2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00
linux-next/arch/x86/crypto/camellia-aesni-avx2-asm_64.S
Jussi Kivilinna acfffdb803 crypto: camellia-aesni-avx2 - tune assembly code for more performance
Add implementation tuned for more performance on real hardware. Changes are
mostly around the part mixing 128-bit extract and insert instructions and
AES-NI instructions. Also 'vpbroadcastb' instructions have been change to
'vpshufb with zero mask'.

Tests on Intel Core i5-4570:

tcrypt ECB results, old-AVX2 vs new-AVX2:

size    128bit key      256bit key
        enc     dec     enc     dec
256     1.00x   1.00x   1.00x   1.00x
1k      1.08x   1.09x   1.05x   1.06x
8k      1.06x   1.06x   1.06x   1.06x

tcrypt ECB results, AVX vs new-AVX2:

size    128bit key      256bit key
        enc     dec     enc     dec
256     1.00x   1.00x   1.00x   1.00x
1k      1.51x   1.50x   1.52x   1.50x
8k      1.47x   1.48x   1.48x   1.48x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-06-21 14:44:23 +08:00

1387 lines
37 KiB
ArmAsm
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* x86_64/AVX2/AES-NI assembler implementation of Camellia
*
* Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/linkage.h>
#define CAMELLIA_TABLE_BYTE_LEN 272
/* struct camellia_ctx: */
#define key_table 0
#define key_length CAMELLIA_TABLE_BYTE_LEN
/* register macros */
#define CTX %rdi
#define RIO %r8
/**********************************************************************
helper macros
**********************************************************************/
#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
vpand x, mask4bit, tmp0; \
vpandn x, mask4bit, x; \
vpsrld $4, x, x; \
\
vpshufb tmp0, lo_t, tmp0; \
vpshufb x, hi_t, x; \
vpxor tmp0, x, x;
#define ymm0_x xmm0
#define ymm1_x xmm1
#define ymm2_x xmm2
#define ymm3_x xmm3
#define ymm4_x xmm4
#define ymm5_x xmm5
#define ymm6_x xmm6
#define ymm7_x xmm7
#define ymm8_x xmm8
#define ymm9_x xmm9
#define ymm10_x xmm10
#define ymm11_x xmm11
#define ymm12_x xmm12
#define ymm13_x xmm13
#define ymm14_x xmm14
#define ymm15_x xmm15
/**********************************************************************
32-way camellia
**********************************************************************/
/*
* IN:
* x0..x7: byte-sliced AB state
* mem_cd: register pointer storing CD state
* key: index for key material
* OUT:
* x0..x7: new byte-sliced CD state
*/
#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
t7, mem_cd, key) \
/* \
* S-function with AES subbytes \
*/ \
vbroadcasti128 .Linv_shift_row, t4; \
vpbroadcastd .L0f0f0f0f, t7; \
vbroadcasti128 .Lpre_tf_lo_s1, t5; \
vbroadcasti128 .Lpre_tf_hi_s1, t6; \
vbroadcasti128 .Lpre_tf_lo_s4, t2; \
vbroadcasti128 .Lpre_tf_hi_s4, t3; \
\
/* AES inverse shift rows */ \
vpshufb t4, x0, x0; \
vpshufb t4, x7, x7; \
vpshufb t4, x3, x3; \
vpshufb t4, x6, x6; \
vpshufb t4, x2, x2; \
vpshufb t4, x5, x5; \
vpshufb t4, x1, x1; \
vpshufb t4, x4, x4; \
\
/* prefilter sboxes 1, 2 and 3 */ \
/* prefilter sbox 4 */ \
filter_8bit(x0, t5, t6, t7, t4); \
filter_8bit(x7, t5, t6, t7, t4); \
vextracti128 $1, x0, t0##_x; \
vextracti128 $1, x7, t1##_x; \
filter_8bit(x3, t2, t3, t7, t4); \
filter_8bit(x6, t2, t3, t7, t4); \
vextracti128 $1, x3, t3##_x; \
