mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
df36442cfe
WARNING: line over 80 characters +#define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ib t*/ WARNING: line over 80 characters +#define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat*/ WARNING: suspect code indent for conditional statements (16, 20) + if (!strcmp(name, dev_name(gpadc->dev))) + return gpadc; WARNING: suspect code indent for conditional statements (0, 16) +if (ad_value < 0) { + dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", WARNING: quoted string split across lines + dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:" + " %d AD: 0x%x\n", channel, ad_value); WARNING: Missing a blank line after declarations + int raw_data; + raw_data = ab8500_gpadc_double_read_raw(gpadc, channel, WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt + msleep(10); ERROR: else should follow close brace '}' + } + else WARNING: line over 80 characters + delay_max = 10000; /* large range to optimise sleep mode */ WARNING: line over 80 characters + gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain; WARNING: line over 80 characters + gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL); WARNING: Possible unnecessary 'out of memory' message + if (!gpadc) { + dev_err(&pdev->dev, "Error: No memory\n"); WARNING: space prohibited before semicolon + return ; WARNING: void function return statements are not generally useful + return ; +} WARNING: quoted string split across lines +MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson," + "M'boumba Cedric Madianga"); total: 1 errors, 14 warnings, 1089 lines checked Cc: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Lee Jones <lee.jones@linaro.org>
1091 lines
31 KiB
C
1091 lines
31 KiB
C
/*
|
|
* Copyright (C) ST-Ericsson SA 2010
|
|
*
|
|
* License Terms: GNU General Public License v2
|
|
* Author: Arun R Murthy <arun.murthy@stericsson.com>
|
|
* Author: Daniel Willerud <daniel.willerud@stericsson.com>
|
|
* Author: Johan Palsson <johan.palsson@stericsson.com>
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mfd/abx500.h>
|
|
#include <linux/mfd/abx500/ab8500.h>
|
|
#include <linux/mfd/abx500/ab8500-gpadc.h>
|
|
|
|
/*
|
|
* GPADC register offsets
|
|
* Bank : 0x0A
|
|
*/
|
|
#define AB8500_GPADC_CTRL1_REG 0x00
|
|
#define AB8500_GPADC_CTRL2_REG 0x01
|
|
#define AB8500_GPADC_CTRL3_REG 0x02
|
|
#define AB8500_GPADC_AUTO_TIMER_REG 0x03
|
|
#define AB8500_GPADC_STAT_REG 0x04
|
|
#define AB8500_GPADC_MANDATAL_REG 0x05
|
|
#define AB8500_GPADC_MANDATAH_REG 0x06
|
|
#define AB8500_GPADC_AUTODATAL_REG 0x07
|
|
#define AB8500_GPADC_AUTODATAH_REG 0x08
|
|
#define AB8500_GPADC_MUX_CTRL_REG 0x09
|
|
#define AB8540_GPADC_MANDATA2L_REG 0x09
|
|
#define AB8540_GPADC_MANDATA2H_REG 0x0A
|
|
#define AB8540_GPADC_APEAAX_REG 0x10
|
|
#define AB8540_GPADC_APEAAT_REG 0x11
|
|
#define AB8540_GPADC_APEAAM_REG 0x12
|
|
#define AB8540_GPADC_APEAAH_REG 0x13
|
|
#define AB8540_GPADC_APEAAL_REG 0x14
|
|
|
|
/*
|
|
* OTP register offsets
|
|
* Bank : 0x15
|
|
*/
|
|
#define AB8500_GPADC_CAL_1 0x0F
|
|
#define AB8500_GPADC_CAL_2 0x10
|
|
#define AB8500_GPADC_CAL_3 0x11
|
|
#define AB8500_GPADC_CAL_4 0x12
|
|
#define AB8500_GPADC_CAL_5 0x13
|
|
#define AB8500_GPADC_CAL_6 0x14
|
|
#define AB8500_GPADC_CAL_7 0x15
|
|
/* New calibration for 8540 */
|
|
#define AB8540_GPADC_OTP4_REG_7 0x38
|
|
#define AB8540_GPADC_OTP4_REG_6 0x39
|
|
#define AB8540_GPADC_OTP4_REG_5 0x3A
