mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 06:04:14 +08:00
9875cf8064
Add a dentry op (d_automount) to handle automounting directories rather than abusing the follow_link() inode operation. The operation is keyed off a new dentry flag (DCACHE_NEED_AUTOMOUNT). This also makes it easier to add an AT_ flag to suppress terminal segment automount during pathwalk and removes the need for the kludge code in the pathwalk algorithm to handle directories with follow_link() semantics. The ->d_automount() dentry operation: struct vfsmount *(*d_automount)(struct path *mountpoint); takes a pointer to the directory to be mounted upon, which is expected to provide sufficient data to determine what should be mounted. If successful, it should return the vfsmount struct it creates (which it should also have added to the namespace using do_add_mount() or similar). If there's a collision with another automount attempt, NULL should be returned. If the directory specified by the parameter should be used directly rather than being mounted upon, -EISDIR should be returned. In any other case, an error code should be returned. The ->d_automount() operation is called with no locks held and may sleep. At this point the pathwalk algorithm will be in ref-walk mode. Within fs/namei.c itself, a new pathwalk subroutine (follow_automount()) is added to handle mountpoints. It will return -EREMOTE if the automount flag was set, but no d_automount() op was supplied, -ELOOP if we've encountered too many symlinks or mountpoints, -EISDIR if the walk point should be used without mounting and 0 if successful. The path will be updated to point to the mounted filesystem if a successful automount took place. __follow_mount() is replaced by follow_managed() which is more generic (especially with the patch that adds ->d_manage()). This handles transits from directories during pathwalk, including automounting and skipping over mountpoints (and holding processes with the next patch). __follow_mount_rcu() will jump out of RCU-walk mode if it encounters an automount point with nothing mounted on it. follow_dotdot*() does not handle automounts as you don't want to trigger them whilst following "..". I've also extracted the mount/don't-mount logic from autofs4 and included it here. It makes the mount go ahead anyway if someone calls open() or creat(), tries to traverse the directory, tries to chdir/chroot/etc. into the directory, or sticks a '/' on the end of the pathname. If they do a stat(), however, they'll only trigger the automount if they didn't also say O_NOFOLLOW. I've also added an inode flag (S_AUTOMOUNT) so that filesystems can mark their inodes as automount points. This flag is automatically propagated to the dentry as DCACHE_NEED_AUTOMOUNT by __d_instantiate(). This saves NFS and could save AFS a private flag bit apiece, but is not strictly necessary. It would be preferable to do the propagation in d_set_d_op(), but that doesn't normally have access to the inode. [AV: fixed breakage in case if __follow_mount_rcu() fails and nameidata_drop_rcu() succeeds in RCU case of do_lookup(); we need to fall through to non-RCU case after that, rather than just returning with ungrabbed *path] Signed-off-by: David Howells <dhowells@redhat.com> Was-Acked-by: Ian Kent <raven@themaw.net> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
538 lines
22 KiB
Plaintext
538 lines
22 KiB
Plaintext
The text below describes the locking rules for VFS-related methods.
|
|
It is (believed to be) up-to-date. *Please*, if you change anything in
|
|
prototypes or locking protocols - update this file. And update the relevant
|
|
instances in the tree, don't leave that to maintainers of filesystems/devices/
|
|
etc. At the very least, put the list of dubious cases in the end of this file.
|
|
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
|
|
be able to use diff(1).
|
|
Thing currently missing here: socket operations. Alexey?
