2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/acpi/osl.c
Linus Torvalds 9cf5c095b6 asm-generic cleanups
The asm-generic changes for 4.4 are mostly a series from Christoph Hellwig
 to clean up various abuses of headers in there. The patch to rename the
 io-64-nonatomic-*.h headers caused some conflicts with new users, so I
 added a workaround that we can remove in the next merge window.
 
 The only other patch is a warning fix from Marek Vasut
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIVAwUAVjzaf2CrR//JCVInAQImmhAA20fZ91sUlnA5skKNPT1phhF6Z7UF2Sx5
 nPKcHQD3HA3lT1OKfPBYvCo+loYflvXFLaQThVylVcnE/8ecAEMtft4nnGW2nXvh
 sZqHIZ8fszTB53cynAZKTjdobD1wu33Rq7XRzg0ugn1mdxFkOzCHW/xDRvWRR5TL
 rdQjzzgvn2PNlqFfHlh6cZ5ykShM36AIKs3WGA0H0Y/aYsE9GmDOAUp41q1mLXnA
 4lKQaIxoeOa+kmlsUB0wEHUecWWWJH4GAP+CtdKzTX9v12bGNhmiKUMCETG78BT3
 uL8irSqaViNwSAS9tBxSpqvmVUsa5aCA5M3MYiO+fH9ifd7wbR65g/wq39D3Pc01
 KnZ3BNVRW5XSA3c86pr8vbg/HOynUXK8TN0lzt6rEk8bjoPBNEDy5YWzy0t6reVe
 wX65F+ver8upjOKe9yl2Jsg+5Kcmy79GyYjLUY3TU2mZ+dIdScy/jIWatXe/OTKZ
 iB4Ctc4MDe9GDECmlPOWf98AXqsBUuKQiWKCN/OPxLtFOeWBvi4IzvFuO8QvnL9p
 jZcRDmIlIWAcDX/2wMnLjV+Hqi3EeReIrYznxTGnO7HHVInF555GP51vFaG5k+SN
 smJQAB0/sostmC1OCCqBKq5b6/li95/No7+0v0SUhJJ5o76AR5CcNsnolXesw1fu
 vTUkB/I66Hk=
 =dQKG
 -----END PGP SIGNATURE-----

Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic

Pull asm-generic cleanups from Arnd Bergmann:
 "The asm-generic changes for 4.4 are mostly a series from Christoph
  Hellwig to clean up various abuses of headers in there.  The patch to
  rename the io-64-nonatomic-*.h headers caused some conflicts with new
  users, so I added a workaround that we can remove in the next merge
  window.

  The only other patch is a warning fix from Marek Vasut"

* tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
  asm-generic: temporarily add back asm-generic/io-64-nonatomic*.h
  asm-generic: cmpxchg: avoid warnings from macro-ized cmpxchg() implementations
  gpio-mxc: stop including <asm-generic/bug>
  n_tracesink: stop including <asm-generic/bug>
  n_tracerouter: stop including <asm-generic/bug>
  mlx5: stop including <asm-generic/kmap_types.h>
  hifn_795x: stop including <asm-generic/kmap_types.h>
  drbd: stop including <asm-generic/kmap_types.h>
  move count_zeroes.h out of asm-generic
  move io-64-nonatomic*.h out of asm-generic
2015-11-06 14:22:15 -08:00

1920 lines
45 KiB
C

/*
* acpi_osl.c - OS-dependent functions ($Revision: 83 $)
*
* Copyright (C) 2000 Andrew Henroid
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (c) 2008 Intel Corporation
* Author: Matthew Wilcox <willy@linux.intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/nmi.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <linux/ioport.h>
#include <linux/list.h>
#include <linux/jiffies.h>
#include <linux/semaphore.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include "internal.h"
#define _COMPONENT ACPI_OS_SERVICES
ACPI_MODULE_NAME("osl");
struct acpi_os_dpc {
acpi_osd_exec_callback function;
void *context;
struct work_struct work;
};
#ifdef CONFIG_ACPI_CUSTOM_DSDT
#include CONFIG_ACPI_CUSTOM_DSDT_FILE
#endif
#ifdef ENABLE_DEBUGGER
#include <linux/kdb.h>
/* stuff for debugger support */
int acpi_in_debugger;
EXPORT_SYMBOL(acpi_in_debugger);
#endif /*ENABLE_DEBUGGER */
static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
u32 pm1b_ctrl);
static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
u32 val_b);
static acpi_osd_handler acpi_irq_handler;
static void *acpi_irq_context;
static struct workqueue_struct *kacpid_wq;
static struct workqueue_struct *kacpi_notify_wq;
static struct workqueue_struct *kacpi_hotplug_wq;
static bool acpi_os_initialized;
unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
/*
* This list of permanent mappings is for memory that may be accessed from
* interrupt context, where we can't do the ioremap().
*/
struct acpi_ioremap {
struct list_head list;
void __iomem *virt;
acpi_physical_address phys;
acpi_size size;
unsigned long refcount;
};
static LIST_HEAD(acpi_ioremaps);
static DEFINE_MUTEX(acpi_ioremap_lock);
static void __init acpi_osi_setup_late(void);
/*
* The story of _OSI(Linux)
*
* From pre-history through Linux-2.6.22,
* Linux responded TRUE upon a BIOS OSI(Linux) query.
