mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
b2f9fa1f3b
The ceph_cap_flush structures are usually dynamically allocated, but the ceph_cap_snap has an embedded one. When force umounting, the client will try to remove all the session caps. During this, it will free them, but that should not be done with the ones embedded in a capsnap. Fix this by adding a new boolean that indicates that the cap flush is embedded in a capsnap, and skip freeing it if that's set. At the same time, switch to using list_del_init() when detaching the i_list and g_list heads. It's possible for a forced umount to remove these objects but then handle_cap_flushsnap_ack() races in and does the list_del_init() again, corrupting memory. Cc: stable@vger.kernel.org URL: https://tracker.ceph.com/issues/52283 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
1181 lines
32 KiB
C
1181 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/ceph/ceph_debug.h>
|
|
|
|
#include <linux/sort.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/iversion.h>
|
|
#include "super.h"
|
|
#include "mds_client.h"
|
|
#include <linux/ceph/decode.h>
|
|
|
|
/* unused map expires after 5 minutes */
|
|
#define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
|
|
|
|
/*
|
|
* Snapshots in ceph are driven in large part by cooperation from the
|
|
* client. In contrast to local file systems or file servers that
|
|
* implement snapshots at a single point in the system, ceph's
|
|
* distributed access to storage requires clients to help decide
|
|
* whether a write logically occurs before or after a recently created
|
|
* snapshot.
|
|
*
|
|
* This provides a perfect instantanous client-wide snapshot. Between
|
|
* clients, however, snapshots may appear to be applied at slightly
|
|
* different points in time, depending on delays in delivering the
|
|
* snapshot notification.
|
|
*
|
|
* Snapshots are _not_ file system-wide. Instead, each snapshot
|
|
* applies to the subdirectory nested beneath some directory. This
|
|
* effectively divides the hierarchy into multiple "realms," where all
|
|
* of the files contained by each realm share the same set of
|
|
* snapshots. An individual realm's snap set contains snapshots
|
|
* explicitly created on that realm, as well as any snaps in its
|
|
* parent's snap set _after_ the point at which the parent became it's
|
|
* parent (due to, say, a rename). Similarly, snaps from prior parents
|
|
* during the time intervals during which they were the parent are included.
|
|
*
|
|
* The client is spared most of this detail, fortunately... it must only
|
|
* maintains a hierarchy of realms reflecting the current parent/child
|
|
* realm relationship, and for each realm has an explicit list of snaps
|
|
* inherited from prior parents.
|
|
*
|
|
* A snap_realm struct is maintained for realms containing every inode
|
|
* with an open cap in the system. (The needed snap realm information is
|
|
* provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
|
|
* version number is used to ensure that as realm parameters change (new
|
|
* snapshot, new parent, etc.) the client's realm hierarchy is updated.
|
|
*
|
|
* The realm hierarchy drives the generation of a 'snap context' for each
|
|
* realm, which simply lists the resulting set of snaps for the realm. This
|
|
* is attached to any writes sent to OSDs.
|
|
*/
|
|
/*
|
|
* Unfortunately error handling is a bit mixed here. If we get a snap
|
|
* update, but don't have enough memory to update our realm hierarchy,
|
|
* it's not clear what we can do about it (besides complaining to the
|
|
* console).
|
|
*/
|
|
|
|
|
|
/*
|
|
* increase ref count for the realm
|
|
*
|
|
* caller must hold snap_rwsem.
|
|
*/
|
|
void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm)
|
|
{
|
|
lockdep_assert_held(&mdsc->snap_rwsem);
|
|
|
|
/*
|
|
* The 0->1 and 1->0 transitions must take the snap_empty_lock
|
|
* atomically with the refcount change. Go ahead and bump the
|
|
* nref here, unless it's 0, in which case we take the spinlock
|
|
* and then do the increment and remove it from the list.
|
|
*/
|
|
if (atomic_inc_not_zero(&realm->nref))
|
|
return;
|
|
|
|
spin_lock(&mdsc->snap_empty_lock);
|
|
if (atomic_inc_return(&realm->nref) == 1)
|
|
list_del_init(&realm->empty_item);
|
|
spin_unlock(&mdsc->snap_empty_lock);
|
|
}
|
|
|
|
static void __insert_snap_realm(struct rb_root *root,
|
|
struct ceph_snap_realm *new)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct ceph_snap_realm *r = NULL;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
r = rb_entry(parent, struct ceph_snap_realm, node);
|
|
if (new->ino < r->ino)
|
|
p = &(*p)->rb_left;
|
|
else if (new->ino > r->ino)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(&new->node, parent, p);
|
|
rb_insert_color(&new->node, root);
|
|
}
|
|
|
|
/*
|
|
* create and get the realm rooted at @ino and bump its ref count.
|
|
*
|
|
* caller must hold snap_rwsem for write.
|
|
*/
|
|
static struct ceph_snap_realm *ceph_create_snap_realm(
|
|
struct ceph_mds_client *mdsc,
|
|
u64 ino)
|
|
{
|
|
struct ceph_snap_realm *realm;
|
|
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
realm = kzalloc(sizeof(*realm), GFP_NOFS);
|
|
if (!realm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
atomic_set(&realm->nref, 1); /* for caller */
|
|
realm->ino = ino;
|
|
INIT_LIST_HEAD(&realm->children);
|
|
INIT_LIST_HEAD(&realm->child_item);
|
|
INIT_LIST_HEAD(&realm->empty_item);
|
|
INIT_LIST_HEAD(&realm->dirty_item);
|
|
INIT_LIST_HEAD(&realm->inodes_with_caps);
|
|
spin_lock_init(&realm->inodes_with_caps_lock);
|
|
__insert_snap_realm(&mdsc->snap_realms, realm);
|
|
mdsc->num_snap_realms++;
|
|
|
|
dout("create_snap_realm %llx %p\n", realm->ino, realm);
|
|
return realm;
|
|
}
|
|
|
|
/*
|
|
* lookup the realm rooted at @ino.