|
|
|
|
--------------------------- dentry_operations --------------------------
|
|
prototypes:
|
|
int (*d_revalidate)(struct dentry *, struct nameidata *);
|
|
int (*d_hash)(const struct dentry *, const struct inode *,
|
|
struct qstr *);
|
|
int (*d_compare)(const struct dentry *, const struct inode *,
|
|
const struct dentry *, const struct inode *,
|
|
unsigned int, const char *, const struct qstr *);
|
|
int (*d_delete)(struct dentry *);
|
|
void (*d_release)(struct dentry *);
|
|
void (*d_iput)(struct dentry *, struct inode *);
|
|
char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
|
|
struct vfsmount *(*d_automount)(struct path *path);
|
|
|
|
locking rules:
|
|
rename_lock ->d_lock may block rcu-walk
|
|
d_revalidate: no no yes (ref-walk) maybe
|
|
d_hash no no no maybe
|
|
d_compare: yes no no maybe
|
|
d_delete: no yes no no
|
|
d_release: no no yes no
|
|
d_iput: no no yes no
|
|
d_dname: no no no no
|
|
d_automount: no no yes no
|
|
|
|
--------------------------- inode_operations ---------------------------
|
|
prototypes:
|
|
int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
|
|
struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameid
|
|
ata *);
|
|
int (*link) (struct dentry *,struct inode *,struct dentry *);
|
|
int (*unlink) (struct inode *,struct dentry *);
|
|
int (*symlink) (struct inode *,struct dentry *,const char *);
|
|
int (*mkdir) (struct inode *,struct dentry *,int);
|
|
int (*rmdir) (struct inode *,struct dentry *);
|
|
int (*mknod) (struct inode *,struct dentry *,int,dev_t);
|
|
int (*rename) (struct inode *, struct dentry *,
|
|
struct inode *, struct dentry *);
|
|
int (*readlink) (struct dentry *, char __user *,int);
|
|
void * (*follow_link) (struct dentry *, struct nameidata *);
|
|
void (*put_link) (struct dentry *, struct nameidata *, void *);
|
|
void (*truncate) (struct inode *);
|
|
int (*permission) (struct inode *, int, unsigned int);
|
|
int (*check_acl)(struct inode *, int, unsigned int);
|
|
int (*setattr) (struct dentry *, struct iattr *);
|
|
int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
|
|
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
|
|
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
|
|
ssize_t (*listxattr) (struct dentry *, char *, size_t);
|
|
int (*removexattr) (struct dentry *, const char *);
|
|
void (*truncate_range)(struct inode *, loff_t, loff_t);
|
|
long (*fallocate)(struct inode *inode, int mode, loff_t offset, loff_t len);
|
|
int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len);
|
|
|
|
locking rules:
|
|
all may block
|
|
i_mutex(inode)
|
|
lookup: yes
|
|
create: yes
|
|
link: yes (both)
|
|
mknod: yes
|
|
symlink: yes
|
|
mkdir: yes
|
|
unlink: yes (both)
|
|
rmdir: yes (both) (see below)
|
|
rename: yes (all) (see below)
|
|
readlink: no
|
|
follow_link: no
|
|
put_link: no
|
|
truncate: yes (see below)
|
|
setattr: yes
|
|
permission: no (may not block if called in rcu-walk mode)
|
|
check_acl: no
|
|
getattr: no
|
|
setxattr: yes
|
|
getxattr: no
|
|
listxattr: no
|
|
removexattr: yes
|
|
truncate_range: yes
|
|
fallocate: no
|
|
fiemap: no
|
|
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
|
|
victim.
|
|
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
|
|
->truncate() is never called directly - it's a callback, not a
|
|
method. It's called by vmtruncate() - deprecated library function used by
|
|
->setattr(). Locking information above applies to that call (i.e. is
|
|
inherited from ->setattr() - vmtruncate() is used when ATTR_SIZE had been
|
|
passed).
|
|
|
|
See Documentation/filesystems/directory-locking for more detailed discussion
|
|
of the locking scheme for directory operations.
|
|
|
|
--------------------------- super_operations ---------------------------
|
|
prototypes:
|
|
struct inode *(*alloc_inode)(struct super_block *sb);
|
|
void (*destroy_inode)(struct inode *);
|
|
void (*dirty_inode) (struct inode *);
|
|
int (*write_inode) (struct inode *, struct writeback_control *wbc);
|
|
int (*drop_inode) (struct inode *);
|
|
void (*evict_inode) (struct inode *);
|
|
void (*put_super) (struct super_block *);
|
|
void (*write_super) (struct super_block *);
|
|
int (*sync_fs)(struct super_block *sb, int wait);
|
|
int (*freeze_fs) (struct super_block *);
|
|
int (*unfreeze_fs) (struct super_block *);
|
|
int (*statfs) (struct dentry *, struct kstatfs *);
|
|
int (*remount_fs) (struct super_block *, int *, char *);
|
|
void (*umount_begin) (struct super_block *);
|
|
int (*show_options)(struct seq_file *, struct vfsmount *);
|
|
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
|
|
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
|
|
int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
|
|
|
|
locking rules:
|
|
All may block [not true, see below]
|
|
s_umount
|
|
alloc_inode:
|
|
destroy_inode:
|
|
dirty_inode: (must not sleep)
|
|
write_inode:
|
|
drop_inode: !!!inode_lock!!!