*
* Unfortunately, reference BIOS writers got wind of this
* and put OSI(Linux) in their example code, quickly exposing
* this string as ill-conceived and opening the door to
* an un-bounded number of BIOS incompatibilities.
*
* For example, OSI(Linux) was used on resume to re-POST a
* video card on one system, because Linux at that time
* could not do a speedy restore in its native driver.
* But then upon gaining quick native restore capability,
* Linux has no way to tell the BIOS to skip the time-consuming
* POST -- putting Linux at a permanent performance disadvantage.
* On another system, the BIOS writer used OSI(Linux)
* to infer native OS support for IPMI! On other systems,
* OSI(Linux) simply got in the way of Linux claiming to
* be compatible with other operating systems, exposing
* BIOS issues such as skipped device initialization.
*
* So "Linux" turned out to be a really poor chose of
* OSI string, and from Linux-2.6.23 onward we respond FALSE.
*
* BIOS writers should NOT query _OSI(Linux) on future systems.
* Linux will complain on the console when it sees it, and return FALSE.
* To get Linux to return TRUE for your system will require
* a kernel source update to add a DMI entry,
* or boot with "acpi_osi=Linux"
*/
static struct osi_linux {
unsigned int enable:1;
unsigned int dmi:1;
unsigned int cmdline:1;
unsigned int default_disabling:1;
} osi_linux = {0, 0, 0, 0};
static u32 acpi_osi_handler(acpi_string interface, u32 supported)
{
if (!strcmp("Linux", interface)) {
printk_once(KERN_NOTICE FW_BUG PREFIX
"BIOS _OSI(Linux) query %s%s\n",
osi_linux.enable ? "honored" : "ignored",
osi_linux.cmdline ? " via cmdline" :
osi_linux.dmi ? " via DMI" : "");
}
if (!strcmp("Darwin", interface)) {
/*
* Apple firmware will behave poorly if it receives positive
* answers to "Darwin" and any other OS. Respond positively
* to Darwin and then disable all other vendor strings.
*/
acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
supported = ACPI_UINT32_MAX;
}
return supported;
}
static void __init acpi_request_region (struct acpi_generic_address *gas,
unsigned int length, char *desc)
{
u64 addr;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !length)
return;
/* Resources are never freed */
if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
request_region(addr, length, desc);
else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
request_mem_region(addr, length, desc);
}
static int __init acpi_reserve_resources(void)
{
acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
"ACPI PM1a_EVT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
"ACPI PM1b_EVT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
"ACPI PM1a_CNT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
"ACPI PM1b_CNT_BLK");
if (acpi_gbl_FADT.pm_timer_length == 4)
acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
"ACPI PM2_CNT_BLK");
/* Length of GPE blocks must be a non-negative multiple of 2 */
if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
return 0;
}
fs_initcall_sync(acpi_reserve_resources);
void acpi_os_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
acpi_os_vprintf(fmt, args);
va_end(args);
}
void acpi_os_vprintf(const char *fmt, va_list args)
{
static char buffer[512];
vsprintf(buffer, fmt, args);
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
kdb_printf("%s", buffer);
} else {
printk(KERN_CONT "%s", buffer);
}
#else
printk(KERN_CONT "%s", buffer);
#endif
}
#ifdef CONFIG_KEXEC
static unsigned long acpi_rsdp;
static int __init setup_acpi_rsdp(char *arg)
{
if (kstrtoul(arg, 16, &acpi_rsdp))
return -EINVAL;
return 0;
}
early_param("acpi_rsdp", setup_acpi_rsdp);
#endif
acpi_physical_address __init acpi_os_get_root_pointer(void)
{
#ifdef CONFIG_KEXEC
if (acpi_rsdp)
return acpi_rsdp;
#endif
if (efi_enabled(EFI_CONFIG_TABLES)) {
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
return efi.acpi20;
else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
return efi.acpi;
else {
printk(KERN_ERR PREFIX
"System description tables not found\n");
return 0;
}
} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
acpi_physical_address pa = 0;
acpi_find_root_pointer(&pa);
return pa;
}
return 0;
}
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys, acpi_size size)
{
struct acpi_ioremap *map;
list_for_each_entry_rcu(map, &acpi_ioremaps, list)
if (map->phys <= phys &&
phys + size <= map->phys + map->size)
return map;
return NULL;
}
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
{
struct acpi_ioremap *map;
map = acpi_map_lookup(phys, size);
if (map)
return map->virt + (phys - map->phys);
return NULL;
}
void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
{
struct acpi_ioremap *map;
void __iomem *virt = NULL;
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup(phys, size);
if (map) {
virt = map->virt + (phys - map->phys);
map->refcount++;
}
mutex_unlock(&acpi_ioremap_lock);
return virt;
}
EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
{
struct acpi_ioremap *map;
list_for_each_entry_rcu(map, &acpi_ioremaps, list)
if (map->virt <= virt &&
virt + size <= map->virt + map->size)
return map;
return NULL;
}
#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
/* ioremap will take care of cache attributes */
#define should_use_kmap(pfn) 0
#else
#define should_use_kmap(pfn) page_is_ram(pfn)
#endif
static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