|
|
*
|
|
* caller must hold snap_rwsem.
|
|
*/
|
|
static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
|
|
u64 ino)
|
|
{
|
|
struct rb_node *n = mdsc->snap_realms.rb_node;
|
|
struct ceph_snap_realm *r;
|
|
|
|
lockdep_assert_held(&mdsc->snap_rwsem);
|
|
|
|
while (n) {
|
|
r = rb_entry(n, struct ceph_snap_realm, node);
|
|
if (ino < r->ino)
|
|
n = n->rb_left;
|
|
else if (ino > r->ino)
|
|
n = n->rb_right;
|
|
else {
|
|
dout("lookup_snap_realm %llx %p\n", r->ino, r);
|
|
return r;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
|
|
u64 ino)
|
|
{
|
|
struct ceph_snap_realm *r;
|
|
r = __lookup_snap_realm(mdsc, ino);
|
|
if (r)
|
|
ceph_get_snap_realm(mdsc, r);
|
|
return r;
|
|
}
|
|
|
|
static void __put_snap_realm(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm);
|
|
|
|
/*
|
|
* called with snap_rwsem (write)
|
|
*/
|
|
static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm)
|
|
{
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
|
|
|
|
rb_erase(&realm->node, &mdsc->snap_realms);
|
|
mdsc->num_snap_realms--;
|
|
|
|
if (realm->parent) {
|
|
list_del_init(&realm->child_item);
|
|
__put_snap_realm(mdsc, realm->parent);
|
|
}
|
|
|
|
kfree(realm->prior_parent_snaps);
|
|
kfree(realm->snaps);
|
|
ceph_put_snap_context(realm->cached_context);
|
|
kfree(realm);
|
|
}
|
|
|
|
/*
|
|
* caller holds snap_rwsem (write)
|
|
*/
|
|
static void __put_snap_realm(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm)
|
|
{
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
/*
|
|
* We do not require the snap_empty_lock here, as any caller that
|
|
* increments the value must hold the snap_rwsem.
|
|
*/
|
|
if (atomic_dec_and_test(&realm->nref))
|
|
__destroy_snap_realm(mdsc, realm);
|
|
}
|
|
|
|
/*
|
|
* See comments in ceph_get_snap_realm. Caller needn't hold any locks.
|
|
*/
|
|
void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm)
|
|
{
|
|
if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
|
|
return;
|
|
|
|
if (down_write_trylock(&mdsc->snap_rwsem)) {
|
|
spin_unlock(&mdsc->snap_empty_lock);
|
|
__destroy_snap_realm(mdsc, realm);
|
|
up_write(&mdsc->snap_rwsem);
|
|
} else {
|
|
list_add(&realm->empty_item, &mdsc->snap_empty);
|
|
spin_unlock(&mdsc->snap_empty_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up any realms whose ref counts have dropped to zero. Note
|
|
* that this does not include realms who were created but not yet
|
|
* used.
|
|
*
|
|
* Called under snap_rwsem (write)
|
|
*/
|
|
static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
|
|
{
|
|
struct ceph_snap_realm *realm;
|
|
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
spin_lock(&mdsc->snap_empty_lock);
|
|
while (!list_empty(&mdsc->snap_empty)) {
|
|
realm = list_first_entry(&mdsc->snap_empty,
|
|
struct ceph_snap_realm, empty_item);
|
|
list_del(&realm->empty_item);
|
|
spin_unlock(&mdsc->snap_empty_lock);
|
|
__destroy_snap_realm(mdsc, realm);
|
|
spin_lock(&mdsc->snap_empty_lock);
|
|
}
|
|
spin_unlock(&mdsc->snap_empty_lock);
|
|
}
|
|
|
|
void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
|
|
{
|
|
down_write(&mdsc->snap_rwsem);
|
|
__cleanup_empty_realms(mdsc);
|
|
up_write(&mdsc->snap_rwsem);
|
|
}
|
|
|
|
/*
|
|
* adjust the parent realm of a given @realm. adjust child list, and parent
|
|
* pointers, and ref counts appropriately.
|
|
*
|
|
* return true if parent was changed, 0 if unchanged, <0 on error.
|
|
*
|
|
* caller must hold snap_rwsem for write.
|
|
*/
|
|
static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
|
|
struct ceph_snap_realm *realm,
|
|
u64 parentino)
|
|
{
|
|
struct ceph_snap_realm *parent;
|
|
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
if (realm->parent_ino == parentino)
|
|
return 0;
|
|
|
|
parent = ceph_lookup_snap_realm(mdsc, parentino);
|
|
if (!parent) {
|
|
parent = ceph_create_snap_realm(mdsc, parentino);
|
|
if (IS_ERR(parent))
|
|
return PTR_ERR(parent);
|
|
}
|
|
dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
|
|
realm->ino, realm, realm->parent_ino, realm->parent,
|
|
parentino, parent);
|
|
if (realm->parent) {
|
|
list_del_init(&realm->child_item);
|
|
ceph_put_snap_realm(mdsc, realm->parent);
|
|
}
|
|
realm->parent_ino = parentino;
|
|
realm->parent = parent;
|
|
list_add(&realm->child_item, &parent->children);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int cmpu64_rev(const void *a, const void *b)
|
|
{
|
|
if (*(u64 *)a < *(u64 *)b)
|
|
return 1;
|
|
if (*(u64 *)a > *(u64 *)b)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* build the snap context for a given realm.