vextracti128 $1, x6, t2##_x; \
filter_8bit(x2, t5, t6, t7, t4); \
filter_8bit(x5, t5, t6, t7, t4); \
filter_8bit(x1, t5, t6, t7, t4); \
filter_8bit(x4, t5, t6, t7, t4); \
\
vpxor t4##_x, t4##_x, t4##_x; \
\
/* AES subbytes + AES shift rows */ \
vextracti128 $1, x2, t6##_x; \
vextracti128 $1, x5, t5##_x; \
vaesenclast t4##_x, x0##_x, x0##_x; \
vaesenclast t4##_x, t0##_x, t0##_x; \
vinserti128 $1, t0##_x, x0, x0; \
vaesenclast t4##_x, x7##_x, x7##_x; \
vaesenclast t4##_x, t1##_x, t1##_x; \
vinserti128 $1, t1##_x, x7, x7; \
vaesenclast t4##_x, x3##_x, x3##_x; \
vaesenclast t4##_x, t3##_x, t3##_x; \
vinserti128 $1, t3##_x, x3, x3; \
vaesenclast t4##_x, x6##_x, x6##_x; \
vaesenclast t4##_x, t2##_x, t2##_x; \
vinserti128 $1, t2##_x, x6, x6; \
vextracti128 $1, x1, t3##_x; \
vextracti128 $1, x4, t2##_x; \
vbroadcasti128 .Lpost_tf_lo_s1, t0; \
vbroadcasti128 .Lpost_tf_hi_s1, t1; \
vaesenclast t4##_x, x2##_x, x2##_x; \
vaesenclast t4##_x, t6##_x, t6##_x; \
vinserti128 $1, t6##_x, x2, x2; \
vaesenclast t4##_x, x5##_x, x5##_x; \
vaesenclast t4##_x, t5##_x, t5##_x; \
vinserti128 $1, t5##_x, x5, x5; \
vaesenclast t4##_x, x1##_x, x1##_x; \
vaesenclast t4##_x, t3##_x, t3##_x; \
vinserti128 $1, t3##_x, x1, x1; \
vaesenclast t4##_x, x4##_x, x4##_x; \
vaesenclast t4##_x, t2##_x, t2##_x; \
vinserti128 $1, t2##_x, x4, x4; \
\
/* postfilter sboxes 1 and 4 */ \
vbroadcasti128 .Lpost_tf_lo_s3, t2; \
vbroadcasti128 .Lpost_tf_hi_s3, t3; \
filter_8bit(x0, t0, t1, t7, t6); \
filter_8bit(x7, t0, t1, t7, t6); \
filter_8bit(x3, t0, t1, t7, t6); \
filter_8bit(x6, t0, t1, t7, t6); \
\
/* postfilter sbox 3 */ \
vbroadcasti128 .Lpost_tf_lo_s2, t4; \
vbroadcasti128 .Lpost_tf_hi_s2, t5; \
filter_8bit(x2, t2, t3, t7, t6); \
filter_8bit(x5, t2, t3, t7, t6); \
\
vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
\
/* postfilter sbox 2 */ \
filter_8bit(x1, t4, t5, t7, t2); \
filter_8bit(x4, t4, t5, t7, t2); \
vpxor t7, t7, t7; \
\
vpsrldq $1, t0, t1; \
vpsrldq $2, t0, t2; \
vpshufb t7, t1, t1; \
vpsrldq $3, t0, t3; \
\
/* P-function */ \
vpxor x5, x0, x0; \
vpxor x6, x1, x1; \
vpxor x7, x2, x2; \
vpxor x4, x3, x3; \
\
vpshufb t7, t2, t2; \
vpsrldq $4, t0, t4; \
vpshufb t7, t3, t3; \
vpsrldq $5, t0, t5; \
vpshufb t7, t4, t4; \
\
vpxor x2, x4, x4; \
vpxor x3, x5, x5; \
vpxor x0, x6, x6; \
vpxor x1, x7, x7; \
\
vpsrldq $6, t0, t6; \
vpshufb t7, t5, t5; \
vpshufb t7, t6, t6; \
\
vpxor x7, x0, x0; \
vpxor x4, x1, x1; \
vpxor x5, x2, x2; \
vpxor x6, x3, x3; \
\
vpxor x3, x4, x4; \
vpxor x0, x5, x5; \
vpxor x1, x6, x6; \
vpxor x2, x7, x7; /* note: high and low parts swapped */ \
\
/* Add key material and result to CD (x becomes new CD) */ \
\
vpxor t6, x1, x1; \
vpxor 5 * 32(mem_cd), x1, x1; \
\
vpsrldq $7, t0, t6; \
vpshufb t7, t0, t0; \
vpshufb t7, t6, t7; \
\
vpxor t7, x0, x0; \
vpxor 4 * 32(mem_cd), x0, x0; \
\
vpxor t5, x2, x2; \
vpxor 6 * 32(mem_cd), x2, x2; \
\
vpxor t4, x3, x3; \
vpxor 7 * 32(mem_cd), x3, x3; \
\
vpxor t3, x4, x4; \
vpxor 0 * 32(mem_cd), x4, x4; \
\
vpxor t2, x5, x5; \
vpxor 1 * 32(mem_cd), x5, x5; \
\
vpxor t1, x6, x6; \
vpxor 2 * 32(mem_cd), x6, x6; \
\
vpxor t0, x7, x7; \
vpxor 3 * 32(mem_cd), x7, x7;
/*
* Size optimization... with inlined roundsm32 binary would be over 5 times
* larger and would only marginally faster.