{
unsigned long pfn;
pfn = pg_off >> PAGE_SHIFT;
if (should_use_kmap(pfn)) {
if (pg_sz > PAGE_SIZE)
return NULL;
return (void __iomem __force *)kmap(pfn_to_page(pfn));
} else
return acpi_os_ioremap(pg_off, pg_sz);
}
static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
{
unsigned long pfn;
pfn = pg_off >> PAGE_SHIFT;
if (should_use_kmap(pfn))
kunmap(pfn_to_page(pfn));
else
iounmap(vaddr);
}
void __iomem *__init_refok
acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
{
struct acpi_ioremap *map;
void __iomem *virt;
acpi_physical_address pg_off;
acpi_size pg_sz;
if (phys > ULONG_MAX) {
printk(KERN_ERR PREFIX "Cannot map memory that high\n");
return NULL;
}
if (!acpi_gbl_permanent_mmap)
return __acpi_map_table((unsigned long)phys, size);
mutex_lock(&acpi_ioremap_lock);
/* Check if there's a suitable mapping already. */
map = acpi_map_lookup(phys, size);
if (map) {
map->refcount++;
goto out;
}
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
return NULL;
}
pg_off = round_down(phys, PAGE_SIZE);
pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
virt = acpi_map(pg_off, pg_sz);
if (!virt) {
mutex_unlock(&acpi_ioremap_lock);
kfree(map);
return NULL;
}
INIT_LIST_HEAD(&map->list);
map->virt = virt;
map->phys = pg_off;
map->size = pg_sz;
map->refcount = 1;
list_add_tail_rcu(&map->list, &acpi_ioremaps);
out:
mutex_unlock(&acpi_ioremap_lock);
return map->virt + (phys - map->phys);
}
EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
void *__init_refok
acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
{
return (void *)acpi_os_map_iomem(phys, size);
}
EXPORT_SYMBOL_GPL(acpi_os_map_memory);
static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
{
if (!--map->refcount)
list_del_rcu(&map->list);
}
static void acpi_os_map_cleanup(struct acpi_ioremap *map)
{
if (!map->refcount) {
synchronize_rcu_expedited();
acpi_unmap(map->phys, map->virt);
kfree(map);
}
}
void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
{
struct acpi_ioremap *map;
if (!acpi_gbl_permanent_mmap) {
__acpi_unmap_table(virt, size);
return;
}
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup_virt(virt, size);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
return;
}
acpi_os_drop_map_ref(map);
mutex_unlock(&acpi_ioremap_lock);
acpi_os_map_cleanup(map);
}
EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
{
return acpi_os_unmap_iomem((void __iomem *)virt, size);
}
EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
{
if (!acpi_gbl_permanent_mmap)
__acpi_unmap_table(virt, size);
}
int acpi_os_map_generic_address(struct acpi_generic_address *gas)
{
u64 addr;
void __iomem *virt;
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
return 0;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !gas->bit_width)
return -EINVAL;
virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
if (!virt)
return -EIO;
return 0;
}
EXPORT_SYMBOL(acpi_os_map_generic_address);
void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
{
u64 addr;
struct acpi_ioremap *map;
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
return;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !gas->bit_width)
return;
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup(addr, gas->bit_width / 8);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
return;
}
acpi_os_drop_map_ref(map);
mutex_unlock(&acpi_ioremap_lock);
acpi_os_map_cleanup(map);
}
EXPORT_SYMBOL(acpi_os_unmap_generic_address);
#ifdef ACPI_FUTURE_USAGE
acpi_status
acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
{
if (!phys || !virt)
return AE_BAD_PARAMETER;
*phys = virt_to_phys(virt);
return AE_OK;
}
#endif
#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
static bool acpi_rev_override;
int __init acpi_rev_override_setup(char *str)
{
acpi_rev_override = true;
return 1;
}
__setup("acpi_rev_override", acpi_rev_override_setup);
#else
#define acpi_rev_override false
#endif
#define ACPI_MAX_OVERRIDE_LEN 100
static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
char **new_val)
{
if (!init_val || !new_val)
return AE_BAD_PARAMETER;
*new_val = NULL;
if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
acpi_os_name);
*new_val = acpi_os_name;
}
if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
*new_val = (char *)5;
}
return AE_OK;
}
#ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
#include <linux/earlycpio.h>
#include <linux/memblock.h>
static u64 acpi_tables_addr;
static int all_tables_size;
/* Copied from acpica/tbutils.c:acpi_tb_checksum() */
static u8 __init acpi_table_checksum(u8 *buffer, u32 length)
{
u8 sum = 0;
u8 *end = buffer + length;
while (buffer < end)
sum = (u8) (sum + *(buffer++));
return sum;
}
/* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */
static const char * const table_sigs[] = {
ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ,
ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT,
ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF,
ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET,
ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI,
ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA,
ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL };
#define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
#define ACPI_OVERRIDE_TABLES 64
static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES];