|
|
*/
|
|
static int build_snap_context(struct ceph_snap_realm *realm,
|
|
struct list_head* dirty_realms)
|
|
{
|
|
struct ceph_snap_realm *parent = realm->parent;
|
|
struct ceph_snap_context *snapc;
|
|
int err = 0;
|
|
u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
|
|
|
|
/*
|
|
* build parent context, if it hasn't been built.
|
|
* conservatively estimate that all parent snaps might be
|
|
* included by us.
|
|
*/
|
|
if (parent) {
|
|
if (!parent->cached_context) {
|
|
err = build_snap_context(parent, dirty_realms);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
num += parent->cached_context->num_snaps;
|
|
}
|
|
|
|
/* do i actually need to update? not if my context seq
|
|
matches realm seq, and my parents' does to. (this works
|
|
because we rebuild_snap_realms() works _downward_ in
|
|
hierarchy after each update.) */
|
|
if (realm->cached_context &&
|
|
realm->cached_context->seq == realm->seq &&
|
|
(!parent ||
|
|
realm->cached_context->seq >= parent->cached_context->seq)) {
|
|
dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
|
|
" (unchanged)\n",
|
|
realm->ino, realm, realm->cached_context,
|
|
realm->cached_context->seq,
|
|
(unsigned int)realm->cached_context->num_snaps);
|
|
return 0;
|
|
}
|
|
|
|
/* alloc new snap context */
|
|
err = -ENOMEM;
|
|
if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
|
|
goto fail;
|
|
snapc = ceph_create_snap_context(num, GFP_NOFS);
|
|
if (!snapc)
|
|
goto fail;
|
|
|
|
/* build (reverse sorted) snap vector */
|
|
num = 0;
|
|
snapc->seq = realm->seq;
|
|
if (parent) {
|
|
u32 i;
|
|
|
|
/* include any of parent's snaps occurring _after_ my
|
|
parent became my parent */
|
|
for (i = 0; i < parent->cached_context->num_snaps; i++)
|
|
if (parent->cached_context->snaps[i] >=
|
|
realm->parent_since)
|
|
snapc->snaps[num++] =
|
|
parent->cached_context->snaps[i];
|
|
if (parent->cached_context->seq > snapc->seq)
|
|
snapc->seq = parent->cached_context->seq;
|
|
}
|
|
memcpy(snapc->snaps + num, realm->snaps,
|
|
sizeof(u64)*realm->num_snaps);
|
|
num += realm->num_snaps;
|
|
memcpy(snapc->snaps + num, realm->prior_parent_snaps,
|
|
sizeof(u64)*realm->num_prior_parent_snaps);
|
|
num += realm->num_prior_parent_snaps;
|
|
|
|
sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
|
|
snapc->num_snaps = num;
|
|
dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
|
|
realm->ino, realm, snapc, snapc->seq,
|
|
(unsigned int) snapc->num_snaps);
|
|
|
|
ceph_put_snap_context(realm->cached_context);
|
|
realm->cached_context = snapc;
|
|
/* queue realm for cap_snap creation */
|
|
list_add_tail(&realm->dirty_item, dirty_realms);
|
|
return 0;
|
|
|
|
fail:
|
|
/*
|
|
* if we fail, clear old (incorrect) cached_context... hopefully
|
|
* we'll have better luck building it later
|
|
*/
|
|
if (realm->cached_context) {
|
|
ceph_put_snap_context(realm->cached_context);
|
|
realm->cached_context = NULL;
|
|
}
|
|
pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
|
|
realm, err);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* rebuild snap context for the given realm and all of its children.
|
|
*/
|
|
static void rebuild_snap_realms(struct ceph_snap_realm *realm,
|
|
struct list_head *dirty_realms)
|
|
{
|
|
struct ceph_snap_realm *child;
|
|
|
|
dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
|
|
build_snap_context(realm, dirty_realms);
|
|
|
|
list_for_each_entry(child, &realm->children, child_item)
|
|
rebuild_snap_realms(child, dirty_realms);
|
|
}
|
|
|
|
|
|
/*
|
|
* helper to allocate and decode an array of snapids. free prior
|
|
* instance, if any.
|
|
*/
|
|
static int dup_array(u64 **dst, __le64 *src, u32 num)
|
|
{
|
|
u32 i;
|
|
|
|
kfree(*dst);
|
|
if (num) {
|
|
*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
|
|
if (!*dst)
|
|
return -ENOMEM;
|
|
for (i = 0; i < num; i++)
|
|
(*dst)[i] = get_unaligned_le64(src + i);
|
|
} else {
|
|
*dst = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool has_new_snaps(struct ceph_snap_context *o,
|
|
struct ceph_snap_context *n)
|
|
{
|
|
if (n->num_snaps == 0)
|
|
return false;
|
|
/* snaps are in descending order */
|
|
return n->snaps[0] > o->seq;
|
|
}
|
|
|
|
/*
|
|
* When a snapshot is applied, the size/mtime inode metadata is queued
|
|
* in a ceph_cap_snap (one for each snapshot) until writeback
|
|
* completes and the metadata can be flushed back to the MDS.