|
|
evict_inode:
|
|
put_super: write
|
|
write_super: read
|
|
sync_fs: read
|
|
freeze_fs: read
|
|
unfreeze_fs: read
|
|
statfs: maybe(read) (see below)
|
|
remount_fs: write
|
|
umount_begin: no
|
|
show_options: no (namespace_sem)
|
|
quota_read: no (see below)
|
|
quota_write: no (see below)
|
|
bdev_try_to_free_page: no (see below)
|
|
|
|
->statfs() has s_umount (shared) when called by ustat(2) (native or
|
|
compat), but that's an accident of bad API; s_umount is used to pin
|
|
the superblock down when we only have dev_t given us by userland to
|
|
identify the superblock. Everything else (statfs(), fstatfs(), etc.)
|
|
doesn't hold it when calling ->statfs() - superblock is pinned down
|
|
by resolving the pathname passed to syscall.
|
|
->quota_read() and ->quota_write() functions are both guaranteed to
|
|
be the only ones operating on the quota file by the quota code (via
|
|
dqio_sem) (unless an admin really wants to screw up something and
|
|
writes to quota files with quotas on). For other details about locking
|
|
see also dquot_operations section.
|
|
->bdev_try_to_free_page is called from the ->releasepage handler of
|
|
the block device inode. See there for more details.
|
|
|
|
--------------------------- file_system_type ---------------------------
|
|
prototypes:
|
|
int (*get_sb) (struct file_system_type *, int,
|
|
const char *, void *, struct vfsmount *);
|
|
struct dentry *(*mount) (struct file_system_type *, int,
|
|
const char *, void *);
|
|
void (*kill_sb) (struct super_block *);
|
|
locking rules:
|
|
may block
|
|
get_sb yes
|
|
mount yes
|
|
kill_sb yes
|
|
|
|
->get_sb() returns error or 0 with locked superblock attached to the vfsmount
|
|
(exclusive on ->s_umount).
|
|
->mount() returns ERR_PTR or the root dentry.
|
|
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
|
|
unlocks and drops the reference.
|
|
|
|
--------------------------- address_space_operations --------------------------
|
|
prototypes:
|
|
int (*writepage)(struct page *page, struct writeback_control *wbc);
|
|
int (*readpage)(struct file *, struct page *);
|
|
int (*sync_page)(struct page *);
|
|
int (*writepages)(struct address_space *, struct writeback_control *);
|
|
int (*set_page_dirty)(struct page *page);
|
|
int (*readpages)(struct file *filp, struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages);
|
|
int (*write_begin)(struct file *, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata);
|
|
int (*write_end)(struct file *, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata);
|
|
sector_t (*bmap)(struct address_space *, sector_t);
|
|
int (*invalidatepage) (struct page *, unsigned long);
|
|
int (*releasepage) (struct page *, int);
|
|
void (*freepage)(struct page *);
|
|
int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
|
|
loff_t offset, unsigned long nr_segs);
|
|
int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
|
|
unsigned long *);
|
|
int (*migratepage)(struct address_space *, struct page *, struct page *);
|
|
int (*launder_page)(struct page *);
|
|
int (*is_partially_uptodate)(struct page *, read_descriptor_t *, unsigned long);
|
|
int (*error_remove_page)(struct address_space *, struct page *);
|
|
|
|
locking rules:
|
|
All except set_page_dirty and freepage may block
|
|
|
|
PageLocked(page) i_mutex
|
|
writepage: yes, unlocks (see below)
|
|
readpage: yes, unlocks
|
|
sync_page: maybe
|
|
writepages:
|
|
set_page_dirty no
|
|
readpages:
|
|
write_begin: locks the page yes
|
|
write_end: yes, unlocks yes
|
|
bmap:
|
|
invalidatepage: yes
|
|
releasepage: yes
|
|
freepage: yes
|
|
direct_IO:
|
|
get_xip_mem: maybe
|
|
migratepage: yes (both)
|
|
launder_page: yes
|
|
is_partially_uptodate: yes
|
|
error_remove_page: yes
|
|
|
|
->write_begin(), ->write_end(), ->sync_page() and ->readpage()
|
|
may be called from the request handler (/dev/loop).
|
|
|
|
->readpage() unlocks the page, either synchronously or via I/O
|
|
completion.
|
|
|
|
->readpages() populates the pagecache with the passed pages and starts
|
|
I/O against them. They come unlocked upon I/O completion.
