2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/drivers/thunderbolt/eeprom.c
Mika Westerberg 1cd65d1761 thunderbolt: Do not enumerate more ports from DROM than the controller has
Some Alpine Ridge LP DROMs (there might be others) erroneusly list more
ports than the controller actually has. Most probably because DROM of
the full Dual/Single port Thunderbolt controller was reused for LP
version. The current DROM parser does not check the upper bound thus it
leads to crash when sw->ports[] is accessed over bounds:

 BUG: unable to handle kernel NULL pointer dereference at 00000000000002ec
 IP: tb_drom_read+0x383/0x890 [thunderbolt]
 PGD 0
 P4D 0
 Oops: 0000 [#1] SMP
 CPU: 3 PID: 12248 Comm: systemd-udevd Not tainted 4.13.0-rc1-next-20170719 #1
 Hardware name: LENOVO 20HF000YGE/20HF000YGE, BIOS N1WET32W (1.11 ) 05/23/2017
 task: ffff8a293e4bcd80 task.stack: ffffa698027a8000
 RIP: 0010:tb_drom_read+0x383/0x890 [thunderbolt]
 RSP: 0018:ffffa698027ab990 EFLAGS: 00010246
 RAX: 0000000000000000 RBX: ffff8a2940af7800 RCX: 0000000000000000
 RDX: ffff8a2940ebb400 RSI: 0000000000000000 RDI: ffffa698027ab9a0
 RBP: ffffa698027ab9d0 R08: 0000000000000001 R09: 0000000000000002
 R10: ffff8a2940ebb5b0 R11: 0000000000000000 R12: ffff8a293bfa968c
 R13: 000000000000002c R14: 0000000000000056 R15: 0000000000000056
 FS:  00007f0a945a38c0(0000) GS:ffff8a2961580000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00000000000002ec CR3: 000000043e785000 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  tb_switch_add+0x9d/0x730 [thunderbolt]
  ? tb_switch_alloc+0x3cd/0x4d0 [thunderbolt]
  icm_start+0x5a/0xa0 [thunderbolt]
  tb_domain_add+0xc3/0xf0 [thunderbolt]
  nhi_probe+0x19e/0x310 [thunderbolt]
  local_pci_probe+0x42/0xa0
  pci_device_probe+0x18d/0x1a0
  driver_probe_device+0x2ff/0x450
  __driver_attach+0xa4/0xe0
  ? driver_probe_device+0x450/0x450
  bus_for_each_dev+0x6e/0xb0
  driver_attach+0x1e/0x20
  bus_add_driver+0x1d0/0x270
  ? 0xffffffffc0bbb000
  driver_register+0x60/0xe0
  ? 0xffffffffc0bbb000
  __pci_register_driver+0x4c/0x50
  nhi_init+0x28/0x1000 [thunderbolt]
  do_one_initcall+0x50/0x190
  ? __vunmap+0x81/0xb0
  ? _cond_resched+0x1a/0x50
  ? kmem_cache_alloc_trace+0x15f/0x1c0
  ? do_init_module+0x27/0x1e9
  do_init_module+0x5f/0x1e9
  load_module+0x24e7/0x2a60
  ? vfs_read+0x115/0x130
  SYSC_finit_module+0xfc/0x120
  ? SYSC_finit_module+0xfc/0x120
  SyS_finit_module+0xe/0x10
  do_syscall_64+0x67/0x170
  entry_SYSCALL64_slow_path+0x25/0x25

Fix this by making sure we only enumerate DROM port entries the hardware
actually has.

Reported-by: Christian Kellner <ckellner@redhat.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Christian Kellner <ckellner@redhat.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-10 14:25:35 -07:00

593 lines
13 KiB
C

/*
* Thunderbolt Cactus Ridge driver - eeprom access
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
*/
#include <linux/crc32.h>
#include <linux/property.h>
#include <linux/slab.h>
#include "tb.h"
/**
* tb_eeprom_ctl_write() - write control word
*/
static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
{
return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
}
/**
* tb_eeprom_ctl_write() - read control word
*/
static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
{
return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
}
enum tb_eeprom_transfer {
TB_EEPROM_IN,
TB_EEPROM_OUT,
};
/**
* tb_eeprom_active - enable rom access
*
* WARNING: Always disable access after usage. Otherwise the controller will
* fail to reprobe.