|
|
*
|
|
* However, if a (sync) write is currently in-progress when we apply
|
|
* the snapshot, we have to wait until the write succeeds or fails
|
|
* (and a final size/mtime is known). In this case the
|
|
* cap_snap->writing = 1, and is said to be "pending." When the write
|
|
* finishes, we __ceph_finish_cap_snap().
|
|
*
|
|
* Caller must hold snap_rwsem for read (i.e., the realm topology won't
|
|
* change).
|
|
*/
|
|
static void ceph_queue_cap_snap(struct ceph_inode_info *ci)
|
|
{
|
|
struct inode *inode = &ci->vfs_inode;
|
|
struct ceph_cap_snap *capsnap;
|
|
struct ceph_snap_context *old_snapc, *new_snapc;
|
|
struct ceph_buffer *old_blob = NULL;
|
|
int used, dirty;
|
|
|
|
capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
|
|
if (!capsnap) {
|
|
pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
|
|
return;
|
|
}
|
|
capsnap->cap_flush.is_capsnap = true;
|
|
INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
|
|
INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
|
|
|
|
spin_lock(&ci->i_ceph_lock);
|
|
used = __ceph_caps_used(ci);
|
|
dirty = __ceph_caps_dirty(ci);
|
|
|
|
old_snapc = ci->i_head_snapc;
|
|
new_snapc = ci->i_snap_realm->cached_context;
|
|
|
|
/*
|
|
* If there is a write in progress, treat that as a dirty Fw,
|
|
* even though it hasn't completed yet; by the time we finish
|
|
* up this capsnap it will be.
|
|
*/
|
|
if (used & CEPH_CAP_FILE_WR)
|
|
dirty |= CEPH_CAP_FILE_WR;
|
|
|
|
if (__ceph_have_pending_cap_snap(ci)) {
|
|
/* there is no point in queuing multiple "pending" cap_snaps,
|
|
as no new writes are allowed to start when pending, so any
|
|
writes in progress now were started before the previous
|
|
cap_snap. lucky us. */
|
|
dout("queue_cap_snap %p already pending\n", inode);
|
|
goto update_snapc;
|
|
}
|
|
if (ci->i_wrbuffer_ref_head == 0 &&
|
|
!(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
|
|
dout("queue_cap_snap %p nothing dirty|writing\n", inode);
|
|
goto update_snapc;
|
|
}
|
|
|
|
BUG_ON(!old_snapc);
|
|
|
|
/*
|
|
* There is no need to send FLUSHSNAP message to MDS if there is
|
|
* no new snapshot. But when there is dirty pages or on-going
|
|
* writes, we still need to create cap_snap. cap_snap is needed
|
|
* by the write path and page writeback path.
|
|
*
|
|
* also see ceph_try_drop_cap_snap()
|
|
*/
|
|
if (has_new_snaps(old_snapc, new_snapc)) {
|
|
if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
|
|
capsnap->need_flush = true;
|
|
} else {
|
|
if (!(used & CEPH_CAP_FILE_WR) &&
|
|
ci->i_wrbuffer_ref_head == 0) {
|
|
dout("queue_cap_snap %p "
|
|
"no new_snap|dirty_page|writing\n", inode);
|
|
goto update_snapc;
|
|
}
|
|
}
|
|
|
|
dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
|
|
inode, capsnap, old_snapc, ceph_cap_string(dirty),
|
|
capsnap->need_flush ? "" : "no_flush");
|
|
ihold(inode);
|
|
|
|
refcount_set(&capsnap->nref, 1);
|
|
INIT_LIST_HEAD(&capsnap->ci_item);
|
|
|
|
capsnap->follows = old_snapc->seq;
|
|
capsnap->issued = __ceph_caps_issued(ci, NULL);
|
|
capsnap->dirty = dirty;
|
|
|
|
capsnap->mode = inode->i_mode;
|
|
capsnap->uid = inode->i_uid;
|
|
capsnap->gid = inode->i_gid;
|
|
|
|
if (dirty & CEPH_CAP_XATTR_EXCL) {
|
|
old_blob = __ceph_build_xattrs_blob(ci);
|
|
capsnap->xattr_blob =
|
|
ceph_buffer_get(ci->i_xattrs.blob);
|
|
capsnap->xattr_version = ci->i_xattrs.version;
|
|
} else {
|
|
capsnap->xattr_blob = NULL;
|
|
capsnap->xattr_version = 0;
|
|
}
|
|
|
|
capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
|
|
|
|
/* dirty page count moved from _head to this cap_snap;
|
|
all subsequent writes page dirties occur _after_ this
|
|
snapshot. */
|
|
capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
|
|
ci->i_wrbuffer_ref_head = 0;
|
|
capsnap->context = old_snapc;
|
|
list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
|
|
|
|
if (used & CEPH_CAP_FILE_WR) {
|
|
dout("queue_cap_snap %p cap_snap %p snapc %p"
|
|
" seq %llu used WR, now pending\n", inode,
|
|
capsnap, old_snapc, old_snapc->seq);
|
|
capsnap->writing = 1;
|
|
} else {
|
|
/* note mtime, size NOW. */
|
|
__ceph_finish_cap_snap(ci, capsnap);
|
|
}
|
|
capsnap = NULL;
|
|
old_snapc = NULL;
|
|
|
|
update_snapc:
|
|
if (ci->i_wrbuffer_ref_head == 0 &&
|
|
ci->i_wr_ref == 0 &&
|
|
ci->i_dirty_caps == 0 &&
|
|
ci->i_flushing_caps == 0) {
|
|
ci->i_head_snapc = NULL;
|
|
} else {
|
|
ci->i_head_snapc = ceph_get_snap_context(new_snapc);
|
|
dout(" new snapc is %p\n", new_snapc);
|
|
}
|
|
spin_unlock(&ci->i_ceph_lock);
|
|
|
|
ceph_buffer_put(old_blob);
|
|
kfree(capsnap);
|
|
ceph_put_snap_context(old_snapc);
|
|
}
|
|
|
|
/*
|
|
* Finalize the size, mtime for a cap_snap.. that is, settle on final values
|
|
* to be used for the snapshot, to be flushed back to the mds.