|
|
|
|
/* gpadc constants */
|
|
#define EN_VINTCORE12 0x04
|
|
#define EN_VTVOUT 0x02
|
|
#define EN_GPADC 0x01
|
|
#define DIS_GPADC 0x00
|
|
#define AVG_1 0x00
|
|
#define AVG_4 0x20
|
|
#define AVG_8 0x40
|
|
#define AVG_16 0x60
|
|
#define ADC_SW_CONV 0x04
|
|
#define EN_ICHAR 0x80
|
|
#define BTEMP_PULL_UP 0x08
|
|
#define EN_BUF 0x40
|
|
#define DIS_ZERO 0x00
|
|
#define GPADC_BUSY 0x01
|
|
#define EN_FALLING 0x10
|
|
#define EN_TRIG_EDGE 0x02
|
|
#define EN_VBIAS_XTAL_TEMP 0x02
|
|
|
|
/* GPADC constants from AB8500 spec, UM0836 */
|
|
#define ADC_RESOLUTION 1024
|
|
#define ADC_CH_BTEMP_MIN 0
|
|
#define ADC_CH_BTEMP_MAX 1350
|
|
#define ADC_CH_DIETEMP_MIN 0
|
|
#define ADC_CH_DIETEMP_MAX 1350
|
|
#define ADC_CH_CHG_V_MIN 0
|
|
#define ADC_CH_CHG_V_MAX 20030
|
|
#define ADC_CH_ACCDET2_MIN 0
|
|
#define ADC_CH_ACCDET2_MAX 2500
|
|
#define ADC_CH_VBAT_MIN 2300
|
|
#define ADC_CH_VBAT_MAX 4800
|
|
#define ADC_CH_CHG_I_MIN 0
|
|
#define ADC_CH_CHG_I_MAX 1500
|
|
#define ADC_CH_BKBAT_MIN 0
|
|
#define ADC_CH_BKBAT_MAX 3200
|
|
|
|
/* GPADC constants from AB8540 spec */
|
|
#define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat */
|
|
#define ADC_CH_IBAT_MAX 6000
|
|
#define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat */
|
|
#define ADC_CH_IBAT_MAX_V 60
|
|
#define IBAT_VDROP_L (-56) /* mV */
|
|
#define IBAT_VDROP_H 56
|
|
|
|
/* This is used to not lose precision when dividing to get gain and offset */
|
|
#define CALIB_SCALE 1000
|
|
/*
|
|
* Number of bits shift used to not lose precision
|
|
* when dividing to get ibat gain.
|
|
*/
|
|
#define CALIB_SHIFT_IBAT 20
|
|
|
|
/* Time in ms before disabling regulator */
|
|
#define GPADC_AUDOSUSPEND_DELAY 1
|
|
|
|
#define CONVERSION_TIME 500 /* ms */
|
|
|
|
enum cal_channels {
|
|
ADC_INPUT_VMAIN = 0,
|
|
ADC_INPUT_BTEMP,
|
|
ADC_INPUT_VBAT,
|
|
ADC_INPUT_IBAT,
|
|
NBR_CAL_INPUTS,
|
|
};
|
|
|
|
/**
|
|
* struct adc_cal_data - Table for storing gain and offset for the calibrated
|
|
* ADC channels
|
|
* @gain: Gain of the ADC channel
|
|
* @offset: Offset of the ADC channel
|
|
*/
|
|
struct adc_cal_data {
|
|
s64 gain;
|
|
s64 offset;
|
|
u16 otp_calib_hi;
|
|
u16 otp_calib_lo;
|
|
};
|
|
|
|
/**
|
|
* struct ab8500_gpadc - AB8500 GPADC device information
|
|
* @dev: pointer to the struct device
|
|
* @node: a list of AB8500 GPADCs, hence prepared for
|
|
reentrance
|
|
* @parent: pointer to the struct ab8500
|
|
* @ab8500_gpadc_complete: pointer to the struct completion, to indicate
|
|
* the completion of gpadc conversion
|
|
* @ab8500_gpadc_lock: structure of type mutex
|
|
* @regu: pointer to the struct regulator
|
|
* @irq_sw: interrupt number that is used by gpadc for Sw
|
|
* conversion
|
|
* @irq_hw: interrupt number that is used by gpadc for Hw
|
|
* conversion
|
|
* @cal_data array of ADC calibration data structs
|
|
*/
|
|
struct ab8500_gpadc {
|
|
struct device *dev;
|
|
struct list_head node;
|
|
struct ab8500 *parent;
|
|
struct completion ab8500_gpadc_complete;
|
|
struct mutex ab8500_gpadc_lock;
|
|
struct regulator *regu;
|
|
int irq_sw;
|
|
int irq_hw;
|
|
struct adc_cal_data cal_data[NBR_CAL_INPUTS];
|
|
};
|
|
|
|
static LIST_HEAD(ab8500_gpadc_list);
|
|
|
|
/**
|
|
* ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
|
|
* (i.e. the first GPADC in the instance list)
|
|
*/
|
|
struct ab8500_gpadc *ab8500_gpadc_get(char *name)
|
|
{
|
|
struct ab8500_gpadc *gpadc;
