2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 00:54:15 +08:00
linux-next/arch/x86/kernel/setup.c
Alok Kataria 9863c90f68 x86, vmware: Remove deprecated VMI kernel support
With the recent innovations in CPU hardware acceleration technologies
from Intel and AMD, VMware ran a few experiments to compare these
techniques to guest paravirtualization technique on VMware's platform.
These hardware assisted virtualization techniques have outperformed the
performance benefits provided by VMI in most of the workloads. VMware
expects that these hardware features will be ubiquitous in a couple of
years, as a result, VMware has started a phased retirement of this
feature from the hypervisor.

Please note that VMI has always been an optimization and non-VMI kernels
still work fine on VMware's platform.
Latest versions of VMware's product which support VMI are,
Workstation 7.0 and VSphere 4.0 on ESX side, future maintainence
releases for these products will continue supporting VMI.

For more details about VMI retirement take a look at this,
http://blogs.vmware.com/guestosguide/2009/09/vmi-retirement.html

This feature removal was scheduled for 2.6.37 back in September 2009.

Signed-off-by: Alok N Kataria <akataria@vmware.com>
LKML-Reference: <1282600151.19396.22.camel@ank32.eng.vmware.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-08-23 15:18:50 -07:00

1088 lines
26 KiB
C

/*
* Copyright (C) 1995 Linus Torvalds
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*
* Memory region support
* David Parsons <orc@pell.chi.il.us>, July-August 1999
*
* Added E820 sanitization routine (removes overlapping memory regions);
* Brian Moyle <bmoyle@mvista.com>, February 2001
*
* Moved CPU detection code to cpu/${cpu}.c
* Patrick Mochel <mochel@osdl.org>, March 2002
*
* Provisions for empty E820 memory regions (reported by certain BIOSes).
* Alex Achenbach <xela@slit.de>, December 2002.
*
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/sfi.h>
#include <linux/apm_bios.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/console.h>
#include <linux/mca.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/init.h>
#include <linux/edd.h>
#include <linux/iscsi_ibft.h>
#include <linux/nodemask.h>
#include <linux/kexec.h>
#include <linux/dmi.h>
#include <linux/pfn.h>
#include <linux/pci.h>
#include <asm/pci-direct.h>
#include <linux/init_ohci1394_dma.h>
#include <linux/kvm_para.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/kallsyms.h>
#include <linux/cpufreq.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <linux/percpu.h>
#include <linux/crash_dump.h>
#include <linux/tboot.h>
#include <video/edid.h>
#include <asm/mtrr.h>
#include <asm/apic.h>
#include <asm/trampoline.h>
#include <asm/e820.h>
#include <asm/mpspec.h>
#include <asm/setup.h>
#include <asm/efi.h>
#include <asm/timer.h>
#include <asm/i8259.h>
#include <asm/sections.h>
#include <asm/dmi.h>
#include <asm/io_apic.h>
#include <asm/ist.h>
#include <asm/setup_arch.h>
#include <asm/bios_ebda.h>
#include <asm/cacheflush.h>
#include <asm/processor.h>
#include <asm/bugs.h>
#include <asm/system.h>
#include <asm/vsyscall.h>
#include <asm/cpu.h>
#include <asm/desc.h>
#include <asm/dma.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/paravirt.h>
#include <asm/hypervisor.h>
#include <asm/olpc_ofw.h>
#include <asm/percpu.h>
#include <asm/topology.h>
#include <asm/apicdef.h>
#include <asm/k8.h>
#ifdef CONFIG_X86_64
#include <asm/numa_64.h>
#endif
#include <asm/mce.h>
/*
* end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
* The direct mapping extends to max_pfn_mapped, so that we can directly access
* apertures, ACPI and other tables without having to play with fixmaps.