|
|
*
|
|
* If capsnap can now be flushed, add to snap_flush list, and return 1.
|
|
*
|
|
* Caller must hold i_ceph_lock.
|
|
*/
|
|
int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
|
|
struct ceph_cap_snap *capsnap)
|
|
{
|
|
struct inode *inode = &ci->vfs_inode;
|
|
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
|
|
|
|
BUG_ON(capsnap->writing);
|
|
capsnap->size = i_size_read(inode);
|
|
capsnap->mtime = inode->i_mtime;
|
|
capsnap->atime = inode->i_atime;
|
|
capsnap->ctime = inode->i_ctime;
|
|
capsnap->btime = ci->i_btime;
|
|
capsnap->change_attr = inode_peek_iversion_raw(inode);
|
|
capsnap->time_warp_seq = ci->i_time_warp_seq;
|
|
capsnap->truncate_size = ci->i_truncate_size;
|
|
capsnap->truncate_seq = ci->i_truncate_seq;
|
|
if (capsnap->dirty_pages) {
|
|
dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
|
|
"still has %d dirty pages\n", inode, capsnap,
|
|
capsnap->context, capsnap->context->seq,
|
|
ceph_cap_string(capsnap->dirty), capsnap->size,
|
|
capsnap->dirty_pages);
|
|
return 0;
|
|
}
|
|
|
|
/* Fb cap still in use, delay it */
|
|
if (ci->i_wb_ref) {
|
|
dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
|
|
"used WRBUFFER, delaying\n", inode, capsnap,
|
|
capsnap->context, capsnap->context->seq,
|
|
ceph_cap_string(capsnap->dirty), capsnap->size);
|
|
capsnap->writing = 1;
|
|
return 0;
|
|
}
|
|
|
|
ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
|
|
dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
|
|
inode, capsnap, capsnap->context,
|
|
capsnap->context->seq, ceph_cap_string(capsnap->dirty),
|
|
capsnap->size);
|
|
|
|
spin_lock(&mdsc->snap_flush_lock);
|
|
if (list_empty(&ci->i_snap_flush_item))
|
|
list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
|
|
spin_unlock(&mdsc->snap_flush_lock);
|
|
return 1; /* caller may want to ceph_flush_snaps */
|
|
}
|
|
|
|
/*
|
|
* Queue cap_snaps for snap writeback for this realm and its children.
|
|
* Called under snap_rwsem, so realm topology won't change.
|
|
*/
|
|
static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
|
|
{
|
|
struct ceph_inode_info *ci;
|
|
struct inode *lastinode = NULL;
|
|
|
|
dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
|
|
|
|
spin_lock(&realm->inodes_with_caps_lock);
|
|
list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
|
|
struct inode *inode = igrab(&ci->vfs_inode);
|
|
if (!inode)
|
|
continue;
|
|
spin_unlock(&realm->inodes_with_caps_lock);
|
|
iput(lastinode);
|
|
lastinode = inode;
|
|
ceph_queue_cap_snap(ci);
|
|
spin_lock(&realm->inodes_with_caps_lock);
|
|
}
|
|
spin_unlock(&realm->inodes_with_caps_lock);
|
|
iput(lastinode);
|
|
|
|
dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
|
|
}
|
|
|
|
/*
|
|
* Parse and apply a snapblob "snap trace" from the MDS. This specifies
|
|
* the snap realm parameters from a given realm and all of its ancestors,
|
|
* up to the root.
|
|
*
|
|
* Caller must hold snap_rwsem for write.