|
|
|
|
list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
|
|
if (!strcmp(name, dev_name(gpadc->dev)))
|
|
return gpadc;
|
|
}
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
EXPORT_SYMBOL(ab8500_gpadc_get);
|
|
|
|
/**
|
|
* ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
|
|
*/
|
|
int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
|
|
int ad_value)
|
|
{
|
|
int res;
|
|
|
|
switch (channel) {
|
|
case MAIN_CHARGER_V:
|
|
/* For some reason we don't have calibrated data */
|
|
if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
|
|
res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
|
|
ADC_CH_CHG_V_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
}
|
|
/* Here we can use the calibrated data */
|
|
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
|
|
break;
|
|
|
|
case XTAL_TEMP:
|
|
case BAT_CTRL:
|
|
case BTEMP_BALL:
|
|
case ACC_DETECT1:
|
|
case ADC_AUX1:
|
|
case ADC_AUX2:
|
|
/* For some reason we don't have calibrated data */
|
|
if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
|
|
res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
|
|
ADC_CH_BTEMP_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
}
|
|
/* Here we can use the calibrated data */
|
|
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
|
|
break;
|
|
|
|
case MAIN_BAT_V:
|
|
case VBAT_TRUE_MEAS:
|
|
/* For some reason we don't have calibrated data */
|
|
if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
|
|
res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
|
|
ADC_CH_VBAT_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
}
|
|
/* Here we can use the calibrated data */
|
|
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
|
|
gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
|
|
break;
|
|
|
|
case DIE_TEMP:
|
|
res = ADC_CH_DIETEMP_MIN +
|
|
(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
|
|
case ACC_DETECT2:
|
|
res = ADC_CH_ACCDET2_MIN +
|
|
(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
|
|
case VBUS_V:
|
|
res = ADC_CH_CHG_V_MIN +
|
|
(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
|
|
case MAIN_CHARGER_C:
|
|
case USB_CHARGER_C:
|
|
res = ADC_CH_CHG_I_MIN +
|
|
(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
|
|
case BK_BAT_V:
|
|
res = ADC_CH_BKBAT_MIN +
|
|
(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
|
|
case IBAT_VIRTUAL_CHANNEL:
|
|
/* For some reason we don't have calibrated data */
|
|
if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) {
|
|
res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX -
|
|
ADC_CH_IBAT_MIN) * ad_value /
|
|
ADC_RESOLUTION;
|
|
break;
|
|
}
|
|
/* Here we can use the calibrated data */
|
|
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain +
|
|
gpadc->cal_data[ADC_INPUT_IBAT].offset)
|
|
>> CALIB_SHIFT_IBAT;
|
|
break;
|
|
|
|
default:
|
|
dev_err(gpadc->dev,
|
|
"unknown channel, not possible to convert\n");
|
|
res = -EINVAL;
|
|
break;
|
|
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage);
|
|
|
|
/**
|
|
* ab8500_gpadc_sw_hw_convert() - gpadc conversion
|
|
* @channel: analog channel to be converted to digital data
|
|
* @avg_sample: number of ADC sample to average
|
|
* @trig_egde: selected ADC trig edge
|
|
* @trig_timer: selected ADC trigger delay timer
|
|
* @conv_type: selected conversion type (HW or SW conversion)
|
|
*
|
|
* This function converts the selected analog i/p to digital
|
|
* data.
