2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 23:23:52 +08:00
linux-next/arch/m68k/platform/coldfire/intc-5272.c
Greg Ungerer c986a3d520 m68knommu: make ColdFire Interrupt Source register definitions absolute addresses
Make all definitions of the ColdFire Interrupt Source registers absolute
addresses. Currently some are relative to the MBAR peripheral region.

The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.

This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27 23:33:50 +10:00

186 lines
5.9 KiB
C

/*
* intc.c -- interrupt controller or ColdFire 5272 SoC
*
* (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include <asm/traps.h>
/*
* The 5272 ColdFire interrupt controller is nothing like any other
* ColdFire interrupt controller - it truly is completely different.
* Given its age it is unlikely to be used on any other ColdFire CPU.
*/
/*
* The masking and priproty setting of interrupts on the 5272 is done
* via a set of 4 "Interrupt Controller Registers" (ICR). There is a
* loose mapping of vector number to register and internal bits, but
* a table is the easiest and quickest way to map them.
*
* Note that the external interrupts are edge triggered (unlike the
* internal interrupt sources which are level triggered). Which means
* they also need acknowledging via acknowledge bits.
*/
struct irqmap {
unsigned char icr;
unsigned char index;
unsigned char ack;
};
static struct irqmap intc_irqmap[MCFINT_VECMAX - MCFINT_VECBASE] = {
/*MCF_IRQ_SPURIOUS*/ { .icr = 0, .index = 0, .ack = 0, },
/*MCF_IRQ_EINT1*/ { .icr = MCFSIM_ICR1, .index = 28, .ack = 1, },
/*MCF_IRQ_EINT2*/ { .icr = MCFSIM_ICR1, .index = 24, .ack = 1, },
/*MCF_IRQ_EINT3*/ { .icr = MCFSIM_ICR1, .index = 20, .ack = 1, },
/*MCF_IRQ_EINT4*/ { .icr = MCFSIM_ICR1, .index = 16, .ack = 1, },
/*MCF_IRQ_TIMER1*/ { .icr = MCFSIM_ICR1, .index = 12, .ack = 0, },
/*MCF_IRQ_TIMER2*/ { .icr = MCFSIM_ICR1, .index = 8, .ack = 0, },
/*MCF_IRQ_TIMER3*/ { .icr = MCFSIM_ICR1, .index = 4, .ack = 0, },
/*MCF_IRQ_TIMER4*/ { .icr = MCFSIM_ICR1, .index = 0, .ack = 0, },
/*MCF_IRQ_UART1*/ { .icr = MCFSIM_ICR2, .index = 28, .ack = 0, },
/*MCF_IRQ_UART2*/ { .icr = MCFSIM_ICR2, .index = 24, .ack = 0, },
/*MCF_IRQ_PLIP*/ { .icr = MCFSIM_ICR2, .index = 20, .ack = 0, },
/*MCF_IRQ_PLIA*/ { .icr = MCFSIM_ICR2, .index = 16, .ack = 0, },
/*MCF_IRQ_USB0*/ { .icr = MCFSIM_ICR2, .index = 12, .ack = 0, },
/*MCF_IRQ_USB1*/ { .icr = MCFSIM_ICR2, .index = 8, .ack = 0, },
/*MCF_IRQ_USB2*/ { .icr = MCFSIM_ICR2, .index = 4, .ack = 0, },
/*MCF_IRQ_USB3*/ { .icr = MCFSIM_ICR2, .index = 0, .ack = 0, },
/*MCF_IRQ_USB4*/ { .icr = MCFSIM_ICR3, .index = 28, .ack = 0, },
/*MCF_IRQ_USB5*/ { .icr = MCFSIM_ICR3, .index = 24, .ack = 0, },
/*MCF_IRQ_USB6*/ { .icr = MCFSIM_ICR3, .index = 20, .ack = 0, },
/*MCF_IRQ_USB7*/ { .icr = MCFSIM_ICR3, .index = 16, .ack = 0, },
/*MCF_IRQ_DMA*/ { .icr = MCFSIM_ICR3, .index = 12, .ack = 0, },
/*MCF_IRQ_ERX*/ { .icr = MCFSIM_ICR3, .index = 8, .ack = 0, },
