
|
hba[cntl_num]->num_luns = CISS_MAX_LUN;
|
|
}
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
|
|
ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
|
|
ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
|
|
hba[cntl_num]->num_luns);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
|
|
for (i = 0; i < CISS_MAX_LUN; i++) {
|
|
if (i < hba[cntl_num]->num_luns) {
|
|
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
|
|
<< 24;
|
|
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
|
|
<< 16;
|
|
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
|
|
<< 8;
|
|
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
|
|
|
|
hba[cntl_num]->drv[i].LunID = lunid;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
|
|
ld_buff->LUN[i][0], ld_buff->LUN[i][1],
|
|
ld_buff->LUN[i][2], ld_buff->LUN[i][3],
|
|
hba[cntl_num]->drv[i].LunID);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
/* testing to see if 16-byte CDBs are already being used */
|
|
if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
|
|
cciss_read_capacity_16(cntl_num, i, 0,
|
|
&total_size, &block_size);
|
|
goto geo_inq;
|
|
}
|
|
cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
|
|
|
|
/* If read_capacity returns all F's the logical is >2TB */
|
|
/* so we switch to 16-byte CDBs for all read/write ops */
|
|
if(total_size == 0xFFFFFFFFULL) {
|
|
cciss_read_capacity_16(cntl_num, i, 0,
|
|
&total_size, &block_size);
|
|
hba[cntl_num]->cciss_read = CCISS_READ_16;
|
|
hba[cntl_num]->cciss_write = CCISS_WRITE_16;
|
|
} else {
|
|
hba[cntl_num]->cciss_read = CCISS_READ_10;
|
|
hba[cntl_num]->cciss_write = CCISS_WRITE_10;
|
|
}
|
|
geo_inq:
|
|
cciss_geometry_inquiry(cntl_num, i, 0, total_size,
|
|
block_size, inq_buff,
|
|
&hba[cntl_num]->drv[i]);
|
|
} else {
|
|
/* initialize raid_level to indicate a free space */
|
|
hba[cntl_num]->drv[i].raid_level = -1;
|
|
}
|
|
}
|
|
kfree(ld_buff);
|
|
kfree(inq_buff);
|
|
}
|
|
|
|
/* Function to find the first free pointer into our hba[] array */
|
|
/* Returns -1 if no free entries are left. */
|
|
static int alloc_cciss_hba(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_CTLR; i++) {
|
|
if (!hba[i]) {
|
|
ctlr_info_t *p;
|
|
|
|
p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
|
|
if (!p)
|
|
goto Enomem;
|
|
p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
|
|
if (!p->gendisk[0]) {
|
|
kfree(p);
|
|
goto Enomem;
|
|
}
|
|
hba[i] = p;
|
|
return i;
|
|
}
|
|
}
|
|
printk(KERN_WARNING "cciss: This driver supports a maximum"
|
|
" of %d controllers.\n", MAX_CTLR);
|
|
return -1;
|
|
Enomem:
|
|
printk(KERN_ERR "cciss: out of memory.\n");
|
|
return -1;
|
|
}
|
|
|
|
static void free_hba(int i)
|
|
{
|
|
ctlr_info_t *p = hba[i];
|
|
int n;
|
|
|
|
hba[i] = NULL;
|
|
for (n = 0; n < CISS_MAX_LUN; n++)
|
|
put_disk(p->gendisk[n]);
|
|
kfree(p);
|
|
}
|
|
|
|
/*
|
|
* This is it. Find all the controllers and register them. I really hate
|
|
* stealing all these major device numbers.
|
|
* returns the number of block devices registered.
|
|
*/
|
|
static int __devinit cciss_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int i;
|
|
int j = 0;
|
|
int rc;
|
|
int dac;
|
|
|
|
i = alloc_cciss_hba();
|
|
if (i < 0)
|
|
return -1;
|
|
|
|
hba[i]->busy_initializing = 1;
|
|
|
|
if (cciss_pci_init(hba[i], pdev) != 0)
|
|
goto clean1;
|
|
|
|
sprintf(hba[i]->devname, "cciss%d", i);
|
|
hba[i]->ctlr = i;
|
|
hba[i]->pdev = pdev;
|
|
|
|
/* configure PCI DMA stuff */
|
|
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
|
|
dac = 1;
|
|
else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
|
|
dac = 0;
|
|
else {
|
|
printk(KERN_ERR "cciss: no suitable DMA available\n");
|
|
goto clean1;
|
|
}
|
|
|
|
/*
|
|
* register with the major number, or get a dynamic major number
|
|
* by passing 0 as argument. This is done for greater than
|
|
* 8 controller support.