|
|
*/
|
|
int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
|
|
void *p, void *e, bool deletion,
|
|
struct ceph_snap_realm **realm_ret)
|
|
{
|
|
struct ceph_mds_snap_realm *ri; /* encoded */
|
|
__le64 *snaps; /* encoded */
|
|
__le64 *prior_parent_snaps; /* encoded */
|
|
struct ceph_snap_realm *realm = NULL;
|
|
struct ceph_snap_realm *first_realm = NULL;
|
|
int invalidate = 0;
|
|
int err = -ENOMEM;
|
|
LIST_HEAD(dirty_realms);
|
|
|
|
lockdep_assert_held_write(&mdsc->snap_rwsem);
|
|
|
|
dout("update_snap_trace deletion=%d\n", deletion);
|
|
more:
|
|
ceph_decode_need(&p, e, sizeof(*ri), bad);
|
|
ri = p;
|
|
p += sizeof(*ri);
|
|
ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
|
|
le32_to_cpu(ri->num_prior_parent_snaps)), bad);
|
|
snaps = p;
|
|
p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
|
|
prior_parent_snaps = p;
|
|
p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
|
|
|
|
realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
|
|
if (!realm) {
|
|
realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
|
|
if (IS_ERR(realm)) {
|
|
err = PTR_ERR(realm);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* ensure the parent is correct */
|
|
err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
|
|
if (err < 0)
|
|
goto fail;
|
|
invalidate += err;
|
|
|
|
if (le64_to_cpu(ri->seq) > realm->seq) {
|
|
dout("update_snap_trace updating %llx %p %lld -> %lld\n",
|
|
realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
|
|
/* update realm parameters, snap lists */
|
|
realm->seq = le64_to_cpu(ri->seq);
|
|
realm->created = le64_to_cpu(ri->created);
|
|
realm->parent_since = le64_to_cpu(ri->parent_since);
|
|
|
|
realm->num_snaps = le32_to_cpu(ri->num_snaps);
|
|
err = dup_array(&realm->snaps, snaps, realm->num_snaps);
|
|
if (err < 0)
|
|
goto fail;
|
|
|
|
realm->num_prior_parent_snaps =
|
|
le32_to_cpu(ri->num_prior_parent_snaps);
|
|
err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
|
|
realm->num_prior_parent_snaps);
|
|
if (err < 0)
|
|
goto fail;
|
|
|
|
if (realm->seq > mdsc->last_snap_seq)
|
|
mdsc->last_snap_seq = realm->seq;
|
|
|
|
invalidate = 1;
|
|
} else if (!realm->cached_context) {
|
|
dout("update_snap_trace %llx %p seq %lld new\n",
|
|
realm->ino, realm, realm->seq);
|
|
invalidate = 1;
|
|
} else {
|
|
dout("update_snap_trace %llx %p seq %lld unchanged\n",
|
|
realm->ino, realm, realm->seq);
|
|
}
|
|
|
|
dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
|
|
realm, invalidate, p, e);
|
|
|
|
/* invalidate when we reach the _end_ (root) of the trace */
|
|
if (invalidate && p >= e)
|
|
rebuild_snap_realms(realm, &dirty_realms);
|
|
|
|
if (!first_realm)
|
|
first_realm = realm;
|
|
else
|
|
ceph_put_snap_realm(mdsc, realm);
|
|
|
|
if (p < e)
|
|
goto more;
|
|
|
|
/*
|
|
* queue cap snaps _after_ we've built the new snap contexts,
|
|
* so that i_head_snapc can be set appropriately.
|
|
*/
|
|
while (!list_empty(&dirty_realms)) {
|
|
realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
|
|
dirty_item);
|
|
list_del_init(&realm->dirty_item);
|
|
queue_realm_cap_snaps(realm);
|
|
}
|
|
|
|
if (realm_ret)
|
|
*realm_ret = first_realm;
|
|
else
|
|
ceph_put_snap_realm(mdsc, first_realm);
|
|
|
|
__cleanup_empty_realms(mdsc);
|
|
return 0;
|
|
|
|
bad:
|
|
err = -EIO;
|
|
fail:
|
|
if (realm && !IS_ERR(realm))
|
|
ceph_put_snap_realm(mdsc, realm);
|
|
if (first_realm)
|
|
ceph_put_snap_realm(mdsc, first_realm);
|
|
pr_err("update_snap_trace error %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* Send any cap_snaps that are queued for flush. Try to carry
|
|
* s_mutex across multiple snap flushes to avoid locking overhead.
|
|
*
|
|
* Caller holds no locks.
|
|
*/
|
|
static void flush_snaps(struct ceph_mds_client *mdsc)
|
|
{
|
|
struct ceph_inode_info *ci;
|
|
struct inode *inode;
|
|
struct ceph_mds_session *session = NULL;
|
|
|
|
dout("flush_snaps\n");
|
|
spin_lock(&mdsc->snap_flush_lock);
|
|
while (!list_empty(&mdsc->snap_flush_list)) {
|
|
ci = list_first_entry(&mdsc->snap_flush_list,
|
|
struct ceph_inode_info, i_snap_flush_item);
|
|
inode = &ci->vfs_inode;
|
|
ihold(inode);
|
|
spin_unlock(&mdsc->snap_flush_lock);
|
|
ceph_flush_snaps(ci, &session);
|
|
iput(inode);
|
|
spin_lock(&mdsc->snap_flush_lock);
|
|
}
|
|
spin_unlock(&mdsc->snap_flush_lock);
|
|
|
|
ceph_put_mds_session(session);
|
|
dout("flush_snaps done\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle a snap notification from the MDS.
|
|
*
|
|
* This can take two basic forms: the simplest is just a snap creation
|
|
* or deletion notification on an existing realm. This should update the
|
|
* realm and its children.
|
|
*
|
|
* The more difficult case is realm creation, due to snap creation at a
|
|
* new point in the file hierarchy, or due to a rename that moves a file or
|
|
* directory into another realm.
