mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-27 08:05:27 +08:00
95ee62083c
Alan Chester reported an issue with IPv6 on SCTP that IPsec traffic is not
being encrypted, whereas on IPv4 it is. Setting up an AH + ESP transport
does not seem to have the desired effect:
SCTP + IPv4:
22:14:20.809645 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto AH (51), length 116)
192.168.0.2 > 192.168.0.5: AH(spi=0x00000042,sumlen=16,seq=0x1): ESP(spi=0x00000044,seq=0x1), length 72
22:14:20.813270 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto AH (51), length 340)
192.168.0.5 > 192.168.0.2: AH(spi=0x00000043,sumlen=16,seq=0x1):
SCTP + IPv6:
22:31:19.215029 IP6 (class 0x02, hlim 64, next-header SCTP (132) payload length: 364)
fe80::222:15ff:fe87:7fc.3333 > fe80::92e6:baff:fe0d:5a54.36767: sctp
1) [INIT ACK] [init tag: 747759530] [rwnd: 62464] [OS: 10] [MIS: 10]
Moreover, Alan says:
This problem was seen with both Racoon and Racoon2. Other people have seen
this with OpenSwan. When IPsec is configured to encrypt all upper layer
protocols the SCTP connection does not initialize. After using Wireshark to
follow packets, this is because the SCTP packet leaves Box A unencrypted and
Box B believes all upper layer protocols are to be encrypted so it drops
this packet, causing the SCTP connection to fail to initialize. When IPsec
is configured to encrypt just SCTP, the SCTP packets are observed unencrypted.
In fact, using `socat sctp6-listen:3333 -` on one end and transferring "plaintext"
string on the other end, results in cleartext on the wire where SCTP eventually
does not report any errors, thus in the latter case that Alan reports, the
non-paranoid user might think he's communicating over an encrypted transport on
SCTP although he's not (tcpdump ... -X):
...
0x0030: 5d70 8e1a 0003 001a 177d eb6c 0000 0000 ]p.......}.l....
0x0040: 0000 0000 706c 6169 6e74 6578 740a 0000 ....plaintext...
Only in /proc/net/xfrm_stat we can see XfrmInTmplMismatch increasing on the
receiver side. Initial follow-up analysis from Alan's bug report was done by
Alexey Dobriyan. Also thanks to Vlad Yasevich for feedback on this.
SCTP has its own implementation of sctp_v6_xmit() not calling inet6_csk_xmit().
This has the implication that it probably never really got updated along with
changes in inet6_csk_xmit() and therefore does not seem to invoke xfrm handlers.
SCTP's IPv4 xmit however, properly calls ip_queue_xmit() to do the work. Since
a call to inet6_csk_xmit() would solve this problem, but result in unecessary
route lookups, let us just use the cached flowi6 instead that we got through
sctp_v6_get_dst(). Since all SCTP packets are being sent through sctp_packet_transmit(),
we do the route lookup / flow caching in sctp_transport_route(), hold it in
tp->dst and skb_dst_set() right after that. If we would alter fl6->daddr in
sctp_v6_xmit() to np->opt->srcrt, we possibly could run into the same effect
of not having xfrm layer pick it up, hence, use fl6_update_dst() in sctp_v6_get_dst()
instead to get the correct source routed dst entry, which we assign to the skb.
Also source address routing example from
|
||
---|---|---|
.. | ||
associola.c | ||
auth.c | ||
bind_addr.c | ||
chunk.c | ||
command.c | ||
debug.c | ||
endpointola.c | ||
input.c | ||
inqueue.c | ||
ipv6.c | ||
Kconfig | ||
Makefile | ||
objcnt.c | ||
output.c | ||
outqueue.c | ||
primitive.c | ||
probe.c | ||
proc.c | ||
protocol.c | ||
sm_make_chunk.c | ||
sm_sideeffect.c | ||
sm_statefuns.c | ||
sm_statetable.c | ||
socket.c | ||
ssnmap.c | ||
sysctl.c | ||
transport.c | ||
tsnmap.c | ||
ulpevent.c | ||
ulpqueue.c |