|
|
*/
|
|
if (i < MAX_CTLR_ORIG)
|
|
hba[i]->major = COMPAQ_CISS_MAJOR + i;
|
|
rc = register_blkdev(hba[i]->major, hba[i]->devname);
|
|
if (rc == -EBUSY || rc == -EINVAL) {
|
|
printk(KERN_ERR
|
|
"cciss: Unable to get major number %d for %s "
|
|
"on hba %d\n", hba[i]->major, hba[i]->devname, i);
|
|
goto clean1;
|
|
} else {
|
|
if (i >= MAX_CTLR_ORIG)
|
|
hba[i]->major = rc;
|
|
}
|
|
|
|
/* make sure the board interrupts are off */
|
|
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
|
|
if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
|
|
IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
|
|
printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
|
|
hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
|
|
goto clean2;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
|
|
hba[i]->devname, pdev->device, pci_name(pdev),
|
|
hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
|
|
|
|
hba[i]->cmd_pool_bits =
|
|
kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
|
|
1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
|
|
hba[i]->cmd_pool = (CommandList_struct *)
|
|
pci_alloc_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
&(hba[i]->cmd_pool_dhandle));
|
|
hba[i]->errinfo_pool = (ErrorInfo_struct *)
|
|
pci_alloc_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
&(hba[i]->errinfo_pool_dhandle));
|
|
if ((hba[i]->cmd_pool_bits == NULL)
|
|
|| (hba[i]->cmd_pool == NULL)
|
|
|| (hba[i]->errinfo_pool == NULL)) {
|
|
printk(KERN_ERR "cciss: out of memory");
|
|
goto clean4;
|
|
}
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
hba[i]->scsi_rejects.complete =
|
|
kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
|
|
(hba[i]->nr_cmds + 5), GFP_KERNEL);
|
|
if (hba[i]->scsi_rejects.complete == NULL) {
|
|
printk(KERN_ERR "cciss: out of memory");
|
|
goto clean4;
|
|
}
|
|
#endif
|
|
spin_lock_init(&hba[i]->lock);
|
|
|
|
/* Initialize the pdev driver private data.
|
|
have it point to hba[i]. */
|
|
pci_set_drvdata(pdev, hba[i]);
|
|
/* command and error info recs zeroed out before
|
|
they are used */
|
|
memset(hba[i]->cmd_pool_bits, 0,
|
|
((hba[i]->nr_cmds + BITS_PER_LONG -
|
|
1) / BITS_PER_LONG) * sizeof(unsigned long));
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
cciss_getgeometry(i);
|
|
|
|
cciss_scsi_setup(i);
|
|
|
|
/* Turn the interrupts on so we can service requests */
|
|
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
|
|
|
|
cciss_procinit(i);
|
|
|
|
hba[i]->cciss_max_sectors = 2048;
|
|
|
|
hba[i]->busy_initializing = 0;
|
|
|
|
do {
|
|
drive_info_struct *drv = &(hba[i]->drv[j]);
|
|
struct gendisk *disk = hba[i]->gendisk[j];
|
|
struct request_queue *q;
|
|
|
|
/* Check if the disk was allocated already */
|
|
if (!disk){
|
|
hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
|
|
disk = hba[i]->gendisk[j];
|
|
}
|
|
|
|
