2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
Mainline Linux tree for various devices, only for fun :)
Go to file
Jonathan Yong 9745fb0747 platform/x86/intel: Add Primary to Sideband (P2SB) bridge support
SoC features such as GPIO are accessed via a reserved MMIO area,
we don't know its address but can obtain it from the BAR of
the P2SB device, that device is normally hidden so we have to
temporarily unhide it, read address and hide it back.

There are already a few users and at least one more is coming which
require an access to Primary to Sideband (P2SB) bridge in order
to get IO or MMIO BAR hidden by BIOS.

Create a library to access P2SB for x86 devices in a unified way.

Background information
======================
Note, the term "bridge" is used in the documentation and it has nothing
to do with a PCI (host) bridge as per the PCI specifications.

The P2SB is an interesting device by its nature and hardware design.
First of all, it has several devices in the hardware behind it. These
devices may or may not be represented as ACPI devices by a firmware.

It also has a hardwired (to 0s) the least significant bits of the
base address register which is represented by the only 64-bit BAR0.
It means that OS mustn't reallocate the BAR.

On top of that in some cases P2SB is represented by function 0 on PCI
slot (in terms of B:D.F) and according to the PCI specification any
other function can't be seen until function 0 is present and visible.

In the PCI configuration space of P2SB device the full 32-bit register
is allocated for the only purpose of hiding the entire P2SB device. As
per [3]:

  3.1.39 P2SB Control (P2SBC)—Offset E0h

  Hide Device (HIDE): When this bit is set, the P2SB will return 1s on
  any PCI Configuration Read on IOSF-P. All other transactions including
  PCI Configuration Writes on IOSF-P are unaffected by this. This does
  not affect reads performed on the IOSF-SB interface.

This doesn't prevent MMIO accesses, although preventing the OS from
assigning these addresses. The firmware on the affected platforms marks
the region as unusable (by cutting it off from the PCI host bridge
resources) as depicted in the Apollo Lake example below:

  PCI host bridge to bus 0000:00
  pci_bus 0000:00: root bus resource [io  0x0070-0x0077]
  pci_bus 0000:00: root bus resource [io  0x0000-0x006f window]
  pci_bus 0000:00: root bus resource [io  0x0078-0x0cf7 window]
  pci_bus 0000:00: root bus resource [io  0x0d00-0xffff window]
  pci_bus 0000:00: root bus resource [mem 0x7c000001-0x7fffffff window]
  pci_bus 0000:00: root bus resource [mem 0x7b800001-0x7bffffff window]
  pci_bus 0000:00: root bus resource [mem 0x80000000-0xcfffffff window]
  pci_bus 0000:00: root bus resource [mem 0xe0000000-0xefffffff window]
  pci_bus 0000:00: root bus resource [bus 00-ff]

The P2SB 16MB BAR is located at 0xd0000000-0xd0ffffff memory window.

The generic solution
====================
The generic solution for all cases when we need to access to the information
behind P2SB device is a library code where users ask for necessary resources
by demand and hence those users take care of not being run on the systems
where this access is not required.

The library provides the p2sb_bar() API to retrieve the MMIO of the BAR0 of
the device from P2SB device slot.

P2SB unconditional unhiding awareness
=====================================
Technically it's possible to unhide the P2SB device and devices on
the same PCI slot and access them at any time as needed. But there are
several potential issues with that:

 - the systems were never tested against such configuration and hence
   nobody knows what kind of bugs it may bring, especially when we talk
   about SPI NOR case which contains Intel FirmWare Image (IFWI) code
   (including BIOS) and already known to be problematic in the past for
   end users

 - the PCI by its nature is a hotpluggable bus and in case somebody
   attaches a driver to the functions of a P2SB slot device(s) the
   end user experience and system behaviour can be unpredictable

 - the kernel code would need some ugly hacks (or code looking as an
   ugly hack) under arch/x86/pci in order to enable these devices on
   only selected platforms (which may include CPU ID table followed by
   a potentially growing number of DMI strings

The future improvements
=======================
The future improvements with this code may go in order to gain some kind
of cache, if it's possible at all, to prevent unhiding and hiding many
times to take static information that may be saved once per boot.