#define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT)
void __init acpi_initrd_override(void *data, size_t size)
{
int sig, no, table_nr = 0, total_offset = 0;
long offset = 0;
struct acpi_table_header *table;
char cpio_path[32] = "kernel/firmware/acpi/";
struct cpio_data file;
if (data == NULL || size == 0)
return;
for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) {
file = find_cpio_data(cpio_path, data, size, &offset);
if (!file.data)
break;
data += offset;
size -= offset;
if (file.size < sizeof(struct acpi_table_header)) {
pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n",
cpio_path, file.name);
continue;
}
table = file.data;
for (sig = 0; table_sigs[sig]; sig++)
if (!memcmp(table->signature, table_sigs[sig], 4))
break;
if (!table_sigs[sig]) {
pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n",
cpio_path, file.name);
continue;
}
if (file.size != table->length) {
pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n",
cpio_path, file.name);
continue;
}
if (acpi_table_checksum(file.data, table->length)) {
pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n",
cpio_path, file.name);
continue;
}
pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n",
table->signature, cpio_path, file.name, table->length);
all_tables_size += table->length;
acpi_initrd_files[table_nr].data = file.data;
acpi_initrd_files[table_nr].size = file.size;
table_nr++;
}
if (table_nr == 0)
return;
acpi_tables_addr =
memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT,
all_tables_size, PAGE_SIZE);
if (!acpi_tables_addr) {
WARN_ON(1);
return;
}
/*
* Only calling e820_add_reserve does not work and the
* tables are invalid (memory got used) later.
* memblock_reserve works as expected and the tables won't get modified.
* But it's not enough on X86 because ioremap will
* complain later (used by acpi_os_map_memory) that the pages
* that should get mapped are not marked "reserved".
* Both memblock_reserve and e820_add_region (via arch_reserve_mem_area)
* works fine.
*/
memblock_reserve(acpi_tables_addr, all_tables_size);
arch_reserve_mem_area(acpi_tables_addr, all_tables_size);
/*
* early_ioremap only can remap 256k one time. If we map all
* tables one time, we will hit the limit. Need to map chunks
* one by one during copying the same as that in relocate_initrd().
*/
for (no = 0; no < table_nr; no++) {
unsigned char *src_p = acpi_initrd_files[no].data;
phys_addr_t size = acpi_initrd_files[no].size;
phys_addr_t dest_addr = acpi_tables_addr + total_offset;
phys_addr_t slop, clen;
char *dest_p;
total_offset += size;
while (size) {
slop = dest_addr & ~PAGE_MASK;
clen = size;
if (clen > MAP_CHUNK_SIZE - slop)
clen = MAP_CHUNK_SIZE - slop;
dest_p = early_ioremap(dest_addr & PAGE_MASK,
clen + slop);
memcpy(dest_p + slop, src_p, clen);
early_iounmap(dest_p, clen + slop);
src_p += clen;
dest_addr += clen;
size -= clen;
}
}
}
#endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */
static void acpi_table_taint(struct acpi_table_header *table)
{
pr_warn(PREFIX
"Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n",
table->signature, table->oem_table_id);
add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE);
}
acpi_status
acpi_os_table_override(struct acpi_table_header * existing_table,
struct acpi_table_header ** new_table)
{
if (!existing_table || !new_table)
return AE_BAD_PARAMETER;
*new_table = NULL;
#ifdef CONFIG_ACPI_CUSTOM_DSDT
if (strncmp(existing_table->signature, "DSDT", 4) == 0)
*new_table = (struct acpi_table_header *)AmlCode;
#endif
if (*new_table != NULL)
acpi_table_taint(existing_table);
return AE_OK;
}
acpi_status
acpi_os_physical_table_override(struct acpi_table_header *existing_table,
acpi_physical_address *address,
u32 *table_length)
{
#ifndef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
*table_length = 0;
*address = 0;
return AE_OK;
#else
int table_offset = 0;
struct acpi_table_header *table;
*table_length = 0;
*address = 0;
if (!acpi_tables_addr)
return AE_OK;
do {
if (table_offset + ACPI_HEADER_SIZE > all_tables_size) {
WARN_ON(1);
return AE_OK;
}
table = acpi_os_map_memory(acpi_tables_addr + table_offset,
ACPI_HEADER_SIZE);
if (table_offset + table->length > all_tables_size) {
acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
WARN_ON(1);
return AE_OK;
}
table_offset += table->length;
if (memcmp(existing_table->signature, table->signature, 4)) {
acpi_os_unmap_memory(table,
ACPI_HEADER_SIZE);
continue;
}
/* Only override tables with matching oem id */
if (memcmp(table->oem_table_id, existing_table->oem_table_id,
ACPI_OEM_TABLE_ID_SIZE)) {
acpi_os_unmap_memory(table,
ACPI_HEADER_SIZE);
continue;
}
table_offset -= table->length;
*table_length = table->length;
acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
*address = acpi_tables_addr + table_offset;
break;
} while (table_offset + ACPI_HEADER_SIZE < all_tables_size);
if (*address != 0)
acpi_table_taint(existing_table);
return AE_OK;
#endif
}
static irqreturn_t acpi_irq(int irq, void *dev_id)
{
u32 handled;
handled = (*acpi_irq_handler) (acpi_irq_context);
if (handled) {
acpi_irq_handled++;
return IRQ_HANDLED;
} else {
acpi_irq_not_handled++;
return IRQ_NONE;
}
}
acpi_status
acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
void *context)
{
unsigned int irq;
acpi_irq_stats_init();
/*
* ACPI interrupts different from the SCI in our copy of the FADT are
* not supported.