/* Check that the disk was able to be allocated */
|
|
if (!disk) {
|
|
printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
|
|
goto clean4;
|
|
}
|
|
|
|
q = blk_init_queue(do_cciss_request, &hba[i]->lock);
|
|
if (!q) {
|
|
printk(KERN_ERR
|
|
"cciss: unable to allocate queue for disk %d\n",
|
|
j);
|
|
goto clean4;
|
|
}
|
|
drv->queue = q;
|
|
|
|
blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
|
|
|
|
/* This is a hardware imposed limit. */
|
|
blk_queue_max_hw_segments(q, MAXSGENTRIES);
|
|
|
|
/* This is a limit in the driver and could be eliminated. */
|
|
blk_queue_max_phys_segments(q, MAXSGENTRIES);
|
|
|
|
blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
|
|
|
|
blk_queue_softirq_done(q, cciss_softirq_done);
|
|
|
|
q->queuedata = hba[i];
|
|
sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
|
|
disk->major = hba[i]->major;
|
|
disk->first_minor = j << NWD_SHIFT;
|
|
disk->fops = &cciss_fops;
|
|
disk->queue = q;
|
|
disk->private_data = drv;
|
|
disk->driverfs_dev = &pdev->dev;
|
|
/* we must register the controller even if no disks exist */
|
|
/* this is for the online array utilities */
|
|
if (!drv->heads && j)
|
|
continue;
|
|
blk_queue_hardsect_size(q, drv->block_size);
|
|
set_capacity(disk, drv->nr_blocks);
|
|
j++;
|
|
} while (j <= hba[i]->highest_lun);
|
|
|
|
/* Make sure all queue data is written out before */
|
|
/* interrupt handler, triggered by add_disk, */
|
|
/* is allowed to start them. */
|
|
wmb();
|
|
|
|
for (j = 0; j <= hba[i]->highest_lun; j++)
|
|
add_disk(hba[i]->gendisk[j]);
|
|
|
|
return 1;
|
|
|
|
clean4:
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
kfree(hba[i]->scsi_rejects.complete);
|
|
#endif
|
|
kfree(hba[i]->cmd_pool_bits);
|
|
if (hba[i]->cmd_pool)
|
|
pci_free_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
|
|
if (hba[i]->errinfo_pool)
|
|
pci_free_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
hba[i]->errinfo_pool,
|
|
hba[i]->errinfo_pool_dhandle);
|
|
free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
|
|
clean2:
|
|
unregister_blkdev(hba[i]->major, hba[i]->devname);
|
|
clean1:
|
|
hba[i]->busy_initializing = 0;
|
|
/* cleanup any queues that may have been initialized */
|
|
for (j=0; j <= hba[i]->highest_lun; j++){
|
|
drive_info_struct *drv = &(hba[i]->drv[j]);
|
|
if (drv->queue)
|
|
blk_cleanup_queue(drv->queue);
|
|
}
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_hba(i);
|
|
return -1;
|
|
}
|
|
|
|
static void cciss_shutdown(struct pci_dev *pdev)
|
|
{
|
|
ctlr_info_t *tmp_ptr;
|
|
int i;
|
|
char flush_buf[4];
|
|
int return_code;
|
|
|
|
tmp_ptr = pci_get_drvdata(pdev);
|
|
if (tmp_ptr == NULL)
|
|
return;
|
|
i = tmp_ptr->ctlr;
|
|
if (hba[i] == NULL)
|
|
return;
|
|
|
|
/* Turn board interrupts off and send the flush cache command */
|
|
/* sendcmd will turn off interrupt, and send the flush...