*/
.align 8
roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
%rcx, (%r9));
ret;
ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
.align 8
roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
%ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
%rax, (%r9));
ret;
ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
/*
* IN/OUT:
* x0..x7: byte-sliced AB state preloaded
* mem_ab: byte-sliced AB state in memory
* mem_cb: byte-sliced CD state in memory
*/
#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
leaq (key_table + (i) * 8)(CTX), %r9; \
call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
\
vmovdqu x0, 4 * 32(mem_cd); \
vmovdqu x1, 5 * 32(mem_cd); \
vmovdqu x2, 6 * 32(mem_cd); \
vmovdqu x3, 7 * 32(mem_cd); \
vmovdqu x4, 0 * 32(mem_cd); \
vmovdqu x5, 1 * 32(mem_cd); \
vmovdqu x6, 2 * 32(mem_cd); \
vmovdqu x7, 3 * 32(mem_cd); \
\
leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
\
store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
/* Store new AB state */ \
vmovdqu x4, 4 * 32(mem_ab); \
vmovdqu x5, 5 * 32(mem_ab); \
vmovdqu x6, 6 * 32(mem_ab); \
vmovdqu x7, 7 * 32(mem_ab); \
vmovdqu x0, 0 * 32(mem_ab); \
vmovdqu x1, 1 * 32(mem_ab); \
vmovdqu x2, 2 * 32(mem_ab); \
vmovdqu x3, 3 * 32(mem_ab);
#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, i) \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, i) \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
/*
* IN:
* v0..3: byte-sliced 32-bit integers
* OUT:
* v0..3: (IN <<< 1)
*/
#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
vpcmpgtb v0, zero, t0; \
vpaddb v0, v0, v0; \
vpabsb t0, t0; \
\
vpcmpgtb v1, zero, t1; \
vpaddb v1, v1, v1; \
vpabsb t1, t1; \
\
vpcmpgtb v2, zero, t2; \
vpaddb v2, v2, v2; \
vpabsb t2, t2; \
\
vpor t0, v1, v1; \
\
vpcmpgtb v3, zero, t0; \
vpaddb v3, v3, v3; \
vpabsb t0, t0; \
\
vpor t1, v2, v2; \
vpor t2, v3, v3; \
vpor t0, v0, v0;
/*
* IN:
* r: byte-sliced AB state in memory
* l: byte-sliced CD state in memory
* OUT:
* x0..x7: new byte-sliced CD state
*/
#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
tt1, tt2, tt3, kll, klr, krl, krr) \
/* \
* t0 = kll; \
* t0 &= ll; \
* lr ^= rol32(t0, 1); \
*/ \
vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
vpxor tt0, tt0, tt0; \
vpshufb tt0, t0, t3; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t2; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t1; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t0; \
\
vpand l0, t0, t0; \
vpand l1, t1, t1; \
vpand l2, t2, t2; \
vpand l3, t3, t3; \
\
rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
\
vpxor l4, t0, l4; \
vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
vmovdqu l4, 4 * 32(l); \
vpxor l5, t1, l5; \
vmovdqu l5, 5 * 32(l); \
vpxor l6, t2, l6; \
vmovdqu l6, 6 * 32(l); \
vpxor l7, t3, l7; \
vmovdqu l7, 7 * 32(l); \
\
/* \
* t2 = krr; \
* t2 |= rr; \
* rl ^= t2; \
*/ \
\
vpshufb tt0, t0, t3; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t2; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t1; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t0; \
\
vpor 4 * 32(r), t0, t0; \
vpor 5 * 32(r), t1, t1; \
vpor 6 * 32(r), t2, t2; \
vpor 7 * 32(r), t3, t3; \
\
vpxor 0 * 32(r), t0, t0; \
vpxor 1 * 32(r), t1, t1; \
vpxor 2 * 32(r), t2, t2; \
vpxor 3 * 32(r), t3, t3; \
vmovdqu t0, 0 * 32(r); \
vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
vmovdqu t1, 1 * 32(r); \
vmovdqu t2, 2 * 32(r); \
vmovdqu t3, 3 * 32(r); \
\
/* \
* t2 = krl; \
* t2 &= rl; \
* rr ^= rol32(t2, 1); \
*/ \
vpshufb tt0, t0, t3; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t2; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t1; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t0; \
\
vpand 0 * 32(r), t0, t0; \
vpand 1 * 32(r), t1, t1; \
vpand 2 * 32(r), t2, t2; \
vpand 3 * 32(r), t3, t3; \
\
rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
\
vpxor 4 * 32(r), t0, t0; \
vpxor 5 * 32(r), t1, t1; \
vpxor 6 * 32(r), t2, t2; \
vpxor 7 * 32(r), t3, t3; \
vmovdqu t0, 4 * 32(r); \
vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
vmovdqu t1, 5 * 32(r); \