/*MCF_IRQ_ETX*/ { .icr = MCFSIM_ICR3, .index = 4, .ack = 0, },
/*MCF_IRQ_ENTC*/ { .icr = MCFSIM_ICR3, .index = 0, .ack = 0, },
/*MCF_IRQ_QSPI*/ { .icr = MCFSIM_ICR4, .index = 28, .ack = 0, },
/*MCF_IRQ_EINT5*/ { .icr = MCFSIM_ICR4, .index = 24, .ack = 1, },
/*MCF_IRQ_EINT6*/ { .icr = MCFSIM_ICR4, .index = 20, .ack = 1, },
/*MCF_IRQ_SWTO*/ { .icr = MCFSIM_ICR4, .index = 16, .ack = 0, },
};
/*
* The act of masking the interrupt also has a side effect of 'ack'ing
* an interrupt on this irq (for the external irqs). So this mask function
* is also an ack_mask function.
*/
static void intc_irq_mask(struct irq_data *d)
{
unsigned int irq = d->irq;
if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
u32 v;
irq -= MCFINT_VECBASE;
v = 0x8 << intc_irqmap[irq].index;
writel(v, intc_irqmap[irq].icr);
}
}
static void intc_irq_unmask(struct irq_data *d)
{
unsigned int irq = d->irq;
if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
u32 v;
irq -= MCFINT_VECBASE;
v = 0xd << intc_irqmap[irq].index;
writel(v, intc_irqmap[irq].icr);
}
}
static void intc_irq_ack(struct irq_data *d)
{
unsigned int irq = d->irq;
/* Only external interrupts are acked */
if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
irq -= MCFINT_VECBASE;
if (intc_irqmap[irq].ack) {
u32 v;
v = readl(intc_irqmap[irq].icr);
v &= (0x7 << intc_irqmap[irq].index);
v |= (0x8 << intc_irqmap[irq].index);
writel(v, intc_irqmap[irq].icr);
}
}
}
static int intc_irq_set_type(struct irq_data *d, unsigned int type)
{
unsigned int irq = d->irq;
if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
irq -= MCFINT_VECBASE;
if (intc_irqmap[irq].ack) {
u32 v;
v = readl(MCFSIM_PITR);
if (type == IRQ_TYPE_EDGE_FALLING)
v &= ~(0x1 << (32 - irq));
else
v |= (0x1 << (32 - irq));
writel(v, MCFSIM_PITR);
}
}
return 0;
}
/*
* Simple flow handler to deal with the external edge triggered interrupts.
* We need to be careful with the masking/acking due to the side effects
* of masking an interrupt.
*/
static void intc_external_irq(unsigned int irq, struct irq_desc *desc)
{
irq_desc_get_chip(desc)->irq_ack(&desc->irq_data);
handle_simple_irq(irq, desc);
}
static struct irq_chip intc_irq_chip = {
.name = "CF-INTC",
.irq_mask = intc_irq_mask,
.irq_unmask = intc_irq_unmask,
.irq_mask_ack = intc_irq_mask,
.irq_ack = intc_irq_ack,
.irq_set_type = intc_irq_set_type,
};
void __init init_IRQ(void)
{
int irq, edge;
/* Mask all interrupt sources */
writel(0x88888888, MCFSIM_ICR1);
writel(0x88888888, MCFSIM_ICR2);
writel(0x88888888, MCFSIM_ICR3);
writel(0x88888888, MCFSIM_ICR4);
for (irq = 0; (irq < NR_IRQS); irq++) {
irq_set_chip(irq, &intc_irq_chip);
edge = 0;
if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX))
edge = intc_irqmap[irq - MCFINT_VECBASE].ack;
if (edge) {
irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING);
irq_set_handler(irq, intc_external_irq);
} else {
irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
irq_set_handler(irq, handle_level_irq);
}
}
}