|
|
*/
|
|
int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel,
|
|
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
|
|
{
|
|
int ad_value;
|
|
int voltage;
|
|
|
|
ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
|
|
trig_edge, trig_timer, conv_type);
|
|
|
|
/* On failure retry a second time */
|
|
if (ad_value < 0)
|
|
ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
|
|
trig_edge, trig_timer, conv_type);
|
|
if (ad_value < 0) {
|
|
dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n",
|
|
channel);
|
|
return ad_value;
|
|
}
|
|
|
|
voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value);
|
|
if (voltage < 0)
|
|
dev_err(gpadc->dev,
|
|
"GPADC to voltage conversion failed ch: %d AD: 0x%x\n",
|
|
channel, ad_value);
|
|
|
|
return voltage;
|
|
}
|
|
EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert);
|
|
|
|
/**
|
|
* ab8500_gpadc_read_raw() - gpadc read
|
|
* @channel: analog channel to be read
|
|
* @avg_sample: number of ADC sample to average
|
|
* @trig_edge: selected trig edge
|
|
* @trig_timer: selected ADC trigger delay timer
|
|
* @conv_type: selected conversion type (HW or SW conversion)
|
|
*
|
|
* This function obtains the raw ADC value for an hardware conversion,
|
|
* this then needs to be converted by calling ab8500_gpadc_ad_to_voltage()
|
|
*/
|
|
int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
|
|
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
|
|
{
|
|
return ab8500_gpadc_double_read_raw(gpadc, channel, avg_sample,
|
|
trig_edge, trig_timer, conv_type,
|
|
NULL);
|
|
}
|
|
|
|
int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
|
|
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
|
|
int *ibat)
|
|
{
|
|
int ret;
|
|
int looplimit = 0;
|
|
unsigned long completion_timeout;
|
|
u8 val, low_data, high_data, low_data2, high_data2;
|
|
u8 val_reg1 = 0;
|
|
unsigned int delay_min = 0;
|
|
unsigned int delay_max = 0;
|
|
u8 data_low_addr, data_high_addr;
|
|
|
|
if (!gpadc)
|
|
return -ENODEV;
|
|
|
|
/* check if convertion is supported */
|
|
if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW))
|
|
return -ENOTSUPP;
|
|
if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW))
|
|
return -ENOTSUPP;
|
|
|
|
mutex_lock(&gpadc->ab8500_gpadc_lock);
|
|
/* Enable VTVout LDO this is required for GPADC */
|
|
pm_runtime_get_sync(gpadc->dev);
|
|
|
|
/* Check if ADC is not busy, lock and proceed */
|
|
do {
|
|
ret = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!(val & GPADC_BUSY))
|
|
break;
|
|
msleep(20);
|
|
} while (++looplimit < 10);
|
|
if (looplimit >= 10 && (val & GPADC_BUSY)) {
|
|
dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Enable GPADC */
|
|
val_reg1 |= EN_GPADC;
|
|
|
|
/* Select the channel source and set average samples */
|
|
switch (avg_sample) {
|
|
case SAMPLE_1:
|
|
val = channel | AVG_1;
|
|
break;
|
|
case SAMPLE_4:
|
|
val = channel | AVG_4;
|
|
break;
|
|
case SAMPLE_8:
|
|
val = channel | AVG_8;
|
|
break;
|
|
default:
|
|
val = channel | AVG_16;
|
|
break;
|
|
}
|
|
|
|
if (conv_type == ADC_HW) {
|
|
ret = abx500_set_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val);
|
|
val_reg1 |= EN_TRIG_EDGE;
|
|
if (trig_edge)
|
|
val_reg1 |= EN_FALLING;
|
|
} else
|
|
ret = abx500_set_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: set avg samples failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Enable ADC, buffering, select rising edge and enable ADC path
|
|
* charging current sense if it needed, ABB 3.0 needs some special
|
|
* treatment too.
|
|
*/
|
|
switch (channel) {
|
|
case MAIN_CHARGER_C:
|
|
case USB_CHARGER_C:
|
|
val_reg1 |= EN_BUF | EN_ICHAR;
|
|
break;
|
|
case BTEMP_BALL:
|
|
if (!is_ab8500_2p0_or_earlier(gpadc->parent)) {
|
|
val_reg1 |= EN_BUF | BTEMP_PULL_UP;
|
|
/*
|
|
* Delay might be needed for ABB8500 cut 3.0, if not,
|
|
* remove when hardware will be availible
|
|
*/
|
|
delay_min = 1000; /* Delay in micro seconds */
|
|
delay_max = 10000; /* large range optimises sleepmode */
|
|
break;
|
|
}
|
|
/* Intentional fallthrough */
|
|
default:
|
|
val_reg1 |= EN_BUF;
|
|
break;
|
|
}
|
|
|
|
/* Write configuration to register */
|
|
ret = abx500_set_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: set Control register failed\n");
|
|
goto out;
|
|
}
|
|
|
|
if (delay_min != 0)
|
|
usleep_range(delay_min, delay_max);
|
|
|
|
if (conv_type == ADC_HW) {
|
|
/* Set trigger delay timer */
|
|
ret = abx500_set_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: trig timer failed\n");
|
|
goto out;
|
|
}
|
|
completion_timeout = 2 * HZ;
|
|
data_low_addr = AB8500_GPADC_AUTODATAL_REG;
|
|
data_high_addr = AB8500_GPADC_AUTODATAH_REG;
|
|
} else {
|
|
/* Start SW conversion */
|
|