vmovdqu t2, 6 * 32(r); \
vmovdqu t3, 7 * 32(r); \
\
/* \
* t0 = klr; \
* t0 |= lr; \
* ll ^= t0; \
*/ \
\
vpshufb tt0, t0, t3; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t2; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t1; \
vpsrldq $1, t0, t0; \
vpshufb tt0, t0, t0; \
\
vpor l4, t0, t0; \
vpor l5, t1, t1; \
vpor l6, t2, t2; \
vpor l7, t3, t3; \
\
vpxor l0, t0, l0; \
vmovdqu l0, 0 * 32(l); \
vpxor l1, t1, l1; \
vmovdqu l1, 1 * 32(l); \
vpxor l2, t2, l2; \
vmovdqu l2, 2 * 32(l); \
vpxor l3, t3, l3; \
vmovdqu l3, 3 * 32(l);
#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
vpunpckhdq x1, x0, t2; \
vpunpckldq x1, x0, x0; \
\
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x2; \
\
vpunpckhqdq t1, x0, x1; \
vpunpcklqdq t1, x0, x0; \
\
vpunpckhqdq x2, t2, x3; \
vpunpcklqdq x2, t2, x2;
#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
a3, b3, c3, d3, st0, st1) \
vmovdqu d2, st0; \
vmovdqu d3, st1; \
transpose_4x4(a0, a1, a2, a3, d2, d3); \
transpose_4x4(b0, b1, b2, b3, d2, d3); \
vmovdqu st0, d2; \
vmovdqu st1, d3; \
\
vmovdqu a0, st0; \
vmovdqu a1, st1; \
transpose_4x4(c0, c1, c2, c3, a0, a1); \
transpose_4x4(d0, d1, d2, d3, a0, a1); \
\
vbroadcasti128 .Lshufb_16x16b, a0; \
vmovdqu st1, a1; \
vpshufb a0, a2, a2; \
vpshufb a0, a3, a3; \
vpshufb a0, b0, b0; \
vpshufb a0, b1, b1; \
vpshufb a0, b2, b2; \
vpshufb a0, b3, b3; \
vpshufb a0, a1, a1; \
vpshufb a0, c0, c0; \
vpshufb a0, c1, c1; \
vpshufb a0, c2, c2; \
vpshufb a0, c3, c3; \
vpshufb a0, d0, d0; \
vpshufb a0, d1, d1; \
vpshufb a0, d2, d2; \
vpshufb a0, d3, d3; \
vmovdqu d3, st1; \
vmovdqu st0, d3; \
vpshufb a0, d3, a0; \
vmovdqu d2, st0; \
\
transpose_4x4(a0, b0, c0, d0, d2, d3); \
transpose_4x4(a1, b1, c1, d1, d2, d3); \
vmovdqu st0, d2; \
vmovdqu st1, d3; \
\
vmovdqu b0, st0; \
vmovdqu b1, st1; \
transpose_4x4(a2, b2, c2, d2, b0, b1); \
transpose_4x4(a3, b3, c3, d3, b0, b1); \
vmovdqu st0, b0; \
vmovdqu st1, b1; \
/* does not adjust output bytes inside vectors */
/* load blocks to registers and apply pre-whitening */
#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, rio, key) \
vpbroadcastq key, x0; \
vpshufb .Lpack_bswap, x0, x0; \
\
vpxor 0 * 32(rio), x0, y7; \
vpxor 1 * 32(rio), x0, y6; \
vpxor 2 * 32(rio), x0, y5; \
vpxor 3 * 32(rio), x0, y4; \
vpxor 4 * 32(rio), x0, y3; \
vpxor 5 * 32(rio), x0, y2; \
vpxor 6 * 32(rio), x0, y1; \
vpxor 7 * 32(rio), x0, y0; \
vpxor 8 * 32(rio), x0, x7; \
vpxor 9 * 32(rio), x0, x6; \
vpxor 10 * 32(rio), x0, x5; \
vpxor 11 * 32(rio), x0, x4; \
vpxor 12 * 32(rio), x0, x3; \
vpxor 13 * 32(rio), x0, x2; \
vpxor 14 * 32(rio), x0, x1; \
vpxor 15 * 32(rio), x0, x0;
/* byteslice pre-whitened blocks and store to temporary memory */
#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, mem_ab, mem_cd) \
byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
y4, y5, y6, y7, (mem_ab), (mem_cd)); \
\
vmovdqu x0, 0 * 32(mem_ab); \
vmovdqu x1, 1 * 32(mem_ab); \
vmovdqu x2, 2 * 32(mem_ab); \
vmovdqu x3, 3 * 32(mem_ab); \
vmovdqu x4, 4 * 32(mem_ab); \
vmovdqu x5, 5 * 32(mem_ab); \
vmovdqu x6, 6 * 32(mem_ab); \
vmovdqu x7, 7 * 32(mem_ab); \
vmovdqu y0, 0 * 32(mem_cd); \
vmovdqu y1, 1 * 32(mem_cd); \
vmovdqu y2, 2 * 32(mem_cd); \
vmovdqu y3, 3 * 32(mem_cd); \
vmovdqu y4, 4 * 32(mem_cd); \
vmovdqu y5, 5 * 32(mem_cd); \
vmovdqu y6, 6 * 32(mem_cd); \
vmovdqu y7, 7 * 32(mem_cd);
/* de-byteslice, apply post-whitening and store blocks */
#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
y5, y6, y7, key, stack_tmp0, stack_tmp1) \
byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
\
vmovdqu x0, stack_tmp0; \
\
vpbroadcastq key, x0; \
vpshufb .Lpack_bswap, x0, x0; \
\
vpxor x0, y7, y7; \
vpxor x0, y6, y6; \
vpxor x0, y5, y5; \
vpxor x0, y4, y4; \
vpxor x0, y3, y3; \
vpxor x0, y2, y2; \
vpxor x0, y1, y1; \
vpxor x0, y0, y0; \
vpxor x0, x7, x7; \
vpxor x0, x6, x6; \
vpxor x0, x5, x5; \
vpxor x0, x4, x4; \
vpxor x0, x3, x3; \
vpxor x0, x2, x2; \
vpxor x0, x1, x1; \
vpxor stack_tmp0, x0, x0;
#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
y6, y7, rio) \
vmovdqu x0, 0 * 32(rio); \