*/
if (gsi != acpi_gbl_FADT.sci_interrupt)
return AE_BAD_PARAMETER;
if (acpi_irq_handler)
return AE_ALREADY_ACQUIRED;
if (acpi_gsi_to_irq(gsi, &irq) < 0) {
printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
gsi);
return AE_OK;
}
acpi_irq_handler = handler;
acpi_irq_context = context;
if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
acpi_irq_handler = NULL;
return AE_NOT_ACQUIRED;
}
acpi_sci_irq = irq;
return AE_OK;
}
acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
{
if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
return AE_BAD_PARAMETER;
free_irq(acpi_sci_irq, acpi_irq);
acpi_irq_handler = NULL;
acpi_sci_irq = INVALID_ACPI_IRQ;
return AE_OK;
}
/*
* Running in interpreter thread context, safe to sleep
*/
void acpi_os_sleep(u64 ms)
{
msleep(ms);
}
void acpi_os_stall(u32 us)
{
while (us) {
u32 delay = 1000;
if (delay > us)
delay = us;
udelay(delay);
touch_nmi_watchdog();
us -= delay;
}
}
/*
* Support ACPI 3.0 AML Timer operand
* Returns 64-bit free-running, monotonically increasing timer
* with 100ns granularity
*/
u64 acpi_os_get_timer(void)
{
u64 time_ns = ktime_to_ns(ktime_get());
do_div(time_ns, 100);
return time_ns;
}
acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
{
u32 dummy;
if (!value)
value = &dummy;
*value = 0;
if (width <= 8) {
*(u8 *) value = inb(port);
} else if (width <= 16) {
*(u16 *) value = inw(port);
} else if (width <= 32) {
*(u32 *) value = inl(port);
} else {
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_read_port);
acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
{
if (width <= 8) {
outb(value, port);
} else if (width <= 16) {
outw(value, port);
} else if (width <= 32) {
outl(value, port);
} else {
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_write_port);
acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
{
void __iomem *virt_addr;
unsigned int size = width / 8;
bool unmap = false;
u64 dummy;
rcu_read_lock();
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
if (!virt_addr) {
rcu_read_unlock();
virt_addr = acpi_os_ioremap(phys_addr, size);
if (!virt_addr)
return AE_BAD_ADDRESS;
unmap = true;
}
if (!value)
value = &dummy;
switch (width) {
case 8:
*(u8 *) value = readb(virt_addr);
break;
case 16:
*(u16 *) value = readw(virt_addr);
break;
case 32:
*(u32 *) value = readl(virt_addr);
break;
case 64:
*(u64 *) value = readq(virt_addr);
break;
default:
BUG();
}
if (unmap)
iounmap(virt_addr);
else
rcu_read_unlock();
return AE_OK;
}
acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
{
void __iomem *virt_addr;
unsigned int size = width / 8;
bool unmap = false;
rcu_read_lock();
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
if (!virt_addr) {
rcu_read_unlock();
virt_addr = acpi_os_ioremap(phys_addr, size);
if (!virt_addr)
return AE_BAD_ADDRESS;
unmap = true;
}
switch (width) {
case 8:
writeb(value, virt_addr);
break;
case 16:
writew(value, virt_addr);
break;
case 32:
writel(value, virt_addr);
break;
case 64:
writeq(value, virt_addr);
break;
default:
BUG();
}
if (unmap)
iounmap(virt_addr);
else
rcu_read_unlock();
return AE_OK;
}
acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
u64 *value, u32 width)
{
int result, size;
u32 value32;
if (!value)
return AE_BAD_PARAMETER;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
result = raw_pci_read(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, &value32);
*value = value32;
return (result ? AE_ERROR : AE_OK);
}
acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
u64 value, u32 width)
{
int result, size;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
result = raw_pci_write(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
static void acpi_os_execute_deferred(struct work_struct *work)
{
struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
dpc->function(dpc->context);
kfree(dpc);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_execute
*
* PARAMETERS: Type - Type of the callback
* Function - Function to be executed
* Context - Function parameters
*
* RETURN: Status
*
* DESCRIPTION: Depending on type, either queues function for deferred execution or
* immediately executes function on a separate thread.
*
******************************************************************************/
acpi_status acpi_os_execute(acpi_execute_type type,
acpi_osd_exec_callback function, void *context)
{
acpi_status status = AE_OK;
struct acpi_os_dpc *dpc;
struct workqueue_struct *queue;
int ret;
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
"Scheduling function [%p(%p)] for deferred execution.\n",
function, context));
/*
* Allocate/initialize DPC structure. Note that this memory will be
* freed by the callee. The kernel handles the work_struct list in a
* way that allows us to also free its memory inside the callee.