|
|
|
|
->writepage() is used for two purposes: for "memory cleansing" and for
|
|
"sync". These are quite different operations and the behaviour may differ
|
|
depending upon the mode.
|
|
|
|
If writepage is called for sync (wbc->sync_mode != WBC_SYNC_NONE) then
|
|
it *must* start I/O against the page, even if that would involve
|
|
blocking on in-progress I/O.
|
|
|
|
If writepage is called for memory cleansing (sync_mode ==
|
|
WBC_SYNC_NONE) then its role is to get as much writeout underway as
|
|
possible. So writepage should try to avoid blocking against
|
|
currently-in-progress I/O.
|
|
|
|
If the filesystem is not called for "sync" and it determines that it
|
|
would need to block against in-progress I/O to be able to start new I/O
|
|
against the page the filesystem should redirty the page with
|
|
redirty_page_for_writepage(), then unlock the page and return zero.
|
|
This may also be done to avoid internal deadlocks, but rarely.
|
|
|
|
If the filesystem is called for sync then it must wait on any
|
|
in-progress I/O and then start new I/O.
|
|
|
|
The filesystem should unlock the page synchronously, before returning to the
|
|
caller, unless ->writepage() returns special WRITEPAGE_ACTIVATE
|
|
value. WRITEPAGE_ACTIVATE means that page cannot really be written out
|
|
currently, and VM should stop calling ->writepage() on this page for some
|
|
time. VM does this by moving page to the head of the active list, hence the
|
|
name.
|
|
|
|
Unless the filesystem is going to redirty_page_for_writepage(), unlock the page
|
|
and return zero, writepage *must* run set_page_writeback() against the page,
|
|
followed by unlocking it. Once set_page_writeback() has been run against the
|
|
page, write I/O can be submitted and the write I/O completion handler must run
|
|
end_page_writeback() once the I/O is complete. If no I/O is submitted, the
|
|
filesystem must run end_page_writeback() against the page before returning from
|
|
writepage.
|
|
|
|
That is: after 2.5.12, pages which are under writeout are *not* locked. Note,
|
|
if the filesystem needs the page to be locked during writeout, that is ok, too,
|
|
the page is allowed to be unlocked at any point in time between the calls to
|
|
set_page_writeback() and end_page_writeback().
|
|
|
|
Note, failure to run either redirty_page_for_writepage() or the combination of
|
|
set_page_writeback()/end_page_writeback() on a page submitted to writepage
|
|
will leave the page itself marked clean but it will be tagged as dirty in the
|
|
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
|
|
in the filesystem like having dirty inodes at umount and losing written data.
|
|
|
|
->sync_page() locking rules are not well-defined - usually it is called
|
|
with lock on page, but that is not guaranteed. Considering the currently
|
|
existing instances of this method ->sync_page() itself doesn't look
|
|
well-defined...
|
|
|
|
->writepages() is used for periodic writeback and for syscall-initiated
|
|
sync operations. The address_space should start I/O against at least
|
|
*nr_to_write pages. *nr_to_write must be decremented for each page which is
|
|
written. The address_space implementation may write more (or less) pages
|
|
than *nr_to_write asks for, but it should try to be reasonably close. If
|
|
nr_to_write is NULL, all dirty pages must be written.
|
|
|
|
writepages should _only_ write pages which are present on
|
|
mapping->io_pages.
|
|
|
|
->set_page_dirty() is called from various places in the kernel
|
|
when the target page is marked as needing writeback. It may be called
|
|
under spinlock (it cannot block) and is sometimes called with the page
|
|
not locked.
|
|
|
|
->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
|
|
filesystems and by the swapper. The latter will eventually go away. Please,
|
|
keep it that way and don't breed new callers.
|
|
|
|
->invalidatepage() is called when the filesystem must attempt to drop
|
|
some or all of the buffers from the page when it is being truncated. It
|
|
returns zero on success. If ->invalidatepage is zero, the kernel uses
|
|
block_invalidatepage() instead.
|
|
|
|
->releasepage() is called when the kernel is about to try to drop the
|
|
buffers from the page in preparation for freeing it. It returns zero to
|
|
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
|
|
the kernel assumes that the fs has no private interest in the buffers.
|
|
|
|
->freepage() is called when the kernel is done dropping the page
|
|
from the page cache.
|
|
|
|
->launder_page() may be called prior to releasing a page if
|
|
it is still found to be dirty. It returns zero if the page was successfully
|
|
cleaned, or an error value if not. Note that in order to prevent the page
|
|
getting mapped back in and redirtied, it needs to be kept locked
|
|
across the entire operation.