*/
static int tb_eeprom_active(struct tb_switch *sw, bool enable)
{
struct tb_eeprom_ctl ctl;
int res = tb_eeprom_ctl_read(sw, &ctl);
if (res)
return res;
if (enable) {
ctl.access_high = 1;
res = tb_eeprom_ctl_write(sw, &ctl);
if (res)
return res;
ctl.access_low = 0;
return tb_eeprom_ctl_write(sw, &ctl);
} else {
ctl.access_low = 1;
res = tb_eeprom_ctl_write(sw, &ctl);
if (res)
return res;
ctl.access_high = 0;
return tb_eeprom_ctl_write(sw, &ctl);
}
}
/**
* tb_eeprom_transfer - transfer one bit
*
* If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->data_in.
* If TB_EEPROM_OUT is passed, then ctl->data_out will be written.
*/
static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl,
enum tb_eeprom_transfer direction)
{
int res;
if (direction == TB_EEPROM_OUT) {
res = tb_eeprom_ctl_write(sw, ctl);
if (res)
return res;
}
ctl->clock = 1;
res = tb_eeprom_ctl_write(sw, ctl);
if (res)
return res;
if (direction == TB_EEPROM_IN) {
res = tb_eeprom_ctl_read(sw, ctl);
if (res)
return res;
}
ctl->clock = 0;
return tb_eeprom_ctl_write(sw, ctl);
}
/**
* tb_eeprom_out - write one byte to the bus
*/
static int tb_eeprom_out(struct tb_switch *sw, u8 val)
{
struct tb_eeprom_ctl ctl;
int i;
int res = tb_eeprom_ctl_read(sw, &ctl);
if (res)
return res;
for (i = 0; i < 8; i++) {
ctl.data_out = val & 0x80;
res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT);
if (res)
return res;
val <<= 1;
}
return 0;
}
/**
* tb_eeprom_in - read one byte from the bus
*/
static int tb_eeprom_in(struct tb_switch *sw, u8 *val)
{
struct tb_eeprom_ctl ctl;
int i;
int res = tb_eeprom_ctl_read(sw, &ctl);
if (res)
return res;
*val = 0;
for (i = 0; i < 8; i++) {
*val <<= 1;
res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN);
if (res)
return res;
*val |= ctl.data_in;
}
return 0;
}
/**
* tb_eeprom_read_n - read count bytes from offset into val
*/
static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val,
size_t count)
{
int i, res;
res = tb_eeprom_active(sw, true);
if (res)
return res;
res = tb_eeprom_out(sw, 3);
if (res)
return res;
res = tb_eeprom_out(sw, offset >> 8);
if (res)
return res;
res = tb_eeprom_out(sw, offset);
if (res)
return res;
for (i = 0; i < count; i++) {
res = tb_eeprom_in(sw, val + i);
if (res)
return res;
}
return tb_eeprom_active(sw, false);
}
static u8 tb_crc8(u8 *data, int len)
{
int i, j;
u8 val = 0xff;
for (i = 0; i < len; i++) {
val ^= data[i];
for (j = 0; j < 8; j++)
val = (val << 1) ^ ((val & 0x80) ? 7 : 0);
}
return val;
}
static u32 tb_crc32(void *data, size_t len)
{
return ~__crc32c_le(~0, data, len);
}
#define TB_DROM_DATA_START 13
struct tb_drom_header {
/* BYTE 0 */
u8 uid_crc8; /* checksum for uid */
/* BYTES 1-8 */
u64 uid;
/* BYTES 9-12 */
u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */
/* BYTE 13 */
u8 device_rom_revision; /* should be <= 1 */
u16 data_len:10;
u8 __unknown1:6;
/* BYTES 16-21 */
u16 vendor_id;
u16 model_id;
u8 model_rev;
u8 eeprom_rev;
} __packed;
enum tb_drom_entry_type {
/* force unsigned to prevent "one-bit signed bitfield" warning */
TB_DROM_ENTRY_GENERIC = 0U,
TB_DROM_ENTRY_PORT,
};
struct tb_drom_entry_header {
u8 len;
u8 index:6;
bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */
enum tb_drom_entry_type type:1;
} __packed;
struct tb_drom_entry_generic {
struct tb_drom_entry_header header;
u8 data[0];
} __packed;
struct tb_drom_entry_port {
/* BYTES 0-1 */
struct tb_drom_entry_header header;
/* BYTE 2 */
u8 dual_link_port_rid:4;
u8 link_nr:1;
u8 unknown1:2;
bool has_dual_link_port:1;
/* BYTE 3 */
u8 dual_link_port_nr:6;
u8 unknown2:2;
/* BYTES 4 - 5 TODO decode */
u8 micro2:4;
u8 micro1:4;
u8 micro3;
/* BYTES 6-7, TODO: verify (find hardware that has these set) */
u8 peer_port_rid:4;
u8 unknown3:3;
bool has_peer_port:1;
u8 peer_port_nr:6;
u8 unknown4:2;
} __packed;
/**
* tb_eeprom_get_drom_offset - get drom offset within eeprom
*/
static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset)
{
struct tb_cap_plug_events cap;
int res;
if (!sw->cap_plug_events) {
tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n");
return -ENOSYS;
}
res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events,
sizeof(cap) / 4);
if (res)
return res;
if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) {
tb_sw_warn(sw, "no NVM\n");
return -ENOSYS;
}
if (cap.drom_offset > 0xffff) {
tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n",
cap.drom_offset);
return -ENXIO;
}
*offset = cap.drom_offset;
return 0;
}
/**
* tb_drom_read_uid_only - read uid directly from drom
*
* Does not use the cached copy in sw->drom. Used during resume to check switch
* identity.