|
|
* To write all data in the battery backed cache to disks */
|
|
memset(flush_buf, 0, 4);
|
|
return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
|
|
TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
|
|
} else {
|
|
printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
|
|
}
|
|
free_irq(hba[i]->intr[2], hba[i]);
|
|
}
|
|
|
|
static void __devexit cciss_remove_one(struct pci_dev *pdev)
|
|
{
|
|
ctlr_info_t *tmp_ptr;
|
|
int i, j;
|
|
|
|
if (pci_get_drvdata(pdev) == NULL) {
|
|
printk(KERN_ERR "cciss: Unable to remove device \n");
|
|
return;
|
|
}
|
|
tmp_ptr = pci_get_drvdata(pdev);
|
|
i = tmp_ptr->ctlr;
|
|
if (hba[i] == NULL) {
|
|
printk(KERN_ERR "cciss: device appears to "
|
|
"already be removed \n");
|
|
return;
|
|
}
|
|
|
|
remove_proc_entry(hba[i]->devname, proc_cciss);
|
|
unregister_blkdev(hba[i]->major, hba[i]->devname);
|
|
|
|
/* remove it from the disk list */
|
|
for (j = 0; j < CISS_MAX_LUN; j++) {
|
|
struct gendisk *disk = hba[i]->gendisk[j];
|
|
if (disk) {
|
|
struct request_queue *q = disk->queue;
|
|
|
|
if (disk->flags & GENHD_FL_UP)
|
|
del_gendisk(disk);
|
|
if (q)
|
|
blk_cleanup_queue(q);
|
|
}
|
|
}
|
|
|
|
cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
|
|
|
|
cciss_shutdown(pdev);
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (hba[i]->msix_vector)
|
|
pci_disable_msix(hba[i]->pdev);
|
|
else if (hba[i]->msi_vector)
|
|
pci_disable_msi(hba[i]->pdev);
|
|
#endif /* CONFIG_PCI_MSI */
|
|
|
|
iounmap(hba[i]->vaddr);
|
|
|
|
pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
|
|
pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
|
|
kfree(hba[i]->cmd_pool_bits);
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
kfree(hba[i]->scsi_rejects.complete);
|
|
#endif
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_hba(i);
|
|
}
|
|
|
|
static struct pci_driver cciss_pci_driver = {
|
|
.name = "cciss",
|
|
.probe = cciss_init_one,
|
|
.remove = __devexit_p(cciss_remove_one),
|
|
.id_table = cciss_pci_device_id, /* id_table */
|
|
.shutdown = cciss_shutdown,
|
|
};
|
|
|
|
/*
|
|
* This is it. Register the PCI driver information for the cards we control
|
|
* the OS will call our registered routines when it finds one of our cards.
|
|
*/
|
|
static int __init cciss_init(void)
|
|
{
|
|
printk(KERN_INFO DRIVER_NAME "\n");
|
|
|
|
/* Register for our PCI devices */
|
|
return pci_register_driver(&cciss_pci_driver);
|
|
}
|
|
|
|
static void __exit cciss_cleanup(void)
|
|
{
|
|
int i;
|
|
|
|
pci_unregister_driver(&cciss_pci_driver);
|
|
/* double check that all controller entrys have been removed */
|
|
for (i = 0; i < MAX_CTLR; i++) {
|
|
if (hba[i] != NULL) {
|
|
printk(KERN_WARNING "cciss: had to remove"
|
|
" controller %d\n", i);
|
|
cciss_remove_one(hba[i]->pdev);
|
|
}
|
|
}
|
|
remove_proc_entry("driver/cciss", NULL);
|
|
}
|
|
|
|
static void fail_all_cmds(unsigned long ctlr)
|
|
{
|
|
/* If we get here, the board is apparently dead. */
|
|
ctlr_info_t *h = hba[ctlr];
|
|
CommandList_struct *c;
|
|
unsigned long flags;
|
|
|
|
printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
|
|
h->alive = 0; /* the controller apparently died... */
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
|
|
pci_disable_device(h->pdev); /* Make sure it is really dead. */
|
|
|
|
/* move everything off the request queue onto the completed queue */
|
|
while ((c = h->reqQ) != NULL) {
|
|
removeQ(&(h->reqQ), c);
|
|
h->Qdepth--;
|
|
addQ(&(h->cmpQ), c);
|
|
}
|
|
|
|
/* Now, fail everything on the completed queue with a HW error */
|
|
while ((c = h->cmpQ) != NULL) {
|
|
removeQ(&h->cmpQ, c);
|
|
c->err_info->CommandStatus = CMD_HARDWARE_ERR;
|
|
if (c->cmd_type == CMD_RWREQ) {
|
|
complete_command(h, c, 0);
|
|
} else if (c->cmd_type == CMD_IOCTL_PEND)
|
|
complete(c->waiting);
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
else if (c->cmd_type == CMD_SCSI)
|
|
complete_scsi_command(c, 0, 0);
|
|
#endif
|
|
}
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
return;
|
|
}
|
|
|
|
module_init(cciss_init);
|
|
module_exit(cciss_cleanup);
|