vmovdqu x1, 1 * 32(rio); \
vmovdqu x2, 2 * 32(rio); \
vmovdqu x3, 3 * 32(rio); \
vmovdqu x4, 4 * 32(rio); \
vmovdqu x5, 5 * 32(rio); \
vmovdqu x6, 6 * 32(rio); \
vmovdqu x7, 7 * 32(rio); \
vmovdqu y0, 8 * 32(rio); \
vmovdqu y1, 9 * 32(rio); \
vmovdqu y2, 10 * 32(rio); \
vmovdqu y3, 11 * 32(rio); \
vmovdqu y4, 12 * 32(rio); \
vmovdqu y5, 13 * 32(rio); \
vmovdqu y6, 14 * 32(rio); \
vmovdqu y7, 15 * 32(rio);
.data
.align 32
#define SHUFB_BYTES(idx) \
0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
.Lshufb_16x16b:
.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
.Lpack_bswap:
.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
/* For CTR-mode IV byteswap */
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
/* For XTS mode */
.Lxts_gf128mul_and_shl1_mask_0:
.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
.Lxts_gf128mul_and_shl1_mask_1:
.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
/*
* pre-SubByte transform
*
* pre-lookup for sbox1, sbox2, sbox3:
* swap_bitendianness(
* isom_map_camellia_to_aes(
* camellia_f(
* swap_bitendianess(in)
* )
* )
* )
*
* (note: ' 0xc5' inside camellia_f())
*/
.Lpre_tf_lo_s1:
.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
.Lpre_tf_hi_s1:
.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
/*
* pre-SubByte transform
*
* pre-lookup for sbox4:
* swap_bitendianness(
* isom_map_camellia_to_aes(
* camellia_f(
* swap_bitendianess(in <<< 1)
* )
* )
* )
*
* (note: ' 0xc5' inside camellia_f())
*/
.Lpre_tf_lo_s4:
.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
.Lpre_tf_hi_s4:
.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
/*
* post-SubByte transform
*
* post-lookup for sbox1, sbox4:
* swap_bitendianness(
* camellia_h(
* isom_map_aes_to_camellia(
* swap_bitendianness(
* aes_inverse_affine_transform(in)
* )
* )
* )
* )
*
* (note: ' 0x6e' inside camellia_h())
*/
.Lpost_tf_lo_s1:
.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
.Lpost_tf_hi_s1:
.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
/*
* post-SubByte transform
*
* post-lookup for sbox2:
* swap_bitendianness(
* camellia_h(
* isom_map_aes_to_camellia(
* swap_bitendianness(
* aes_inverse_affine_transform(in)
* )
* )
* )
* ) <<< 1
*
* (note: ' 0x6e' inside camellia_h())
*/
.Lpost_tf_lo_s2:
.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
.Lpost_tf_hi_s2:
.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
/*
* post-SubByte transform
*
* post-lookup for sbox3:
* swap_bitendianness(
* camellia_h(
* isom_map_aes_to_camellia(
* swap_bitendianness(
* aes_inverse_affine_transform(in)
* )
* )
* )
* ) >>> 1
*
* (note: ' 0x6e' inside camellia_h())
*/
.Lpost_tf_lo_s3:
.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
.Lpost_tf_hi_s3:
.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
/* For isolating SubBytes from AESENCLAST, inverse shift row */
.Linv_shift_row:
.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
.align 4
/* 4-bit mask */
.L0f0f0f0f:
.long 0x0f0f0f0f
.text
.align 8
__camellia_enc_blk32:
/* input:
* %rdi: ctx, CTX
* %rax: temporary storage, 512 bytes
* %ymm0..%ymm15: 32 plaintext blocks
* output:
* %ymm0..%ymm15: 32 encrypted blocks, order swapped:
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
*/
leaq 8 * 32(%rax), %rcx;
inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx);
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 0);
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (8) * 8) + 0)(CTX),
((key_table + (8) * 8) + 4)(CTX),
((key_table + (8) * 8) + 8)(CTX),
((key_table + (8) * 8) + 12)(CTX));
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 8);
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (16) * 8) + 0)(CTX),
((key_table + (16) * 8) + 4)(CTX),
((key_table + (16) * 8) + 8)(CTX),
((key_table + (16) * 8) + 12)(CTX));
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 16);
movl $24, %r8d;
cmpl $16, key_length(CTX);
jne .Lenc_max32;
.Lenc_done:
/* load CD for output */
vmovdqu 0 * 32(%rcx), %ymm8;
vmovdqu 1 * 32(%rcx), %ymm9;
vmovdqu 2 * 32(%rcx), %ymm10;
vmovdqu 3 * 32(%rcx), %ymm11;