*/
int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid)
{
u8 data[9];
u16 drom_offset;
u8 crc;
int res = tb_eeprom_get_drom_offset(sw, &drom_offset);
if (res)
return res;
if (drom_offset == 0)
return -ENODEV;
/* read uid */
res = tb_eeprom_read_n(sw, drom_offset, data, 9);
if (res)
return res;
crc = tb_crc8(data + 1, 8);
if (crc != data[0]) {
tb_sw_warn(sw, "uid crc8 mismatch (expected: %#x, got: %#x)\n",
data[0], crc);
return -EIO;
}
*uid = *(u64 *)(data+1);
return 0;
}
static int tb_drom_parse_entry_generic(struct tb_switch *sw,
struct tb_drom_entry_header *header)
{
const struct tb_drom_entry_generic *entry =
(const struct tb_drom_entry_generic *)header;
switch (header->index) {
case 1:
/* Length includes 2 bytes header so remove it before copy */
sw->vendor_name = kstrndup(entry->data,
header->len - sizeof(*header), GFP_KERNEL);
if (!sw->vendor_name)
return -ENOMEM;
break;
case 2:
sw->device_name = kstrndup(entry->data,
header->len - sizeof(*header), GFP_KERNEL);
if (!sw->device_name)
return -ENOMEM;
break;
}
return 0;
}
static int tb_drom_parse_entry_port(struct tb_switch *sw,
struct tb_drom_entry_header *header)
{
struct tb_port *port;
int res;
enum tb_port_type type;
/*
* Some DROMs list more ports than the controller actually has
* so we skip those but allow the parser to continue.
*/
if (header->index > sw->config.max_port_number) {
dev_info_once(&sw->dev, "ignoring unnecessary extra entries in DROM\n");
return 0;
}
port = &sw->ports[header->index];
port->disabled = header->port_disabled;
if (port->disabled)
return 0;
res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1);
if (res)
return res;
type &= 0xffffff;
if (type == TB_TYPE_PORT) {
struct tb_drom_entry_port *entry = (void *) header;
if (header->len != sizeof(*entry)) {
tb_sw_warn(sw,
"port entry has size %#x (expected %#zx)\n",
header->len, sizeof(struct tb_drom_entry_port));
return -EIO;
}
port->link_nr = entry->link_nr;
if (entry->has_dual_link_port)
port->dual_link_port =
&port->sw->ports[entry->dual_link_port_nr];
}
return 0;
}
/**
* tb_drom_parse_entries - parse the linked list of drom entries
*
* Drom must have been copied to sw->drom.
*/
static int tb_drom_parse_entries(struct tb_switch *sw)
{
struct tb_drom_header *header = (void *) sw->drom;
u16 pos = sizeof(*header);
u16 drom_size = header->data_len + TB_DROM_DATA_START;
int res;
while (pos < drom_size) {
struct tb_drom_entry_header *entry = (void *) (sw->drom + pos);
if (pos + 1 == drom_size || pos + entry->len > drom_size
|| !entry->len) {
tb_sw_warn(sw, "drom buffer overrun, aborting\n");
return -EIO;
}
switch (entry->type) {
case TB_DROM_ENTRY_GENERIC:
res = tb_drom_parse_entry_generic(sw, entry);
break;
case TB_DROM_ENTRY_PORT:
res = tb_drom_parse_entry_port(sw, entry);
break;
}
if (res)
return res;
pos += entry->len;
}
return 0;
}
/**
* tb_drom_copy_efi - copy drom supplied by EFI to sw->drom if present
*/
static int tb_drom_copy_efi(struct tb_switch *sw, u16 *size)
{
struct device *dev = &sw->tb->nhi->pdev->dev;
int len, res;
len = device_property_read_u8_array(dev, "ThunderboltDROM", NULL, 0);
if (len < 0 || len < sizeof(struct tb_drom_header))
return -EINVAL;
sw->drom = kmalloc(len, GFP_KERNEL);
if (!sw->drom)
return -ENOMEM;
res = device_property_read_u8_array(dev, "ThunderboltDROM", sw->drom,
len);
if (res)
goto err;
*size = ((struct tb_drom_header *)sw->drom)->data_len +
TB_DROM_DATA_START;
if (*size > len)
goto err;
return 0;
err:
kfree(sw->drom);
sw->drom = NULL;
return -EINVAL;
}
static int tb_drom_copy_nvm(struct tb_switch *sw, u16 *size)
{
u32 drom_offset;
int ret;
if (!sw->dma_port)
return -ENODEV;
ret = tb_sw_read(sw, &drom_offset, TB_CFG_SWITCH,
sw->cap_plug_events + 12, 1);
if (ret)
return ret;
if (!drom_offset)
return -ENODEV;
ret = dma_port_flash_read(sw->dma_port, drom_offset + 14, size,
sizeof(*size));
if (ret)
return ret;
/* Size includes CRC8 + UID + CRC32 */
*size += 1 + 8 + 4;
sw->drom = kzalloc(*size, GFP_KERNEL);
if (!sw->drom)
return -ENOMEM;
ret = dma_port_flash_read(sw->dma_port, drom_offset, sw->drom, *size);
if (ret)
goto err_free;
/*
* Read UID from the minimal DROM because the one in NVM is just
* a placeholder.