*/
unsigned long max_low_pfn_mapped;
unsigned long max_pfn_mapped;
#ifdef CONFIG_DMI
RESERVE_BRK(dmi_alloc, 65536);
#endif
unsigned int boot_cpu_id __read_mostly;
static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
unsigned long _brk_end = (unsigned long)__brk_base;
#ifdef CONFIG_X86_64
int default_cpu_present_to_apicid(int mps_cpu)
{
return __default_cpu_present_to_apicid(mps_cpu);
}
int default_check_phys_apicid_present(int phys_apicid)
{
return __default_check_phys_apicid_present(phys_apicid);
}
#endif
#ifndef CONFIG_DEBUG_BOOT_PARAMS
struct boot_params __initdata boot_params;
#else
struct boot_params boot_params;
#endif
/*
* Machine setup..
*/
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource bss_resource = {
.name = "Kernel bss",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
#ifdef CONFIG_X86_32
/* cpu data as detected by the assembly code in head.S */
struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1};
/* common cpu data for all cpus */
struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1};
EXPORT_SYMBOL(boot_cpu_data);
static void set_mca_bus(int x)
{
#ifdef CONFIG_MCA
MCA_bus = x;
#endif
}
unsigned int def_to_bigsmp;
/* for MCA, but anyone else can use it if they want */
unsigned int machine_id;
unsigned int machine_submodel_id;
unsigned int BIOS_revision;
struct apm_info apm_info;
EXPORT_SYMBOL(apm_info);
#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
struct ist_info ist_info;
EXPORT_SYMBOL(ist_info);
#else
struct ist_info ist_info;
#endif
#else
struct cpuinfo_x86 boot_cpu_data __read_mostly = {
.x86_phys_bits = MAX_PHYSMEM_BITS,
};
EXPORT_SYMBOL(boot_cpu_data);
#endif
#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
unsigned long mmu_cr4_features;
#else
unsigned long mmu_cr4_features = X86_CR4_PAE;
#endif
/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
int bootloader_type, bootloader_version;
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
extern int root_mountflags;
unsigned long saved_video_mode;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE];
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void __init copy_edd(void)
{
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof(edd.mbr_signature));
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void __init copy_edd(void)
{
}
#endif
void * __init extend_brk(size_t size, size_t align)
{
size_t mask = align - 1;
void *ret;
BUG_ON(_brk_start == 0);
BUG_ON(align & mask);
_brk_end = (_brk_end + mask) & ~mask;
BUG_ON((char *)(_brk_end + size) > __brk_limit);
ret = (void *)_brk_end;
_brk_end += size;
memset(ret, 0, size);
return ret;
}
#ifdef CONFIG_X86_64
static void __init init_gbpages(void)
{
if (direct_gbpages && cpu_has_gbpages)
printk(KERN_INFO "Using GB pages for direct mapping\n");
else
direct_gbpages = 0;
}
#else
static inline void init_gbpages(void)
{
}
#endif
static void __init reserve_brk(void)
{
if (_brk_end > _brk_start)
reserve_early(__pa(_brk_start), __pa(_brk_end), "BRK");
/* Mark brk area as locked down and no longer taking any
new allocations */
_brk_start = 0;
}
#ifdef CONFIG_BLK_DEV_INITRD
#define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT)
static void __init relocate_initrd(void)
{
/* Assume only end is not page aligned */
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
u64 ramdisk_size = boot_params.hdr.ramdisk_size;
u64 area_size = PAGE_ALIGN(ramdisk_size);
u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
u64 ramdisk_here;
unsigned long slop, clen, mapaddr;
char *p, *q;
/* We need to move the initrd down into lowmem */
ramdisk_here = find_e820_area(0, end_of_lowmem, area_size,
PAGE_SIZE);
if (ramdisk_here == -1ULL)
panic("Cannot find place for new RAMDISK of size %lld\n",
ramdisk_size);
/* Note: this includes all the lowmem currently occupied by
the initrd, we rely on that fact to keep the data intact. */
reserve_early(ramdisk_here, ramdisk_here + area_size,
"NEW RAMDISK");
initrd_start = ramdisk_here + PAGE_OFFSET;
initrd_end = initrd_start + ramdisk_size;