|
|
|
|
----------------------- file_lock_operations ------------------------------
|
|
prototypes:
|
|
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
|
|
void (*fl_release_private)(struct file_lock *);
|
|
|
|
|
|
locking rules:
|
|
file_lock_lock may block
|
|
fl_copy_lock: yes no
|
|
fl_release_private: maybe no
|
|
|
|
----------------------- lock_manager_operations ---------------------------
|
|
prototypes:
|
|
int (*fl_compare_owner)(struct file_lock *, struct file_lock *);
|
|
void (*fl_notify)(struct file_lock *); /* unblock callback */
|
|
int (*fl_grant)(struct file_lock *, struct file_lock *, int);
|
|
void (*fl_release_private)(struct file_lock *);
|
|
void (*fl_break)(struct file_lock *); /* break_lease callback */
|
|
int (*fl_mylease)(struct file_lock *, struct file_lock *);
|
|
int (*fl_change)(struct file_lock **, int);
|
|
|
|
locking rules:
|
|
file_lock_lock may block
|
|
fl_compare_owner: yes no
|
|
fl_notify: yes no
|
|
fl_grant: no no
|
|
fl_release_private: maybe no
|
|
fl_break: yes no
|
|
fl_mylease: yes no
|
|
fl_change yes no
|
|
|
|
--------------------------- buffer_head -----------------------------------
|
|
prototypes:
|
|
void (*b_end_io)(struct buffer_head *bh, int uptodate);
|
|
|
|
locking rules:
|
|
called from interrupts. In other words, extreme care is needed here.
|
|
bh is locked, but that's all warranties we have here. Currently only RAID1,
|
|
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
|
|
call this method upon the IO completion.
|
|
|
|
--------------------------- block_device_operations -----------------------
|
|
prototypes:
|
|
int (*open) (struct block_device *, fmode_t);
|
|
int (*release) (struct gendisk *, fmode_t);
|
|
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
int (*direct_access) (struct block_device *, sector_t, void **, unsigned long *);
|
|
int (*media_changed) (struct gendisk *);
|
|
void (*unlock_native_capacity) (struct gendisk *);
|
|
int (*revalidate_disk) (struct gendisk *);
|
|
int (*getgeo)(struct block_device *, struct hd_geometry *);
|
|
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
|
|
|
|
locking rules:
|
|
bd_mutex
|
|
open: yes
|
|
release: yes
|
|
ioctl: no
|
|
compat_ioctl: no
|
|
direct_access: no
|
|
media_changed: no
|
|
unlock_native_capacity: no
|
|
revalidate_disk: no
|
|
getgeo: no
|
|
swap_slot_free_notify: no (see below)
|
|
|
|
media_changed, unlock_native_capacity and revalidate_disk are called only from
|
|
check_disk_change().
|
|
|
|
swap_slot_free_notify is called with swap_lock and sometimes the page lock
|
|
held.
|
|
|
|
|
|
--------------------------- file_operations -------------------------------
|
|
prototypes:
|
|
loff_t (*llseek) (struct file *, loff_t, int);
|
|
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
|
|
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
|
|
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
|
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
|
int (*readdir) (struct file *, void *, filldir_t);
|
|
unsigned int (*poll) (struct file *, struct poll_table_struct *);
|
|
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
|
|
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
|
|
int (*mmap) (struct file *, struct vm_area_struct *);
|
|
int (*open) (struct inode *, struct file *);
|
|
int (*flush) (struct file *);
|
|
int (*release) (struct inode *, struct file *);
|
|
int (*fsync) (struct file *, int datasync);
|
|
int (*aio_fsync) (struct kiocb *, int datasync);
|
|
int (*fasync) (int, struct file *, int);
|
|
int (*lock) (struct file *, int, struct file_lock *);
|
|
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
|
|
loff_t *);
|
|
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
|
|
loff_t *);
|
|
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t,
|
|
void __user *);
|
|
ssize_t (*sendpage) (struct file *, struct page *, int, size_t,
|
|
loff_t *, int);
|
|
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
|
|
unsigned long, unsigned long, unsigned long);
|
|
int (*check_flags)(int);
|
|
int (*flock) (struct file *, int, struct file_lock *);
|
|
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,
|
|
size_t, unsigned int);
|
|
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
|
|
size_t, unsigned int);
|
|
int (*setlease)(struct file *, long, struct file_lock **);
|
|
};
|
|
|
|
locking rules:
|
|
All may block except for ->setlease.