*/
tb_drom_read_uid_only(sw, &sw->uid);
return 0;
err_free:
kfree(sw->drom);
sw->drom = NULL;
return ret;
}
/**
* tb_drom_read - copy drom to sw->drom and parse it
*/
int tb_drom_read(struct tb_switch *sw)
{
u16 drom_offset;
u16 size;
u32 crc;
struct tb_drom_header *header;
int res;
if (sw->drom)
return 0;
if (tb_route(sw) == 0) {
/*
* Apple's NHI EFI driver supplies a DROM for the root switch
* in a device property. Use it if available.
*/
if (tb_drom_copy_efi(sw, &size) == 0)
goto parse;
/* Non-Apple hardware has the DROM as part of NVM */
if (tb_drom_copy_nvm(sw, &size) == 0)
goto parse;
/*
* The root switch contains only a dummy drom (header only,
* no entries). Hardcode the configuration here.
*/
tb_drom_read_uid_only(sw, &sw->uid);
sw->ports[1].link_nr = 0;
sw->ports[2].link_nr = 1;
sw->ports[1].dual_link_port = &sw->ports[2];
sw->ports[2].dual_link_port = &sw->ports[1];
sw->ports[3].link_nr = 0;
sw->ports[4].link_nr = 1;
sw->ports[3].dual_link_port = &sw->ports[4];
sw->ports[4].dual_link_port = &sw->ports[3];
/* Port 5 is inaccessible on this gen 1 controller */
if (sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE)
sw->ports[5].disabled = true;
return 0;
}
res = tb_eeprom_get_drom_offset(sw, &drom_offset);
if (res)
return res;
res = tb_eeprom_read_n(sw, drom_offset + 14, (u8 *) &size, 2);
if (res)
return res;
size &= 0x3ff;
size += TB_DROM_DATA_START;
tb_sw_info(sw, "reading drom (length: %#x)\n", size);
if (size < sizeof(*header)) {
tb_sw_warn(sw, "drom too small, aborting\n");
return -EIO;
}
sw->drom = kzalloc(size, GFP_KERNEL);
if (!sw->drom)
return -ENOMEM;
res = tb_eeprom_read_n(sw, drom_offset, sw->drom, size);
if (res)
goto err;
parse:
header = (void *) sw->drom;
if (header->data_len + TB_DROM_DATA_START != size) {
tb_sw_warn(sw, "drom size mismatch, aborting\n");
goto err;
}
crc = tb_crc8((u8 *) &header->uid, 8);
if (crc != header->uid_crc8) {
tb_sw_warn(sw,
"drom uid crc8 mismatch (expected: %#x, got: %#x), aborting\n",
header->uid_crc8, crc);
goto err;
}
if (!sw->uid)
sw->uid = header->uid;
sw->vendor = header->vendor_id;
sw->device = header->model_id;
crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len);
if (crc != header->data_crc32) {
tb_sw_warn(sw,
"drom data crc32 mismatch (expected: %#x, got: %#x), continuing\n",
header->data_crc32, crc);
}
if (header->device_rom_revision > 2)
tb_sw_warn(sw, "drom device_rom_revision %#x unknown\n",
header->device_rom_revision);
return tb_drom_parse_entries(sw);
err:
kfree(sw->drom);
sw->drom = NULL;
return -EIO;
}