* Because we may want to schedule several tasks with different
* parameters we can't use the approach some kernel code uses of
* having a static work_struct.
*/
dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
if (!dpc)
return AE_NO_MEMORY;
dpc->function = function;
dpc->context = context;
/*
* To prevent lockdep from complaining unnecessarily, make sure that
* there is a different static lockdep key for each workqueue by using
* INIT_WORK() for each of them separately.
*/
if (type == OSL_NOTIFY_HANDLER) {
queue = kacpi_notify_wq;
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
} else {
queue = kacpid_wq;
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
}
/*
* On some machines, a software-initiated SMI causes corruption unless
* the SMI runs on CPU 0. An SMI can be initiated by any AML, but
* typically it's done in GPE-related methods that are run via
* workqueues, so we can avoid the known corruption cases by always
* queueing on CPU 0.
*/
ret = queue_work_on(0, queue, &dpc->work);
if (!ret) {
printk(KERN_ERR PREFIX
"Call to queue_work() failed.\n");
status = AE_ERROR;
kfree(dpc);
}
return status;
}
EXPORT_SYMBOL(acpi_os_execute);
void acpi_os_wait_events_complete(void)
{
/*
* Make sure the GPE handler or the fixed event handler is not used
* on another CPU after removal.
*/
if (acpi_sci_irq_valid())
synchronize_hardirq(acpi_sci_irq);
flush_workqueue(kacpid_wq);
flush_workqueue(kacpi_notify_wq);
}
struct acpi_hp_work {
struct work_struct work;
struct acpi_device *adev;
u32 src;
};
static void acpi_hotplug_work_fn(struct work_struct *work)
{
struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
acpi_os_wait_events_complete();
acpi_device_hotplug(hpw->adev, hpw->src);
kfree(hpw);
}
acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
{
struct acpi_hp_work *hpw;
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
"Scheduling hotplug event (%p, %u) for deferred execution.\n",
adev, src));
hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
if (!hpw)
return AE_NO_MEMORY;
INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
hpw->adev = adev;
hpw->src = src;
/*
* We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
* the hotplug code may call driver .remove() functions, which may
* invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
* these workqueues.
*/
if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
kfree(hpw);
return AE_ERROR;
}
return AE_OK;
}
bool acpi_queue_hotplug_work(struct work_struct *work)
{
return queue_work(kacpi_hotplug_wq, work);
}
acpi_status
acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
{
struct semaphore *sem = NULL;
sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
if (!sem)
return AE_NO_MEMORY;
sema_init(sem, initial_units);
*handle = (acpi_handle *) sem;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
*handle, initial_units));
return AE_OK;
}
/*
* TODO: A better way to delete semaphores? Linux doesn't have a
* 'delete_semaphore()' function -- may result in an invalid
* pointer dereference for non-synchronized consumers. Should
* we at least check for blocked threads and signal/cancel them?
*/
acpi_status acpi_os_delete_semaphore(acpi_handle handle)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!sem)
return AE_BAD_PARAMETER;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
BUG_ON(!list_empty(&sem->wait_list));
kfree(sem);
sem = NULL;
return AE_OK;
}
/*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
{
acpi_status status = AE_OK;
struct semaphore *sem = (struct semaphore *)handle;
long jiffies;
int ret = 0;
if (!acpi_os_initialized)
return AE_OK;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
handle, units, timeout));
if (timeout == ACPI_WAIT_FOREVER)
jiffies = MAX_SCHEDULE_TIMEOUT;
else
jiffies = msecs_to_jiffies(timeout);
ret = down_timeout(sem, jiffies);
if (ret)
status = AE_TIME;
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Failed to acquire semaphore[%p|%d|%d], %s",
handle, units, timeout,
acpi_format_exception(status)));
} else {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Acquired semaphore[%p|%d|%d]", handle,
units, timeout));
}
return status;
}
/*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!acpi_os_initialized)
return AE_OK;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
units));
up(sem);
return AE_OK;
}
acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
{
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
u32 chars;
kdb_read(buffer, buffer_length);
/* remove the CR kdb includes */
chars = strlen(buffer) - 1;
buffer[chars] = '\0';
}
#endif
return AE_OK;
}
acpi_status acpi_os_signal(u32 function, void *info)
{
switch (function) {
case ACPI_SIGNAL_FATAL:
printk(KERN_ERR PREFIX "Fatal opcode executed\n");
break;
case ACPI_SIGNAL_BREAKPOINT:
/*
* AML Breakpoint
* ACPI spec. says to treat it as a NOP unless
* you are debugging. So if/when we integrate
* AML debugger into the kernel debugger its
* hook will go here. But until then it is
* not useful to print anything on breakpoints.