printk(KERN_INFO "Allocated new RAMDISK: %08llx - %08llx\n",
ramdisk_here, ramdisk_here + ramdisk_size);
q = (char *)initrd_start;
/* Copy any lowmem portion of the initrd */
if (ramdisk_image < end_of_lowmem) {
clen = end_of_lowmem - ramdisk_image;
p = (char *)__va(ramdisk_image);
memcpy(q, p, clen);
q += clen;
ramdisk_image += clen;
ramdisk_size -= clen;
}
/* Copy the highmem portion of the initrd */
while (ramdisk_size) {
slop = ramdisk_image & ~PAGE_MASK;
clen = ramdisk_size;
if (clen > MAX_MAP_CHUNK-slop)
clen = MAX_MAP_CHUNK-slop;
mapaddr = ramdisk_image & PAGE_MASK;
p = early_memremap(mapaddr, clen+slop);
memcpy(q, p+slop, clen);
early_iounmap(p, clen+slop);
q += clen;
ramdisk_image += clen;
ramdisk_size -= clen;
}
/* high pages is not converted by early_res_to_bootmem */
ramdisk_image = boot_params.hdr.ramdisk_image;
ramdisk_size = boot_params.hdr.ramdisk_size;
printk(KERN_INFO "Move RAMDISK from %016llx - %016llx to"
" %08llx - %08llx\n",
ramdisk_image, ramdisk_image + ramdisk_size - 1,
ramdisk_here, ramdisk_here + ramdisk_size - 1);
}
static void __init reserve_initrd(void)
{
/* Assume only end is not page aligned */
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
u64 ramdisk_size = boot_params.hdr.ramdisk_size;
u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
if (!boot_params.hdr.type_of_loader ||
!ramdisk_image || !ramdisk_size)
return; /* No initrd provided by bootloader */
initrd_start = 0;
if (ramdisk_size >= (end_of_lowmem>>1)) {
free_early(ramdisk_image, ramdisk_end);
printk(KERN_ERR "initrd too large to handle, "
"disabling initrd\n");
return;
}
printk(KERN_INFO "RAMDISK: %08llx - %08llx\n", ramdisk_image,
ramdisk_end);
if (ramdisk_end <= end_of_lowmem) {
/* All in lowmem, easy case */
/*
* don't need to reserve again, already reserved early
* in i386_start_kernel
*/
initrd_start = ramdisk_image + PAGE_OFFSET;
initrd_end = initrd_start + ramdisk_size;
return;
}
relocate_initrd();
free_early(ramdisk_image, ramdisk_end);
}
#else
static void __init reserve_initrd(void)
{
}
#endif /* CONFIG_BLK_DEV_INITRD */
static void __init parse_setup_data(void)
{
struct setup_data *data;
u64 pa_data;
if (boot_params.hdr.version < 0x0209)
return;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_memremap(pa_data, PAGE_SIZE);
switch (data->type) {
case SETUP_E820_EXT:
parse_e820_ext(data, pa_data);
break;
default:
break;
}
pa_data = data->next;
early_iounmap(data, PAGE_SIZE);
}
}
static void __init e820_reserve_setup_data(void)
{
struct setup_data *data;
u64 pa_data;
int found = 0;
if (boot_params.hdr.version < 0x0209)
return;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_memremap(pa_data, sizeof(*data));
e820_update_range(pa_data, sizeof(*data)+data->len,
E820_RAM, E820_RESERVED_KERN);
found = 1;
pa_data = data->next;
early_iounmap(data, sizeof(*data));
}
if (!found)
return;
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
memcpy(&e820_saved, &e820, sizeof(struct e820map));
printk(KERN_INFO "extended physical RAM map:\n");
e820_print_map("reserve setup_data");
}
static void __init reserve_early_setup_data(void)
{
struct setup_data *data;
u64 pa_data;
char buf[32];
if (boot_params.hdr.version < 0x0209)
return;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_memremap(pa_data, sizeof(*data));
sprintf(buf, "setup data %x", data->type);
reserve_early(pa_data, pa_data+sizeof(*data)+data->len, buf);
pa_data = data->next;
early_iounmap(data, sizeof(*data));
}
}
/*
* --------- Crashkernel reservation ------------------------------
*/
#ifdef CONFIG_KEXEC
static inline unsigned long long get_total_mem(void)
{
unsigned long long total;
total = max_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
static void __init reserve_crashkernel(void)
{
unsigned long long total_mem;
unsigned long long crash_size, crash_base;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret != 0 || crash_size <= 0)
return;
/* 0 means: find the address automatically */
if (crash_base <= 0) {
const unsigned long long alignment = 16<<20; /* 16M */
crash_base = find_e820_area(alignment, ULONG_MAX, crash_size,