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
|
|
ADC_SW_CONV, ADC_SW_CONV);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: start s/w conv failed\n");
|
|
goto out;
|
|
}
|
|
completion_timeout = msecs_to_jiffies(CONVERSION_TIME);
|
|
data_low_addr = AB8500_GPADC_MANDATAL_REG;
|
|
data_high_addr = AB8500_GPADC_MANDATAH_REG;
|
|
}
|
|
|
|
/* wait for completion of conversion */
|
|
if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
|
|
completion_timeout)) {
|
|
dev_err(gpadc->dev,
|
|
"timeout didn't receive GPADC conv interrupt\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Read the converted RAW data */
|
|
ret = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, data_low_addr, &low_data);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, data_high_addr, &high_data);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Check if double convertion is required */
|
|
if ((channel == BAT_CTRL_AND_IBAT) ||
|
|
(channel == VBAT_MEAS_AND_IBAT) ||
|
|
(channel == VBAT_TRUE_MEAS_AND_IBAT) ||
|
|
(channel == BAT_TEMP_AND_IBAT)) {
|
|
|
|
if (conv_type == ADC_HW) {
|
|
/* not supported */
|
|
ret = -ENOTSUPP;
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: only SW double conversion supported\n");
|
|
goto out;
|
|
} else {
|
|
/* Read the converted RAW data 2 */
|
|
ret = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
|
|
&low_data2);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: read sw low data 2 failed\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
|
|
&high_data2);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: read sw high data 2 failed\n");
|
|
goto out;
|
|
}
|
|
if (ibat != NULL) {
|
|
*ibat = (high_data2 << 8) | low_data2;
|
|
} else {
|
|
dev_warn(gpadc->dev,
|
|
"gpadc_conversion: ibat not stored\n");
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Disable GPADC */
|
|
ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
|
|
AB8500_GPADC_CTRL1_REG, DIS_GPADC);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Disable VTVout LDO this is required for GPADC */
|
|
pm_runtime_mark_last_busy(gpadc->dev);
|
|
pm_runtime_put_autosuspend(gpadc->dev);
|
|
|
|
mutex_unlock(&gpadc->ab8500_gpadc_lock);
|
|
|
|
return (high_data << 8) | low_data;
|
|
|
|
out:
|
|
/*
|
|
* It has shown to be needed to turn off the GPADC if an error occurs,
|
|
* otherwise we might have problem when waiting for the busy bit in the
|
|
* GPADC status register to go low. In V1.1 there wait_for_completion
|
|
* seems to timeout when waiting for an interrupt.. Not seen in V2.0
|
|
*/
|
|
(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
|
|
AB8500_GPADC_CTRL1_REG, DIS_GPADC);
|
|
pm_runtime_put(gpadc->dev);
|
|
mutex_unlock(&gpadc->ab8500_gpadc_lock);
|
|
dev_err(gpadc->dev,
|
|
"gpadc_conversion: Failed to AD convert channel %d\n", channel);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ab8500_gpadc_read_raw);
|
|
|
|
/**
|
|
* ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
|
|
* @irq: irq number
|
|
* @data: pointer to the data passed during request irq
|
|
*
|
|
* This is a interrupt service routine for gpadc conversion completion.
|
|
* Notifies the gpadc completion is completed and the converted raw value
|
|
* can be read from the registers.
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc)
|
|
{
|
|
struct ab8500_gpadc *gpadc = _gpadc;
|
|
|
|
complete(&gpadc->ab8500_gpadc_complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int otp_cal_regs[] = {
|
|
AB8500_GPADC_CAL_1,
|
|
AB8500_GPADC_CAL_2,
|
|
AB8500_GPADC_CAL_3,
|
|
AB8500_GPADC_CAL_4,
|
|
AB8500_GPADC_CAL_5,
|
|
AB8500_GPADC_CAL_6,
|
|
AB8500_GPADC_CAL_7,
|
|
};
|
|
|
|
static int otp4_cal_regs[] = {
|
|
AB8540_GPADC_OTP4_REG_7,
|
|
AB8540_GPADC_OTP4_REG_6,
|
|
AB8540_GPADC_OTP4_REG_5,
|
|
};
|
|
|
|
static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
|
|
{
|
|
int i;
|
|
int ret[ARRAY_SIZE(otp_cal_regs)];
|
|
u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
|
|
int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
|
|
u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
|
|
int vmain_high, vmain_low;
|
|
int btemp_high, btemp_low;
|
|
int vbat_high, vbat_low;
|
|
int ibat_high, ibat_low;
|
|
s64 V_gain, V_offset, V2A_gain, V2A_offset;
|
|
struct ab8500 *ab8500;
|
|
|
|
ab8500 = gpadc->parent;
|
|
|
|
/* First we read all OTP registers and store the error code */
|
|
for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
|
|
ret[i] = abx500_get_register_interruptible(gpadc->dev,
|
|
AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
|
|
if (ret[i] < 0)
|
|
dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
|
|
__func__, otp_cal_regs[i]);
|
|
}
|
|
|
|
/*
|
|
* The ADC calibration data is stored in OTP registers.