*/
break;
default:
break;
}
return AE_OK;
}
static int __init acpi_os_name_setup(char *str)
{
char *p = acpi_os_name;
int count = ACPI_MAX_OVERRIDE_LEN - 1;
if (!str || !*str)
return 0;
for (; count-- && *str; str++) {
if (isalnum(*str) || *str == ' ' || *str == ':')
*p++ = *str;
else if (*str == '\'' || *str == '"')
continue;
else
break;
}
*p = 0;
return 1;
}
__setup("acpi_os_name=", acpi_os_name_setup);
#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
struct osi_setup_entry {
char string[OSI_STRING_LENGTH_MAX];
bool enable;
};
static struct osi_setup_entry
osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = {
{"Module Device", true},
{"Processor Device", true},
{"3.0 _SCP Extensions", true},
{"Processor Aggregator Device", true},
};
void __init acpi_osi_setup(char *str)
{
struct osi_setup_entry *osi;
bool enable = true;
int i;
if (!acpi_gbl_create_osi_method)
return;
if (str == NULL || *str == '\0') {
printk(KERN_INFO PREFIX "_OSI method disabled\n");
acpi_gbl_create_osi_method = FALSE;
return;
}
if (*str == '!') {
str++;
if (*str == '\0') {
osi_linux.default_disabling = 1;
return;
} else if (*str == '*') {
acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS);
for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
osi = &osi_setup_entries[i];
osi->enable = false;
}
return;
}
enable = false;
}
for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
osi = &osi_setup_entries[i];
if (!strcmp(osi->string, str)) {
osi->enable = enable;
break;
} else if (osi->string[0] == '\0') {
osi->enable = enable;
strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
break;
}
}
}
static void __init set_osi_linux(unsigned int enable)
{
if (osi_linux.enable != enable)
osi_linux.enable = enable;
if (osi_linux.enable)
acpi_osi_setup("Linux");
else
acpi_osi_setup("!Linux");
return;
}
static void __init acpi_cmdline_osi_linux(unsigned int enable)
{
osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
osi_linux.dmi = 0;
set_osi_linux(enable);
return;
}
void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
{
printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
if (enable == -1)
return;
osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
set_osi_linux(enable);
return;
}
/*
* Modify the list of "OS Interfaces" reported to BIOS via _OSI
*
* empty string disables _OSI
* string starting with '!' disables that string
* otherwise string is added to list, augmenting built-in strings
*/
static void __init acpi_osi_setup_late(void)
{
struct osi_setup_entry *osi;
char *str;
int i;
acpi_status status;
if (osi_linux.default_disabling) {
status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
if (ACPI_SUCCESS(status))
printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n");
}
for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
osi = &osi_setup_entries[i];
str = osi->string;
if (*str == '\0')
break;
if (osi->enable) {
status = acpi_install_interface(str);
if (ACPI_SUCCESS(status))
printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
} else {
status = acpi_remove_interface(str);
if (ACPI_SUCCESS(status))
printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
}
}
}
static int __init osi_setup(char *str)
{
if (str && !strcmp("Linux", str))
acpi_cmdline_osi_linux(1);
else if (str && !strcmp("!Linux", str))
acpi_cmdline_osi_linux(0);
else
acpi_osi_setup(str);
return 1;
}
__setup("acpi_osi=", osi_setup);
/*
* Disable the auto-serialization of named objects creation methods.
*
* This feature is enabled by default. It marks the AML control methods
* that contain the opcodes to create named objects as "Serialized".
*/
static int __init acpi_no_auto_serialize_setup(char *str)
{
acpi_gbl_auto_serialize_methods = FALSE;
pr_info("ACPI: auto-serialization disabled\n");
return 1;
}
__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
/* Check of resource interference between native drivers and ACPI
* OperationRegions (SystemIO and System Memory only).
* IO ports and memory declared in ACPI might be used by the ACPI subsystem
* in arbitrary AML code and can interfere with legacy drivers.
* acpi_enforce_resources= can be set to:
*
* - strict (default) (2)
* -> further driver trying to access the resources will not load
* - lax (1)
* -> further driver trying to access the resources will load, but you
* get a system message that something might go wrong...
*
* - no (0)
* -> ACPI Operation Region resources will not be registered
*
*/
#define ENFORCE_RESOURCES_STRICT 2
#define ENFORCE_RESOURCES_LAX 1
#define ENFORCE_RESOURCES_NO 0
static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
static int __init acpi_enforce_resources_setup(char *str)
{
if (str == NULL || *str == '\0')
return 0;
if (!strcmp("strict", str))
acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
else if (!strcmp("lax", str))
acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
else if (!strcmp("no", str))
acpi_enforce_resources = ENFORCE_RESOURCES_NO;
return 1;
}
__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
/* Check for resource conflicts between ACPI OperationRegions and native
* drivers */
int acpi_check_resource_conflict(const struct resource *res)
{
acpi_adr_space_type space_id;
acpi_size length;
u8 warn = 0;
int clash = 0;
if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
return 0;
if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
return 0;
if (res->flags & IORESOURCE_IO)
space_id = ACPI_ADR_SPACE_SYSTEM_IO;
else
space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
length = resource_size(res);
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
warn = 1;
clash = acpi_check_address_range(space_id, res->start, length, warn);
if (clash) {
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
printk(KERN_NOTICE "ACPI: This conflict may"
" cause random problems and system"
" instability\n");
printk(KERN_INFO "ACPI: If an ACPI driver is available"
" for this device, you should use it instead of"
" the native driver\n");
}
if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(acpi_check_resource_conflict);
int acpi_check_region(resource_size_t start, resource_size_t n,
const char *name)
{
struct resource res = {
.start = start,
.end = start + n - 1,
.name = name,
.flags = IORESOURCE_IO,
};
return acpi_check_resource_conflict(&res);
}
EXPORT_SYMBOL(acpi_check_region);
/*
* Let drivers know whether the resource checks are effective
*/
int acpi_resources_are_enforced(void)
{
return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
}
EXPORT_SYMBOL(acpi_resources_are_enforced);
bool acpi_osi_is_win8(void)
{
return acpi_gbl_osi_data >= ACPI_OSI_WIN_8;
}
EXPORT_SYMBOL(acpi_osi_is_win8);
/*
* Deallocate the memory for a spinlock.