|
|
No VFS locks held on entry except for ->fsync and ->setlease.
|
|
|
|
->fsync() has i_mutex on inode.
|
|
|
|
->setlease has the file_list_lock held and must not sleep.
|
|
|
|
->llseek() locking has moved from llseek to the individual llseek
|
|
implementations. If your fs is not using generic_file_llseek, you
|
|
need to acquire and release the appropriate locks in your ->llseek().
|
|
For many filesystems, it is probably safe to acquire the inode
|
|
mutex or just to use i_size_read() instead.
|
|
Note: this does not protect the file->f_pos against concurrent modifications
|
|
since this is something the userspace has to take care about.
|
|
|
|
->fasync() is responsible for maintaining the FASYNC bit in filp->f_flags.
|
|
Most instances call fasync_helper(), which does that maintenance, so it's
|
|
not normally something one needs to worry about. Return values > 0 will be
|
|
mapped to zero in the VFS layer.
|
|
|
|
->readdir() and ->ioctl() on directories must be changed. Ideally we would
|
|
move ->readdir() to inode_operations and use a separate method for directory
|
|
->ioctl() or kill the latter completely. One of the problems is that for
|
|
anything that resembles union-mount we won't have a struct file for all
|
|
components. And there are other reasons why the current interface is a mess...
|
|
|
|
->read on directories probably must go away - we should just enforce -EISDIR
|
|
in sys_read() and friends.
|
|
|
|
--------------------------- dquot_operations -------------------------------
|
|
prototypes:
|
|
int (*write_dquot) (struct dquot *);
|
|
int (*acquire_dquot) (struct dquot *);
|
|
int (*release_dquot) (struct dquot *);
|
|
int (*mark_dirty) (struct dquot *);
|
|
int (*write_info) (struct super_block *, int);
|
|
|
|
These operations are intended to be more or less wrapping functions that ensure
|
|
a proper locking wrt the filesystem and call the generic quota operations.
|
|
|
|
What filesystem should expect from the generic quota functions:
|
|
|
|
FS recursion Held locks when called
|
|
write_dquot: yes dqonoff_sem or dqptr_sem
|
|
acquire_dquot: yes dqonoff_sem or dqptr_sem
|
|
release_dquot: yes dqonoff_sem or dqptr_sem
|
|
mark_dirty: no -
|
|
write_info: yes dqonoff_sem
|
|
|
|
FS recursion means calling ->quota_read() and ->quota_write() from superblock
|
|
operations.
|
|
|
|
More details about quota locking can be found in fs/dquot.c.
|
|
|
|
--------------------------- vm_operations_struct -----------------------------
|
|
prototypes:
|
|
void (*open)(struct vm_area_struct*);
|
|
void (*close)(struct vm_area_struct*);
|
|
int (*fault)(struct vm_area_struct*, struct vm_fault *);
|
|
int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);
|
|
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
|
|
|
|
locking rules:
|
|
mmap_sem PageLocked(page)
|
|
open: yes
|
|
close: yes
|
|
fault: yes can return with page locked
|
|
page_mkwrite: yes can return with page locked
|
|
access: yes
|
|
|
|
->fault() is called when a previously not present pte is about
|
|
to be faulted in. The filesystem must find and return the page associated
|
|
with the passed in "pgoff" in the vm_fault structure. If it is possible that
|
|
the page may be truncated and/or invalidated, then the filesystem must lock
|
|
the page, then ensure it is not already truncated (the page lock will block
|
|
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
|
|
locked. The VM will unlock the page.
|
|
|
|
->page_mkwrite() is called when a previously read-only pte is
|
|
about to become writeable. The filesystem again must ensure that there are
|
|
no truncate/invalidate races, and then return with the page locked. If
|
|
the page has been truncated, the filesystem should not look up a new page
|
|
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
|
|
will cause the VM to retry the fault.
|
|
|
|
->access() is called when get_user_pages() fails in
|
|
acces_process_vm(), typically used to debug a process through
|
|
/proc/pid/mem or ptrace. This function is needed only for
|
|
VM_IO | VM_PFNMAP VMAs.
|
|
|
|
================================================================================
|
|
Dubious stuff
|
|
|
|
(if you break something or notice that it is broken and do not fix it yourself
|
|
- at least put it here)
|