|
|
* The layout of the calibration data is outlined below and a more
|
|
* detailed description can be found in UM0836
|
|
*
|
|
* vm_h/l = vmain_high/low
|
|
* bt_h/l = btemp_high/low
|
|
* vb_h/l = vbat_high/low
|
|
*
|
|
* Data bits 8500/9540:
|
|
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | | vm_h9 | vm_h8
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
*
|
|
* Data bits 8540:
|
|
* OTP2
|
|
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* |
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
*
|
|
* Data bits 8540:
|
|
* OTP4
|
|
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | | ib_h9 | ib_h8 | ib_h7
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
|
|
* |.......|.......|.......|.......|.......|.......|.......|.......
|
|
* | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
|
|
*
|
|
*
|
|
* Ideal output ADC codes corresponding to injected input voltages
|
|
* during manufacturing is:
|
|
*
|
|
* vmain_high: Vin = 19500mV / ADC ideal code = 997
|
|
* vmain_low: Vin = 315mV / ADC ideal code = 16
|
|
* btemp_high: Vin = 1300mV / ADC ideal code = 985
|
|
* btemp_low: Vin = 21mV / ADC ideal code = 16
|
|
* vbat_high: Vin = 4700mV / ADC ideal code = 982
|
|
* vbat_low: Vin = 2380mV / ADC ideal code = 33
|
|
*/
|
|
|
|
if (is_ab8540(ab8500)) {
|
|
/* Calculate gain and offset for VMAIN if all reads succeeded*/
|
|
if (!(ret[1] < 0 || ret[2] < 0)) {
|
|
vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
|
|
((gpadc_cal[2] & 0xC0) >> 6));
|
|
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
|
|
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
|
|
(u16)vmain_high;
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
|
|
(u16)vmain_low;
|
|
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
|
|
(19500 - 315) / (vmain_high - vmain_low);
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
|
|
19500 - (CALIB_SCALE * (19500 - 315) /
|
|
(vmain_high - vmain_low)) * vmain_high;
|
|
} else {
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
|
|
}
|
|
|
|
/* Read IBAT calibration Data */
|
|
for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
|
|
ret_otp4[i] = abx500_get_register_interruptible(
|
|
gpadc->dev, AB8500_OTP_EMUL,
|
|
otp4_cal_regs[i], &gpadc_otp4[i]);
|
|
if (ret_otp4[i] < 0)
|
|
dev_err(gpadc->dev,
|
|
"%s: read otp4 reg 0x%02x failed\n",
|
|
__func__, otp4_cal_regs[i]);
|
|
}
|
|
|
|
/* Calculate gain and offset for IBAT if all reads succeeded */
|
|
if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
|
|
ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
|
|
((gpadc_otp4[1] & 0xFE) >> 1));
|
|
ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
|
|
((gpadc_otp4[2] & 0xF8) >> 3));
|
|
|
|
gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi =
|
|
(u16)ibat_high;
|
|
gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo =
|
|
(u16)ibat_low;
|
|
|
|
V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L)
|
|
<< CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
|
|
|
|
V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) -
|
|
(((IBAT_VDROP_H - IBAT_VDROP_L) <<
|
|
CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
|
|
* ibat_high;
|
|
/*
|
|
* Result obtained is in mV (at a scale factor),
|
|
* we need to calculate gain and offset to get mA
|
|
*/
|
|
V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/
|
|
(ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
|
|
V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN -
|
|
ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V)
|
|
<< CALIB_SHIFT_IBAT)
|
|
/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
|
|
|
|
gpadc->cal_data[ADC_INPUT_IBAT].gain =
|
|
V_gain * V2A_gain;
|
|
gpadc->cal_data[ADC_INPUT_IBAT].offset =
|
|
V_offset * V2A_gain + V2A_offset;
|
|
} else {
|
|
gpadc->cal_data[ADC_INPUT_IBAT].gain = 0;
|
|
}
|
|
|
|
dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n",
|
|
gpadc->cal_data[ADC_INPUT_IBAT].gain,
|
|
gpadc->cal_data[ADC_INPUT_IBAT].offset);
|
|
} else {
|
|
/* Calculate gain and offset for VMAIN if all reads succeeded */
|
|
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
|
|
vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
|
|
((gpadc_cal[1] & 0x3F) << 2) |
|
|