*/
void acpi_os_delete_lock(acpi_spinlock handle)
{
ACPI_FREE(handle);
}
/*
* Acquire a spinlock.
*
* handle is a pointer to the spinlock_t.
*/
acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
{
acpi_cpu_flags flags;
spin_lock_irqsave(lockp, flags);
return flags;
}
/*
* Release a spinlock. See above.
*/
void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
{
spin_unlock_irqrestore(lockp, flags);
}
#ifndef ACPI_USE_LOCAL_CACHE
/*******************************************************************************
*
* FUNCTION: acpi_os_create_cache
*
* PARAMETERS: name - Ascii name for the cache
* size - Size of each cached object
* depth - Maximum depth of the cache (in objects) <ignored>
* cache - Where the new cache object is returned
*
* RETURN: status
*
* DESCRIPTION: Create a cache object
*
******************************************************************************/
acpi_status
acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
{
*cache = kmem_cache_create(name, size, 0, 0, NULL);
if (*cache == NULL)
return AE_ERROR;
else
return AE_OK;
}
/*******************************************************************************
*
* FUNCTION: acpi_os_purge_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache.
*
******************************************************************************/
acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
{
kmem_cache_shrink(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_delete_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache and delete the
* cache object.
*
******************************************************************************/
acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
{
kmem_cache_destroy(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_release_object
*
* PARAMETERS: Cache - Handle to cache object
* Object - The object to be released
*
* RETURN: None
*
* DESCRIPTION: Release an object to the specified cache. If cache is full,
* the object is deleted.
*
******************************************************************************/
acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
{
kmem_cache_free(cache, object);
return (AE_OK);
}
#endif
static int __init acpi_no_static_ssdt_setup(char *s)
{
acpi_gbl_disable_ssdt_table_install = TRUE;
pr_info("ACPI: static SSDT installation disabled\n");
return 0;
}
early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
static int __init acpi_disable_return_repair(char *s)
{
printk(KERN_NOTICE PREFIX
"ACPI: Predefined validation mechanism disabled\n");
acpi_gbl_disable_auto_repair = TRUE;
return 1;
}
__setup("acpica_no_return_repair", acpi_disable_return_repair);
acpi_status __init acpi_os_initialize(void)
{
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
/*
* Use acpi_os_map_generic_address to pre-map the reset
* register if it's in system memory.
*/
int rv;
rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
}
acpi_os_initialized = true;
return AE_OK;
}
acpi_status __init acpi_os_initialize1(void)
{
kacpid_wq = alloc_workqueue("kacpid", 0, 1);
kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
BUG_ON(!kacpid_wq);
BUG_ON(!kacpi_notify_wq);
BUG_ON(!kacpi_hotplug_wq);
acpi_install_interface_handler(acpi_osi_handler);
acpi_osi_setup_late();
return AE_OK;
}
acpi_status acpi_os_terminate(void)
{
if (acpi_irq_handler) {
acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
acpi_irq_handler);
}
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
destroy_workqueue(kacpid_wq);
destroy_workqueue(kacpi_notify_wq);
destroy_workqueue(kacpi_hotplug_wq);
return AE_OK;
}
acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
u32 pm1b_control)
{
int rc = 0;
if (__acpi_os_prepare_sleep)
rc = __acpi_os_prepare_sleep(sleep_state,
pm1a_control, pm1b_control);
if (rc < 0)
return AE_ERROR;
else if (rc > 0)
return AE_CTRL_SKIP;
return AE_OK;
}
void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
u32 pm1a_ctrl, u32 pm1b_ctrl))
{
__acpi_os_prepare_sleep = func;
}
acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
u32 val_b)
{
int rc = 0;
if (__acpi_os_prepare_extended_sleep)
rc = __acpi_os_prepare_extended_sleep(sleep_state,
val_a, val_b);
if (rc < 0)
return AE_ERROR;
else if (rc > 0)
return AE_CTRL_SKIP;
return AE_OK;
}
void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
u32 val_a, u32 val_b))
{
__acpi_os_prepare_extended_sleep = func;
}