alignment);
if (crash_base == -1ULL) {
pr_info("crashkernel reservation failed - No suitable area found.\n");
return;
}
} else {
unsigned long long start;
start = find_e820_area(crash_base, ULONG_MAX, crash_size,
1<<20);
if (start != crash_base) {
pr_info("crashkernel reservation failed - memory is in use.\n");
return;
}
}
reserve_early(crash_base, crash_base + crash_size, "CRASH KERNEL");
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
}
#else
static void __init reserve_crashkernel(void)
{
}
#endif
static struct resource standard_io_resources[] = {
{ .name = "dma1", .start = 0x00, .end = 0x1f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic1", .start = 0x20, .end = 0x21,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer0", .start = 0x40, .end = 0x43,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer1", .start = 0x50, .end = 0x53,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x60, .end = 0x60,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x64, .end = 0x64,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "fpu", .start = 0xf0, .end = 0xff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
};
void __init reserve_standard_io_resources(void)
{
int i;
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
}
/*
* Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
* is_kdump_kernel() to determine if we are booting after a panic. Hence
* ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
*/
#ifdef CONFIG_CRASH_DUMP
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel. This option will be passed
* by kexec loader to the capture kernel.
*/
static int __init setup_elfcorehdr(char *arg)
{
char *end;
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &end);
return end > arg ? 0 : -EINVAL;
}
early_param("elfcorehdr", setup_elfcorehdr);
#endif
static __init void reserve_ibft_region(void)
{
unsigned long addr, size = 0;
addr = find_ibft_region(&size);
if (size)
reserve_early_overlap_ok(addr, addr + size, "ibft");
}
#ifdef CONFIG_X86_RESERVE_LOW_64K
static int __init dmi_low_memory_corruption(const struct dmi_system_id *d)
{
printk(KERN_NOTICE
"%s detected: BIOS may corrupt low RAM, working around it.\n",
d->ident);
e820_update_range(0, 0x10000, E820_RAM, E820_RESERVED);
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
return 0;
}
#endif
/* List of systems that have known low memory corruption BIOS problems */
static struct dmi_system_id __initdata bad_bios_dmi_table[] = {
#ifdef CONFIG_X86_RESERVE_LOW_64K
{
.callback = dmi_low_memory_corruption,
.ident = "AMI BIOS",
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "American Megatrends Inc."),
},
},
{
.callback = dmi_low_memory_corruption,
.ident = "Phoenix BIOS",
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies"),
},
},
{
.callback = dmi_low_memory_corruption,
.ident = "Phoenix/MSC BIOS",
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix/MSC"),
},
},
/*
* AMI BIOS with low memory corruption was found on Intel DG45ID and
* DG45FC boards.
* It has a different DMI_BIOS_VENDOR = "Intel Corp.", for now we will
* match only DMI_BOARD_NAME and see if there is more bad products
* with this vendor.
*/
{
.callback = dmi_low_memory_corruption,
.ident = "AMI BIOS",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "DG45ID"),
},
},
{
.callback = dmi_low_memory_corruption,
.ident = "AMI BIOS",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "DG45FC"),
},
},
/*
* The Dell Inspiron Mini 1012 has DMI_BIOS_VENDOR = "Dell Inc.", so
* match on the product name.
*/
{
.callback = dmi_low_memory_corruption,
.ident = "Phoenix BIOS",
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1012"),
},
},
#endif
{}
};
static void __init trim_bios_range(void)
{
/*
* A special case is the first 4Kb of memory;
* This is a BIOS owned area, not kernel ram, but generally
* not listed as such in the E820 table.
*/
e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
/*
* special case: Some BIOSen report the PC BIOS
* area (640->1Mb) as ram even though it is not.