vmovdqu 4 * 32(%rcx), %ymm12;
vmovdqu 5 * 32(%rcx), %ymm13;
vmovdqu 6 * 32(%rcx), %ymm14;
vmovdqu 7 * 32(%rcx), %ymm15;
outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
ret;
.align 8
.Lenc_max32:
movl $32, %r8d;
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (24) * 8) + 0)(CTX),
((key_table + (24) * 8) + 4)(CTX),
((key_table + (24) * 8) + 8)(CTX),
((key_table + (24) * 8) + 12)(CTX));
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 24);
jmp .Lenc_done;
ENDPROC(__camellia_enc_blk32)
.align 8
__camellia_dec_blk32:
/* input:
* %rdi: ctx, CTX
* %rax: temporary storage, 512 bytes
* %r8d: 24 for 16 byte key, 32 for larger
* %ymm0..%ymm15: 16 encrypted blocks
* output:
* %ymm0..%ymm15: 16 plaintext blocks, order swapped:
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
*/
leaq 8 * 32(%rax), %rcx;
inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx);
cmpl $32, %r8d;
je .Ldec_max32;
.Ldec_max24:
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 16);
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (16) * 8) + 8)(CTX),
((key_table + (16) * 8) + 12)(CTX),
((key_table + (16) * 8) + 0)(CTX),
((key_table + (16) * 8) + 4)(CTX));
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 8);
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (8) * 8) + 8)(CTX),
((key_table + (8) * 8) + 12)(CTX),
((key_table + (8) * 8) + 0)(CTX),
((key_table + (8) * 8) + 4)(CTX));
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 0);
/* load CD for output */
vmovdqu 0 * 32(%rcx), %ymm8;
vmovdqu 1 * 32(%rcx), %ymm9;
vmovdqu 2 * 32(%rcx), %ymm10;
vmovdqu 3 * 32(%rcx), %ymm11;
vmovdqu 4 * 32(%rcx), %ymm12;
vmovdqu 5 * 32(%rcx), %ymm13;
vmovdqu 6 * 32(%rcx), %ymm14;
vmovdqu 7 * 32(%rcx), %ymm15;
outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
ret;
.align 8
.Ldec_max32:
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rax, %rcx, 24);
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15,
((key_table + (24) * 8) + 8)(CTX),
((key_table + (24) * 8) + 12)(CTX),
((key_table + (24) * 8) + 0)(CTX),
((key_table + (24) * 8) + 4)(CTX));
jmp .Ldec_max24;
ENDPROC(__camellia_dec_blk32)
ENTRY(camellia_ecb_enc_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
*/
vzeroupper;
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rdx, (key_table)(CTX));
/* now dst can be used as temporary buffer (even in src == dst case) */
movq %rsi, %rax;
call __camellia_enc_blk32;
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
%ymm8, %rsi);
vzeroupper;
ret;
ENDPROC(camellia_ecb_enc_32way)
ENTRY(camellia_ecb_dec_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
*/
vzeroupper;
cmpl $16, key_length(CTX);
movl $32, %r8d;
movl $24, %eax;
cmovel %eax, %r8d; /* max */
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rdx, (key_table)(CTX, %r8, 8));
/* now dst can be used as temporary buffer (even in src == dst case) */
movq %rsi, %rax;
call __camellia_dec_blk32;
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
%ymm8, %rsi);
vzeroupper;
ret;
ENDPROC(camellia_ecb_dec_32way)
ENTRY(camellia_cbc_dec_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
*/
vzeroupper;
cmpl $16, key_length(CTX);
movl $32, %r8d;
movl $24, %eax;
cmovel %eax, %r8d; /* max */
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
%ymm15, %rdx, (key_table)(CTX, %r8, 8));
movq %rsp, %r10;
cmpq %rsi, %rdx;
je .Lcbc_dec_use_stack;
/* dst can be used as temporary storage, src is not overwritten. */
movq %rsi, %rax;
jmp .Lcbc_dec_continue;
.Lcbc_dec_use_stack:
/*
* dst still in-use (because dst == src), so use stack for temporary
* storage.
*/
subq $(16 * 32), %rsp;
movq %rsp, %rax;
.Lcbc_dec_continue:
call __camellia_dec_blk32;
vmovdqu %ymm7, (%rax);
vpxor %ymm7, %ymm7, %ymm7;
vinserti128 $1, (%rdx), %ymm7, %ymm7;
vpxor (%rax), %ymm7, %ymm7;
movq %r10, %rsp;
vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
%ymm8, %rsi);
vzeroupper;
ret;
ENDPROC(camellia_cbc_dec_32way)
#define inc_le128(x, minus_one, tmp) \
vpcmpeqq minus_one, x, tmp; \
vpsubq minus_one, x, x; \
vpslldq $8, tmp, tmp; \
vpsubq tmp, x, x;