|
|
*/
|
|
void ceph_handle_snap(struct ceph_mds_client *mdsc,
|
|
struct ceph_mds_session *session,
|
|
struct ceph_msg *msg)
|
|
{
|
|
struct super_block *sb = mdsc->fsc->sb;
|
|
int mds = session->s_mds;
|
|
u64 split;
|
|
int op;
|
|
int trace_len;
|
|
struct ceph_snap_realm *realm = NULL;
|
|
void *p = msg->front.iov_base;
|
|
void *e = p + msg->front.iov_len;
|
|
struct ceph_mds_snap_head *h;
|
|
int num_split_inos, num_split_realms;
|
|
__le64 *split_inos = NULL, *split_realms = NULL;
|
|
int i;
|
|
int locked_rwsem = 0;
|
|
|
|
/* decode */
|
|
if (msg->front.iov_len < sizeof(*h))
|
|
goto bad;
|
|
h = p;
|
|
op = le32_to_cpu(h->op);
|
|
split = le64_to_cpu(h->split); /* non-zero if we are splitting an
|
|
* existing realm */
|
|
num_split_inos = le32_to_cpu(h->num_split_inos);
|
|
num_split_realms = le32_to_cpu(h->num_split_realms);
|
|
trace_len = le32_to_cpu(h->trace_len);
|
|
p += sizeof(*h);
|
|
|
|
dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
|
|
ceph_snap_op_name(op), split, trace_len);
|
|
|
|
mutex_lock(&session->s_mutex);
|
|
inc_session_sequence(session);
|
|
mutex_unlock(&session->s_mutex);
|
|
|
|
down_write(&mdsc->snap_rwsem);
|
|
locked_rwsem = 1;
|
|
|
|
if (op == CEPH_SNAP_OP_SPLIT) {
|
|
struct ceph_mds_snap_realm *ri;
|
|
|
|
/*
|
|
* A "split" breaks part of an existing realm off into
|
|
* a new realm. The MDS provides a list of inodes
|
|
* (with caps) and child realms that belong to the new
|
|
* child.
|
|
*/
|
|
split_inos = p;
|
|
p += sizeof(u64) * num_split_inos;
|
|
split_realms = p;
|
|
p += sizeof(u64) * num_split_realms;
|
|
ceph_decode_need(&p, e, sizeof(*ri), bad);
|
|
/* we will peek at realm info here, but will _not_
|
|
* advance p, as the realm update will occur below in
|
|
* ceph_update_snap_trace. */
|
|
ri = p;
|
|
|
|
realm = ceph_lookup_snap_realm(mdsc, split);
|
|
if (!realm) {
|
|
realm = ceph_create_snap_realm(mdsc, split);
|
|
if (IS_ERR(realm))
|
|
goto out;
|
|
}
|
|
|
|
dout("splitting snap_realm %llx %p\n", realm->ino, realm);
|
|
for (i = 0; i < num_split_inos; i++) {
|
|
struct ceph_vino vino = {
|
|
.ino = le64_to_cpu(split_inos[i]),
|
|
.snap = CEPH_NOSNAP,
|
|
};
|
|
struct inode *inode = ceph_find_inode(sb, vino);
|
|
struct ceph_inode_info *ci;
|
|
struct ceph_snap_realm *oldrealm;
|
|
|
|
if (!inode)
|
|
continue;
|
|
ci = ceph_inode(inode);
|
|
|
|
spin_lock(&ci->i_ceph_lock);
|
|
if (!ci->i_snap_realm)
|
|
goto skip_inode;
|
|
/*
|
|
* If this inode belongs to a realm that was
|
|
* created after our new realm, we experienced
|
|
* a race (due to another split notifications
|
|
* arriving from a different MDS). So skip
|
|
* this inode.
|
|
*/
|
|
if (ci->i_snap_realm->created >
|
|
le64_to_cpu(ri->created)) {
|
|
dout(" leaving %p in newer realm %llx %p\n",
|
|
inode, ci->i_snap_realm->ino,
|
|
ci->i_snap_realm);
|
|
goto skip_inode;
|
|
}
|
|
dout(" will move %p to split realm %llx %p\n",
|
|
inode, realm->ino, realm);
|
|
/*
|
|
* Move the inode to the new realm
|
|
*/
|
|
oldrealm = ci->i_snap_realm;
|
|
spin_lock(&oldrealm->inodes_with_caps_lock);
|
|
list_del_init(&ci->i_snap_realm_item);
|
|
spin_unlock(&oldrealm->inodes_with_caps_lock);
|
|
|
|
spin_lock(&realm->inodes_with_caps_lock);
|
|
list_add(&ci->i_snap_realm_item,
|
|
&realm->inodes_with_caps);
|
|
ci->i_snap_realm = realm;
|
|
if (realm->ino == ci->i_vino.ino)
|
|
realm->inode = inode;
|
|
spin_unlock(&realm->inodes_with_caps_lock);
|
|
|
|
spin_unlock(&ci->i_ceph_lock);
|
|
|
|
ceph_get_snap_realm(mdsc, realm);
|
|
ceph_put_snap_realm(mdsc, oldrealm);
|
|
|
|
iput(inode);
|
|
continue;
|
|
|
|
skip_inode:
|
|
spin_unlock(&ci->i_ceph_lock);
|
|
iput(inode);
|
|
}
|
|
|
|
/* we may have taken some of the old realm's children. */
|
|
for (i = 0; i < num_split_realms; i++) {
|
|
struct ceph_snap_realm *child =
|
|
__lookup_snap_realm(mdsc,
|
|
le64_to_cpu(split_realms[i]));
|
|
if (!child)
|
|
continue;
|
|
adjust_snap_realm_parent(mdsc, child, realm->ino);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* update using the provided snap trace. if we are deleting a
|
|
* snap, we can avoid queueing cap_snaps.