* take them out.
*/
e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
}
/*
* Determine if we were loaded by an EFI loader. If so, then we have also been
* passed the efi memmap, systab, etc., so we should use these data structures
* for initialization. Note, the efi init code path is determined by the
* global efi_enabled. This allows the same kernel image to be used on existing
* systems (with a traditional BIOS) as well as on EFI systems.
*/
/*
* setup_arch - architecture-specific boot-time initializations
*
* Note: On x86_64, fixmaps are ready for use even before this is called.
*/
void __init setup_arch(char **cmdline_p)
{
int acpi = 0;
int k8 = 0;
#ifdef CONFIG_X86_32
memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
visws_early_detect();
#else
printk(KERN_INFO "Command line: %s\n", boot_command_line);
#endif
/*
* If we have OLPC OFW, we might end up relocating the fixmap due to
* reserve_top(), so do this before touching the ioremap area.
*/
olpc_ofw_detect();
early_trap_init();
early_cpu_init();
early_ioremap_init();
setup_olpc_ofw_pgd();
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
screen_info = boot_params.screen_info;
edid_info = boot_params.edid_info;
#ifdef CONFIG_X86_32
apm_info.bios = boot_params.apm_bios_info;
ist_info = boot_params.ist_info;
if (boot_params.sys_desc_table.length != 0) {
set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2);
machine_id = boot_params.sys_desc_table.table[0];
machine_submodel_id = boot_params.sys_desc_table.table[1];
BIOS_revision = boot_params.sys_desc_table.table[2];
}
#endif
saved_video_mode = boot_params.hdr.vid_mode;
bootloader_type = boot_params.hdr.type_of_loader;
if ((bootloader_type >> 4) == 0xe) {
bootloader_type &= 0xf;
bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
}
bootloader_version = bootloader_type & 0xf;
bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
#endif
#ifdef CONFIG_EFI
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
#ifdef CONFIG_X86_32
"EL32",
#else
"EL64",
#endif
4)) {
efi_enabled = 1;
efi_reserve_early();
}
#endif
x86_init.oem.arch_setup();
setup_memory_map();
parse_setup_data();
/* update the e820_saved too */
e820_reserve_setup_data();
copy_edd();
if (!boot_params.hdr.root_flags)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = _brk_end;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(&__bss_start);
bss_resource.end = virt_to_phys(&__bss_stop)-1;
#ifdef CONFIG_CMDLINE_BOOL
#ifdef CONFIG_CMDLINE_OVERRIDE
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
if (builtin_cmdline[0]) {
/* append boot loader cmdline to builtin */
strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
}
#endif
#endif
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
/*
* x86_configure_nx() is called before parse_early_param() to detect
* whether hardware doesn't support NX (so that the early EHCI debug
* console setup can safely call set_fixmap()). It may then be called
* again from within noexec_setup() during parsing early parameters
* to honor the respective command line option.
*/
x86_configure_nx();
parse_early_param();
x86_report_nx();
/* after early param, so could get panic from serial */
reserve_early_setup_data();
if (acpi_mps_check()) {
#ifdef CONFIG_X86_LOCAL_APIC
disable_apic = 1;
#endif
setup_clear_cpu_cap(X86_FEATURE_APIC);
}
#ifdef CONFIG_PCI
if (pci_early_dump_regs)
early_dump_pci_devices();
#endif
finish_e820_parsing();
if (efi_enabled)
efi_init();
dmi_scan_machine();
dmi_check_system(bad_bios_dmi_table);
/*
* VMware detection requires dmi to be available, so this
* needs to be done after dmi_scan_machine, for the BP.