Links
=====
[1]: https://lab.whitequark.org/notes/2017-11-08/accessing-intel-ich-pch-gpios/
[2]: https://cdrdv2.intel.com/v1/dl/getContent/332690?wapkw=332690
[3]: https://cdrdv2.intel.com/v1/dl/getContent/332691?wapkw=332691
[4]: https://medium.com/@jacksonchen_43335/bios-gpio-p2sb-70e9b829b403

Signed-off-by: Jonathan Yong <jonathan.yong@intel.com>
Co-developed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Henning Schild <henning.schild@siemens.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Lee Jones <lee@kernel.org>
2022-07-14 10:48:27 +01:00
arch Hot fixes for 5.19-rc1. 2022-06-05 17:05:38 -07:00
block for-5.19/drivers-2022-06-02 2022-06-03 10:25:56 -07:00
certs Kbuild updates for v5.19 2022-05-26 12:09:50 -07:00
crypto This update includes the following changes: 2022-05-27 18:06:49 -07:00
Documentation A single featurelet for delay accounting. Delayed a bit 2022-06-05 16:58:27 -07:00
drivers platform/x86/intel: Add Primary to Sideband (P2SB) bridge support 2022-07-14 10:48:27 +01:00
fs fix for breakage in #work.fd this window 2022-06-05 17:14:03 -07:00
include platform/x86/intel: Add Primary to Sideband (P2SB) bridge support 2022-07-14 10:48:27 +01:00
init This set of changes updates init and user mode helper tasks to be 2022-06-03 16:03:05 -07:00
ipc These changes update the ipc sysctls so that they are fundamentally 2022-06-03 15:54:57 -07:00
kernel A single featurelet for delay accounting. Delayed a bit 2022-06-05 16:58:27 -07:00
lib Bitmap patches for 5.19-rc1 2022-06-04 14:04:27 -07:00
LICENSES LICENSES/LGPL-2.1: Add LGPL-2.1-or-later as valid identifiers 2021-12-16 14:33:10 +01:00
mm Hot fixes for 5.19-rc1. 2022-06-05 17:05:38 -07:00
net bluetooth: don't use bitmaps for random flag accesses 2022-06-05 16:28:41 -07:00
samples drm for 5.19-rc1 2022-05-25 16:18:27 -07:00
scripts A set of objtool fixes: 2022-06-05 09:45:27 -07:00
security Cleanups (and one fix) around struct mount handling. 2022-06-04 19:00:05 -07:00
sound USB / Thunderbolt changes for 5.19-rc1 2022-06-03 11:17:49 -07:00
tools A single featurelet for delay accounting. Delayed a bit 2022-06-05 16:58:27 -07:00
usr Not a lot of material this cycle. Many singleton patches against various 2022-05-27 11:22:03 -07:00
virt VFIO updates for v5.19-rc1 2022-06-01 13:49:15 -07:00
.clang-format clang-format: Fix space after for_each macros 2022-05-20 19:27:16 +02:00
.cocciconfig scripts: add Linux .cocciconfig for coccinelle 2016-07-22 12:13:39 +02:00
.get_maintainer.ignore Opt out of scripts/get_maintainer.pl 2019-05-16 10:53:40 -07:00
.gitattributes .gitattributes: use 'dts' diff driver for dts files 2019-12-04 19:44:11 -08:00
.gitignore kbuild: split the second line of *.mod into *.usyms 2022-05-08 03:16:59 +09:00
.mailmap Hot fixes for 5.19-rc1. 2022-06-05 17:05:38 -07:00
COPYING COPYING: state that all contributions really are covered by this file 2020-02-10 13:32:20 -08:00
CREDITS MAINTAINERS: replace a Microchip AT91 maintainer 2022-02-09 11:30:01 +01:00
Kbuild kbuild: rename hostprogs-y/always to hostprogs/always-y 2020-02-04 01:53:07 +09:00
Kconfig kbuild: ensure full rebuild when the compiler is updated 2020-05-12 13:28:33 +09:00
MAINTAINERS Hot fixes for 5.19-rc1. 2022-06-05 17:05:38 -07:00
Makefile Linux 5.19-rc1 2022-06-05 17:18:54 -07:00
README Drop all 00-INDEX files from Documentation/ 2018-09-09 15:08:58 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.