((gpadc_cal[2] & 0xC0) >> 6));
|
|
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
|
|
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
|
|
(u16)vmain_high;
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
|
|
(u16)vmain_low;
|
|
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
|
|
(19500 - 315) / (vmain_high - vmain_low);
|
|
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
|
|
19500 - (CALIB_SCALE * (19500 - 315) /
|
|
(vmain_high - vmain_low)) * vmain_high;
|
|
} else {
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
|
|
}
|
|
}
|
|
|
|
/* Calculate gain and offset for BTEMP if all reads succeeded */
|
|
if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
|
|
btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
|
|
(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
|
|
btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
|
|
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high;
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low;
|
|
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].gain =
|
|
CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
|
|
(CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
|
|
* btemp_high;
|
|
} else {
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
|
|
}
|
|
|
|
/* Calculate gain and offset for VBAT if all reads succeeded */
|
|
if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
|
|
vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
|
|
vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
|
|
|
|
gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high;
|
|
gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low;
|
|
|
|
gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
|
|
(4700 - 2380) / (vbat_high - vbat_low);
|
|
gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
|
|
(CALIB_SCALE * (4700 - 2380) /
|
|
(vbat_high - vbat_low)) * vbat_high;
|
|
} else {
|
|
gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
|
|
}
|
|
|
|
dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].gain,
|
|
gpadc->cal_data[ADC_INPUT_VMAIN].offset);
|
|
|
|
dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].gain,
|
|
gpadc->cal_data[ADC_INPUT_BTEMP].offset);
|
|
|
|
dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
|
|
gpadc->cal_data[ADC_INPUT_VBAT].gain,
|
|
gpadc->cal_data[ADC_INPUT_VBAT].offset);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int ab8500_gpadc_runtime_suspend(struct device *dev)
|
|
{
|
|
struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
|
|
|
|
regulator_disable(gpadc->regu);
|
|
return 0;
|
|
}
|
|
|
|
static int ab8500_gpadc_runtime_resume(struct device *dev)
|
|
{
|
|
struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regulator_enable(gpadc->regu);
|
|
if (ret)
|
|
dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int ab8500_gpadc_suspend(struct device *dev)
|
|
{
|
|
struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
|
|
|
|
mutex_lock(&gpadc->ab8500_gpadc_lock);
|
|
|
|
pm_runtime_get_sync(dev);
|
|
|
|
regulator_disable(gpadc->regu);
|
|
return 0;
|
|
}
|
|
|
|
static int ab8500_gpadc_resume(struct device *dev)
|
|
{
|
|
struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regulator_enable(gpadc->regu);
|
|
if (ret)
|
|
dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
|
|
|
|
pm_runtime_mark_last_busy(gpadc->dev);
|
|
pm_runtime_put_autosuspend(gpadc->dev);
|
|
|
|
mutex_unlock(&gpadc->ab8500_gpadc_lock);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int ab8500_gpadc_probe(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
struct ab8500_gpadc *gpadc;
|
|
|
|
gpadc = devm_kzalloc(&pdev->dev,
|
|
sizeof(struct ab8500_gpadc), GFP_KERNEL);
|
|
if (!gpadc)
|
|
return -ENOMEM;
|
|
|
|
gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
|
|
if (gpadc->irq_sw < 0)
|
|
dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n");
|
|
|
|
gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
|
|
if (gpadc->irq_hw < 0)
|
|
dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n");
|
|
|
|
gpadc->dev = &pdev->dev;
|
|
gpadc->parent = dev_get_drvdata(pdev->dev.parent);
|
|
mutex_init(&gpadc->ab8500_gpadc_lock);
|
|
|
|
/* Initialize completion used to notify completion of conversion */