*/
init_hypervisor_platform();
x86_init.resources.probe_roms();
/* after parse_early_param, so could debug it */
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &data_resource);
insert_resource(&iomem_resource, &bss_resource);
trim_bios_range();
#ifdef CONFIG_X86_32
if (ppro_with_ram_bug()) {
e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
E820_RESERVED);
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
printk(KERN_INFO "fixed physical RAM map:\n");
e820_print_map("bad_ppro");
}
#else
early_gart_iommu_check();
#endif
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
max_pfn = e820_end_of_ram_pfn();
/* preallocate 4k for mptable mpc */
early_reserve_e820_mpc_new();
/* update e820 for memory not covered by WB MTRRs */
mtrr_bp_init();
if (mtrr_trim_uncached_memory(max_pfn))
max_pfn = e820_end_of_ram_pfn();
#ifdef CONFIG_X86_32
/* max_low_pfn get updated here */
find_low_pfn_range();
#else
num_physpages = max_pfn;
check_x2apic();
/* How many end-of-memory variables you have, grandma! */
/* need this before calling reserve_initrd */
if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
max_low_pfn = e820_end_of_low_ram_pfn();
else
max_low_pfn = max_pfn;
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
max_pfn_mapped = KERNEL_IMAGE_SIZE >> PAGE_SHIFT;
#endif
#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
setup_bios_corruption_check();
#endif
printk(KERN_DEBUG "initial memory mapped : 0 - %08lx\n",
max_pfn_mapped<<PAGE_SHIFT);
reserve_brk();
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
reserve_ibft_region();
reserve_trampoline_memory();
#ifdef CONFIG_ACPI_SLEEP
/*
* Reserve low memory region for sleep support.
* even before init_memory_mapping
*/
acpi_reserve_wakeup_memory();
#endif
init_gbpages();
/* max_pfn_mapped is updated here */
max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
max_pfn_mapped = max_low_pfn_mapped;
#ifdef CONFIG_X86_64
if (max_pfn > max_low_pfn) {
max_pfn_mapped = init_memory_mapping(1UL<<32,
max_pfn<<PAGE_SHIFT);
/* can we preseve max_low_pfn ?*/
max_low_pfn = max_pfn;
}
#endif
/*
* NOTE: On x86-32, only from this point on, fixmaps are ready for use.
*/
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
if (init_ohci1394_dma_early)
init_ohci1394_dma_on_all_controllers();
#endif
reserve_initrd();
reserve_crashkernel();
vsmp_init();
io_delay_init();
/*
* Parse the ACPI tables for possible boot-time SMP configuration.
*/
acpi_boot_table_init();
early_acpi_boot_init();
#ifdef CONFIG_ACPI_NUMA
/*
* Parse SRAT to discover nodes.
*/
acpi = acpi_numa_init();
#endif
#ifdef CONFIG_K8_NUMA
if (!acpi)
k8 = !k8_numa_init(0, max_pfn);
#endif
initmem_init(0, max_pfn, acpi, k8);
#ifndef CONFIG_NO_BOOTMEM
early_res_to_bootmem(0, max_low_pfn<<PAGE_SHIFT);
#endif
dma32_reserve_bootmem();
#ifdef CONFIG_KVM_CLOCK
kvmclock_init();
#endif
x86_init.paging.pagetable_setup_start(swapper_pg_dir);
paging_init();
x86_init.paging.pagetable_setup_done(swapper_pg_dir);
setup_trampoline_page_table();
tboot_probe();
#ifdef CONFIG_X86_64
map_vsyscall();
#endif
generic_apic_probe();
early_quirks();
/*
* Read APIC and some other early information from ACPI tables.
*/
acpi_boot_init();
sfi_init();
/*
* get boot-time SMP configuration:
*/
if (smp_found_config)
get_smp_config();
prefill_possible_map();
#ifdef CONFIG_X86_64
init_cpu_to_node();
#endif
init_apic_mappings();
ioapic_init_mappings();
/* need to wait for io_apic is mapped */
probe_nr_irqs_gsi();
kvm_guest_init();
e820_reserve_resources();
e820_mark_nosave_regions(max_low_pfn);
x86_init.resources.reserve_resources();
e820_setup_gap();
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
x86_init.oem.banner();
mcheck_init();
}
#ifdef CONFIG_X86_32
static struct resource video_ram_resource = {
.name = "Video RAM area",
.start = 0xa0000,
.end = 0xbffff,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
void __init i386_reserve_resources(void)
{
request_resource(&iomem_resource, &video_ram_resource);
reserve_standard_io_resources();
}
#endif /* CONFIG_X86_32 */