|
|
*/
|
|
ceph_update_snap_trace(mdsc, p, e,
|
|
op == CEPH_SNAP_OP_DESTROY, NULL);
|
|
|
|
if (op == CEPH_SNAP_OP_SPLIT)
|
|
/* we took a reference when we created the realm, above */
|
|
ceph_put_snap_realm(mdsc, realm);
|
|
|
|
__cleanup_empty_realms(mdsc);
|
|
|
|
up_write(&mdsc->snap_rwsem);
|
|
|
|
flush_snaps(mdsc);
|
|
return;
|
|
|
|
bad:
|
|
pr_err("corrupt snap message from mds%d\n", mds);
|
|
ceph_msg_dump(msg);
|
|
out:
|
|
if (locked_rwsem)
|
|
up_write(&mdsc->snap_rwsem);
|
|
return;
|
|
}
|
|
|
|
struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
|
|
u64 snap)
|
|
{
|
|
struct ceph_snapid_map *sm, *exist;
|
|
struct rb_node **p, *parent;
|
|
int ret;
|
|
|
|
exist = NULL;
|
|
spin_lock(&mdsc->snapid_map_lock);
|
|
p = &mdsc->snapid_map_tree.rb_node;
|
|
while (*p) {
|
|
exist = rb_entry(*p, struct ceph_snapid_map, node);
|
|
if (snap > exist->snap) {
|
|
p = &(*p)->rb_left;
|
|
} else if (snap < exist->snap) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
if (atomic_inc_return(&exist->ref) == 1)
|
|
list_del_init(&exist->lru);
|
|
break;
|
|
}
|
|
exist = NULL;
|
|
}
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
if (exist) {
|
|
dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
|
|
return exist;
|
|
}
|
|
|
|
sm = kmalloc(sizeof(*sm), GFP_NOFS);
|
|
if (!sm)
|
|
return NULL;
|
|
|
|
ret = get_anon_bdev(&sm->dev);
|
|
if (ret < 0) {
|
|
kfree(sm);
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&sm->lru);
|
|
atomic_set(&sm->ref, 1);
|
|
sm->snap = snap;
|
|
|
|
exist = NULL;
|
|
parent = NULL;
|
|
p = &mdsc->snapid_map_tree.rb_node;
|
|
spin_lock(&mdsc->snapid_map_lock);
|
|
while (*p) {
|
|
parent = *p;
|
|
exist = rb_entry(*p, struct ceph_snapid_map, node);
|
|
if (snap > exist->snap)
|
|
p = &(*p)->rb_left;
|
|
else if (snap < exist->snap)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
break;
|
|
exist = NULL;
|
|
}
|
|
if (exist) {
|
|
if (atomic_inc_return(&exist->ref) == 1)
|
|
list_del_init(&exist->lru);
|
|
} else {
|
|
rb_link_node(&sm->node, parent, p);
|
|
rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
|
|
}
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
if (exist) {
|
|
free_anon_bdev(sm->dev);
|
|
kfree(sm);
|
|
dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
|
|
return exist;
|
|
}
|
|
|
|
dout("create snapid map %llx -> %x\n", sm->snap, sm->dev);
|
|
return sm;
|
|
}
|
|
|
|
void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
|
|
struct ceph_snapid_map *sm)
|
|
{
|
|
if (!sm)
|
|
return;
|
|
if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
|
|
if (!RB_EMPTY_NODE(&sm->node)) {
|
|
sm->last_used = jiffies;
|
|
list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
} else {
|
|
/* already cleaned up by
|
|
* ceph_cleanup_snapid_map() */
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
kfree(sm);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
|
|
{
|
|
struct ceph_snapid_map *sm;
|
|
unsigned long now;
|
|
LIST_HEAD(to_free);
|
|
|
|
spin_lock(&mdsc->snapid_map_lock);
|
|
now = jiffies;
|
|
|
|
while (!list_empty(&mdsc->snapid_map_lru)) {
|
|
sm = list_first_entry(&mdsc->snapid_map_lru,
|
|
struct ceph_snapid_map, lru);
|
|
if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
|
|
break;
|
|
|
|
rb_erase(&sm->node, &mdsc->snapid_map_tree);
|
|
list_move(&sm->lru, &to_free);
|
|
}
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
|
|
while (!list_empty(&to_free)) {
|
|
sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
|
|
list_del(&sm->lru);
|
|
dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
|
|
free_anon_bdev(sm->dev);
|
|
kfree(sm);
|
|
}
|
|
}
|
|
|
|
void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
|
|
{
|
|
struct ceph_snapid_map *sm;
|
|
struct rb_node *p;
|
|
LIST_HEAD(to_free);
|
|
|
|
spin_lock(&mdsc->snapid_map_lock);
|
|
while ((p = rb_first(&mdsc->snapid_map_tree))) {
|
|
sm = rb_entry(p, struct ceph_snapid_map, node);
|
|
rb_erase(p, &mdsc->snapid_map_tree);
|
|
RB_CLEAR_NODE(p);
|
|
list_move(&sm->lru, &to_free);
|
|
}
|
|
spin_unlock(&mdsc->snapid_map_lock);
|
|
|
|
while (!list_empty(&to_free)) {
|
|
sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
|
|
list_del(&sm->lru);
|
|
free_anon_bdev(sm->dev);
|
|
if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
|
|
pr_err("snapid map %llx -> %x still in use\n",
|
|
sm->snap, sm->dev);
|
|
}
|
|
kfree(sm);
|
|
}
|
|
}
|