|
|
init_completion(&gpadc->ab8500_gpadc_complete);
|
|
|
|
/* Register interrupts */
|
|
if (gpadc->irq_sw >= 0) {
|
|
ret = request_threaded_irq(gpadc->irq_sw, NULL,
|
|
ab8500_bm_gpadcconvend_handler,
|
|
IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
|
|
"ab8500-gpadc-sw",
|
|
gpadc);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"Failed to register interrupt irq: %d\n",
|
|
gpadc->irq_sw);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (gpadc->irq_hw >= 0) {
|
|
ret = request_threaded_irq(gpadc->irq_hw, NULL,
|
|
ab8500_bm_gpadcconvend_handler,
|
|
IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
|
|
"ab8500-gpadc-hw",
|
|
gpadc);
|
|
if (ret < 0) {
|
|
dev_err(gpadc->dev,
|
|
"Failed to register interrupt irq: %d\n",
|
|
gpadc->irq_hw);
|
|
goto fail_irq;
|
|
}
|
|
}
|
|
|
|
/* VTVout LDO used to power up ab8500-GPADC */
|
|
gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc");
|
|
if (IS_ERR(gpadc->regu)) {
|
|
ret = PTR_ERR(gpadc->regu);
|
|
dev_err(gpadc->dev, "failed to get vtvout LDO\n");
|
|
goto fail_irq;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, gpadc);
|
|
|
|
ret = regulator_enable(gpadc->regu);
|
|
if (ret) {
|
|
dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret);
|
|
goto fail_enable;
|
|
}
|
|
|
|
pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY);
|
|
pm_runtime_use_autosuspend(gpadc->dev);
|
|
pm_runtime_set_active(gpadc->dev);
|
|
pm_runtime_enable(gpadc->dev);
|
|
|
|
ab8500_gpadc_read_calibration_data(gpadc);
|
|
list_add_tail(&gpadc->node, &ab8500_gpadc_list);
|
|
dev_dbg(gpadc->dev, "probe success\n");
|
|
|
|
return 0;
|
|
|
|
fail_enable:
|
|
fail_irq:
|
|
free_irq(gpadc->irq_sw, gpadc);
|
|
free_irq(gpadc->irq_hw, gpadc);
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static int ab8500_gpadc_remove(struct platform_device *pdev)
|
|
{
|
|
struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
|
|
|
|
/* remove this gpadc entry from the list */
|
|
list_del(&gpadc->node);
|
|
/* remove interrupt - completion of Sw ADC conversion */
|
|
if (gpadc->irq_sw >= 0)
|
|
free_irq(gpadc->irq_sw, gpadc);
|
|
if (gpadc->irq_hw >= 0)
|
|
free_irq(gpadc->irq_hw, gpadc);
|
|
|
|
pm_runtime_get_sync(gpadc->dev);
|
|
pm_runtime_disable(gpadc->dev);
|
|
|
|
regulator_disable(gpadc->regu);
|
|
|
|
pm_runtime_set_suspended(gpadc->dev);
|
|
|
|
pm_runtime_put_noidle(gpadc->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops ab8500_gpadc_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend,
|
|
ab8500_gpadc_runtime_resume,
|
|
NULL)
|
|
SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend,
|
|
ab8500_gpadc_resume)
|
|
|
|
};
|
|
|
|
static struct platform_driver ab8500_gpadc_driver = {
|
|
.probe = ab8500_gpadc_probe,
|
|
.remove = ab8500_gpadc_remove,
|
|
.driver = {
|
|
.name = "ab8500-gpadc",
|
|
.pm = &ab8500_gpadc_pm_ops,
|
|
},
|
|
};
|
|
|
|
static int __init ab8500_gpadc_init(void)
|
|
{
|
|
return platform_driver_register(&ab8500_gpadc_driver);
|
|
}
|
|
|
|
static void __exit ab8500_gpadc_exit(void)
|
|
{
|
|
platform_driver_unregister(&ab8500_gpadc_driver);
|
|
}
|
|
|
|
/**
|
|
* ab8540_gpadc_get_otp() - returns OTP values
|
|
*
|
|
*/
|
|
void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc,
|
|
u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h,
|
|
u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h)
|
|
{
|
|
*vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo;
|
|
*vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi;
|
|
*btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo;
|
|
*btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi;
|
|
*vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo;
|
|
*vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi;
|
|
*ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo;
|
|
*ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi;
|
|
}
|
|
|
|
subsys_initcall_sync(ab8500_gpadc_init);
|
|
module_exit(ab8500_gpadc_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Arun R Murthy");
|
|
MODULE_AUTHOR("Daniel Willerud");
|
|
MODULE_AUTHOR("Johan Palsson");
|
|
MODULE_AUTHOR("M'boumba Cedric Madianga");
|
|
MODULE_ALIAS("platform:ab8500_gpadc");
|
|
MODULE_DESCRIPTION("AB8500 GPADC driver");
|