#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
vpcmpeqq minus_one, x, tmp1; \
vpcmpeqq minus_two, x, tmp2; \
vpsubq minus_two, x, x; \
vpor tmp2, tmp1, tmp1; \
vpslldq $8, tmp1, tmp1; \
vpsubq tmp1, x, x;
ENTRY(camellia_ctr_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
* %rcx: iv (little endian, 128bit)
*/
vzeroupper;
movq %rsp, %r10;
cmpq %rsi, %rdx;
je .Lctr_use_stack;
/* dst can be used as temporary storage, src is not overwritten. */
movq %rsi, %rax;
jmp .Lctr_continue;
.Lctr_use_stack:
subq $(16 * 32), %rsp;
movq %rsp, %rax;
.Lctr_continue:
vpcmpeqd %ymm15, %ymm15, %ymm15;
vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
/* load IV and byteswap */
vmovdqu (%rcx), %xmm0;
vmovdqa %xmm0, %xmm1;
inc_le128(%xmm0, %xmm15, %xmm14);
vbroadcasti128 .Lbswap128_mask, %ymm14;
vinserti128 $1, %xmm0, %ymm1, %ymm0;
vpshufb %ymm14, %ymm0, %ymm13;
vmovdqu %ymm13, 15 * 32(%rax);
/* construct IVs */
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
vpshufb %ymm14, %ymm0, %ymm13;
vmovdqu %ymm13, 14 * 32(%rax);
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm13;
vmovdqu %ymm13, 13 * 32(%rax);
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm13;
vmovdqu %ymm13, 12 * 32(%rax);
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm13;
vmovdqu %ymm13, 11 * 32(%rax);
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm10;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm9;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm8;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm7;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm6;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm5;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm4;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm3;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm2;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vpshufb %ymm14, %ymm0, %ymm1;
add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
vextracti128 $1, %ymm0, %xmm13;
vpshufb %ymm14, %ymm0, %ymm0;
inc_le128(%xmm13, %xmm15, %xmm14);
vmovdqu %xmm13, (%rcx);
/* inpack32_pre: */
vpbroadcastq (key_table)(CTX), %ymm15;
vpshufb .Lpack_bswap, %ymm15, %ymm15;
vpxor %ymm0, %ymm15, %ymm0;
vpxor %ymm1, %ymm15, %ymm1;
vpxor %ymm2, %ymm15, %ymm2;
vpxor %ymm3, %ymm15, %ymm3;
vpxor %ymm4, %ymm15, %ymm4;
vpxor %ymm5, %ymm15, %ymm5;
vpxor %ymm6, %ymm15, %ymm6;
vpxor %ymm7, %ymm15, %ymm7;
vpxor %ymm8, %ymm15, %ymm8;
vpxor %ymm9, %ymm15, %ymm9;
vpxor %ymm10, %ymm15, %ymm10;
vpxor 11 * 32(%rax), %ymm15, %ymm11;
vpxor 12 * 32(%rax), %ymm15, %ymm12;
vpxor 13 * 32(%rax), %ymm15, %ymm13;
vpxor 14 * 32(%rax), %ymm15, %ymm14;
vpxor 15 * 32(%rax), %ymm15, %ymm15;
call __camellia_enc_blk32;
movq %r10, %rsp;
vpxor 0 * 32(%rdx), %ymm7, %ymm7;
vpxor 1 * 32(%rdx), %ymm6, %ymm6;
vpxor 2 * 32(%rdx), %ymm5, %ymm5;
vpxor 3 * 32(%rdx), %ymm4, %ymm4;
vpxor 4 * 32(%rdx), %ymm3, %ymm3;
vpxor 5 * 32(%rdx), %ymm2, %ymm2;
vpxor 6 * 32(%rdx), %ymm1, %ymm1;
vpxor 7 * 32(%rdx), %ymm0, %ymm0;
vpxor 8 * 32(%rdx), %ymm15, %ymm15;
vpxor 9 * 32(%rdx), %ymm14, %ymm14;
vpxor 10 * 32(%rdx), %ymm13, %ymm13;
vpxor 11 * 32(%rdx), %ymm12, %ymm12;
vpxor 12 * 32(%rdx), %ymm11, %ymm11;
vpxor 13 * 32(%rdx), %ymm10, %ymm10;
vpxor 14 * 32(%rdx), %ymm9, %ymm9;
vpxor 15 * 32(%rdx), %ymm8, %ymm8;
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
%ymm8, %rsi);
vzeroupper;
ret;
ENDPROC(camellia_ctr_32way)
#define gf128mul_x_ble(iv, mask, tmp) \
vpsrad $31, iv, tmp; \
vpaddq iv, iv, iv; \
vpshufd $0x13, tmp, tmp; \
vpand mask, tmp, tmp; \
vpxor tmp, iv, iv;
#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
vpsrad $31, iv, tmp0; \
vpaddq iv, iv, tmp1; \
vpsllq $2, iv, iv; \
vpshufd $0x13, tmp0, tmp0; \
vpsrad $31, tmp1, tmp1; \
vpand mask2, tmp0, tmp0; \
vpshufd $0x13, tmp1, tmp1; \
vpxor tmp0, iv, iv; \
vpand mask1, tmp1, tmp1; \
vpxor tmp1, iv, iv;
.align 8
camellia_xts_crypt_32way:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
* %rcx: iv (t α GF(2¹²))
* %r8: index for input whitening key
* %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32
*/
vzeroupper;
subq $(16 * 32), %rsp;
movq %rsp, %rax;
vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
/* load IV and construct second IV */
vmovdqu (%rcx), %xmm0;
vmovdqa %xmm0, %xmm15;
gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
vinserti128 $1, %xmm0, %ymm15, %ymm0;
vpxor 0 * 32(%rdx), %ymm0, %ymm15;
vmovdqu %ymm15, 15 * 32(%rax);
vmovdqu %ymm0, 0 * 32(%rsi);
/* construct IVs */
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 1 * 32(%rdx), %ymm0, %ymm15;
vmovdqu %ymm15, 14 * 32(%rax);
vmovdqu %ymm0, 1 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 2 * 32(%rdx), %ymm0, %ymm15;
vmovdqu %ymm15, 13 * 32(%rax);
vmovdqu %ymm0, 2 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 3 * 32(%rdx), %ymm0, %ymm15;
vmovdqu %ymm15, 12 * 32(%rax);
vmovdqu %ymm0, 3 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 4 * 32(%rdx), %ymm0, %ymm11;
vmovdqu %ymm0, 4 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 5 * 32(%rdx), %ymm0, %ymm10;
vmovdqu %ymm0, 5 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 6 * 32(%rdx), %ymm0, %ymm9;
vmovdqu %ymm0, 6 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 7 * 32(%rdx), %ymm0, %ymm8;
vmovdqu %ymm0, 7 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 8 * 32(%rdx), %ymm0, %ymm7;
vmovdqu %ymm0, 8 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 9 * 32(%rdx), %ymm0, %ymm6;
vmovdqu %ymm0, 9 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 10 * 32(%rdx), %ymm0, %ymm5;
vmovdqu %ymm0, 10 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 11 * 32(%rdx), %ymm0, %ymm4;
vmovdqu %ymm0, 11 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 12 * 32(%rdx), %ymm0, %ymm3;
vmovdqu %ymm0, 12 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 13 * 32(%rdx), %ymm0, %ymm2;
vmovdqu %ymm0, 13 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 14 * 32(%rdx), %ymm0, %ymm1;
vmovdqu %ymm0, 14 * 32(%rsi);
gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
vpxor 15 * 32(%rdx), %ymm0, %ymm15;
vmovdqu %ymm15, 0 * 32(%rax);
vmovdqu %ymm0, 15 * 32(%rsi);
vextracti128 $1, %ymm0, %xmm0;
gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
vmovdqu %xmm0, (%rcx);
/* inpack32_pre: */
vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
vpshufb .Lpack_bswap, %ymm15, %ymm15;
vpxor 0 * 32(%rax), %ymm15, %ymm0;
vpxor %ymm1, %ymm15, %ymm1;
vpxor %ymm2, %ymm15, %ymm2;
vpxor %ymm3, %ymm15, %ymm3;
vpxor %ymm4, %ymm15, %ymm4;
vpxor %ymm5, %ymm15, %ymm5;
vpxor %ymm6, %ymm15, %ymm6;
vpxor %ymm7, %ymm15, %ymm7;
vpxor %ymm8, %ymm15, %ymm8;
vpxor %ymm9, %ymm15, %ymm9;
vpxor %ymm10, %ymm15, %ymm10;
vpxor %ymm11, %ymm15, %ymm11;
vpxor 12 * 32(%rax), %ymm15, %ymm12;
vpxor 13 * 32(%rax), %ymm15, %ymm13;
vpxor 14 * 32(%rax), %ymm15, %ymm14;
vpxor 15 * 32(%rax), %ymm15, %ymm15;
call *%r9;
addq $(16 * 32), %rsp;
vpxor 0 * 32(%rsi), %ymm7, %ymm7;
vpxor 1 * 32(%rsi), %ymm6, %ymm6;
vpxor 2 * 32(%rsi), %ymm5, %ymm5;
vpxor 3 * 32(%rsi), %ymm4, %ymm4;
vpxor 4 * 32(%rsi), %ymm3, %ymm3;
vpxor 5 * 32(%rsi), %ymm2, %ymm2;
vpxor 6 * 32(%rsi), %ymm1, %ymm1;
vpxor 7 * 32(%rsi), %ymm0, %ymm0;
vpxor 8 * 32(%rsi), %ymm15, %ymm15;
vpxor 9 * 32(%rsi), %ymm14, %ymm14;
vpxor 10 * 32(%rsi), %ymm13, %ymm13;
vpxor 11 * 32(%rsi), %ymm12, %ymm12;
vpxor 12 * 32(%rsi), %ymm11, %ymm11;
vpxor 13 * 32(%rsi), %ymm10, %ymm10;
vpxor 14 * 32(%rsi), %ymm9, %ymm9;
vpxor 15 * 32(%rsi), %ymm8, %ymm8;
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
%ymm8, %rsi);
vzeroupper;
ret;
ENDPROC(camellia_xts_crypt_32way)
ENTRY(camellia_xts_enc_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
* %rcx: iv (t α GF(2¹²))
*/
xorl %r8d, %r8d; /* input whitening key, 0 for enc */
leaq __camellia_enc_blk32, %r9;
jmp camellia_xts_crypt_32way;
ENDPROC(camellia_xts_enc_32way)
ENTRY(camellia_xts_dec_32way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (32 blocks)
* %rdx: src (32 blocks)
* %rcx: iv (t α GF(2¹²))
*/
cmpl $16, key_length(CTX);
movl $32, %r8d;
movl $24, %eax;
cmovel %eax, %r8d; /* input whitening key, last for dec */
leaq __camellia_dec_blk32, %r9;
jmp camellia_xts_crypt_32way;
ENDPROC(camellia_xts_dec_32way)