2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 14:14:00 +08:00
linux-next/drivers/crypto/marvell/cesa.c
Romain Perier 09951d83fc crypto: marvell - Update transformation context for each dequeued req
So far, sub part of mv_cesa_int was responsible of dequeuing complete
requests, then call the 'cleanup' operation on these reqs and call the
crypto api callback 'complete'. The problem is that the transformation
context 'ctx' is retrieved only once before the while loop. Which means
that the wrong 'cleanup' operation might be called on the wrong type of
cesa requests, it can lead to memory corruptions with this message:

marvell-cesa f1090000.crypto: dma_pool_free cesa_padding, 5a5a5a5a/5a5a5a5a (bad dma)

This commit fixes the issue, by updating the transformation context for
each dequeued cesa request.

Fixes: commit 85030c5168 ("crypto: marvell - Add support for chai...")
Signed-off-by: Romain Perier <romain.perier@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-08-09 18:47:30 +08:00

621 lines
15 KiB
C

/*
* Support for Marvell's Cryptographic Engine and Security Accelerator (CESA)
* that can be found on the following platform: Orion, Kirkwood, Armada. This
* driver supports the TDMA engine on platforms on which it is available.
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
* Author: Arnaud Ebalard <arno@natisbad.org>
*
* This work is based on an initial version written by
* Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/mbus.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include "cesa.h"
/* Limit of the crypto queue before reaching the backlog */
#define CESA_CRYPTO_DEFAULT_MAX_QLEN 128
static int allhwsupport = !IS_ENABLED(CONFIG_CRYPTO_DEV_MV_CESA);
module_param_named(allhwsupport, allhwsupport, int, 0444);
MODULE_PARM_DESC(allhwsupport, "Enable support for all hardware (even it if overlaps with the mv_cesa driver)");
struct mv_cesa_dev *cesa_dev;
struct crypto_async_request *
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
struct crypto_async_request **backlog)
{
struct crypto_async_request *req;
*backlog = crypto_get_backlog(&engine->queue);
req = crypto_dequeue_request(&engine->queue);
if (!req)
return NULL;
return req;
}
static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine)
{
struct crypto_async_request *req = NULL, *backlog = NULL;
struct mv_cesa_ctx *ctx;
spin_lock_bh(&engine->lock);
if (!engine->req) {
req = mv_cesa_dequeue_req_locked(engine, &backlog);
engine->req = req;
}
spin_unlock_bh(&engine->lock);
if (!req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(req->tfm);
ctx->ops->step(req);
return;
}
static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status)
{
struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
int res;
req = engine->req;
ctx = crypto_tfm_ctx(req->tfm);
res = ctx->ops->process(req, status);
if (res == 0) {
ctx->ops->complete(req);
mv_cesa_engine_enqueue_complete_request(engine, req);
} else if (res == -EINPROGRESS) {
ctx->ops->step(req);
}
return res;
}
static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status)
{
if (engine->chain.first && engine->chain.last)
return mv_cesa_tdma_process(engine, status);
return mv_cesa_std_process(engine, status);
}
static inline void
mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req,
int res)
{
ctx->ops->cleanup(req);
local_bh_disable();
req->complete(req, res);
local_bh_enable();
}
static irqreturn_t mv_cesa_int(int irq, void *priv)
{
struct mv_cesa_engine *engine = priv;
struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
u32 status, mask;
irqreturn_t ret = IRQ_NONE;
while (true) {
int res;
mask = mv_cesa_get_int_mask(engine);
status = readl(engine->regs + CESA_SA_INT_STATUS);
if (!(status & mask))
break;
/*
* TODO: avoid clearing the FPGA_INT_STATUS if this not
* relevant on some platforms.
*/
writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS);
writel(~status, engine->regs + CESA_SA_INT_STATUS);
/* Process fetched requests */
res = mv_cesa_int_process(engine, status & mask);
ret = IRQ_HANDLED;
spin_lock_bh(&engine->lock);
req = engine->req;
if (res != -EINPROGRESS)
engine->req = NULL;
spin_unlock_bh(&engine->lock);
ctx = crypto_tfm_ctx(req->tfm);
if (res && res != -EINPROGRESS)
mv_cesa_complete_req(ctx, req, res);
/* Launch the next pending request */
mv_cesa_rearm_engine(engine);
/* Iterate over the complete queue */
while (true) {
req = mv_cesa_engine_dequeue_complete_request(engine);
if (!req)
break;
ctx = crypto_tfm_ctx(req->tfm);
mv_cesa_complete_req(ctx, req, 0);
}
}
return ret;
}
int mv_cesa_queue_req(struct crypto_async_request *req,
struct mv_cesa_req *creq)
{
int ret;
struct mv_cesa_engine *engine = creq->engine;
spin_lock_bh(&engine->lock);
ret = crypto_enqueue_request(&engine->queue, req);
if ((mv_cesa_req_get_type(creq) == CESA_DMA_REQ) &&
(ret == -EINPROGRESS ||
(ret == -EBUSY && req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
mv_cesa_tdma_chain(engine, creq);
spin_unlock_bh(&engine->lock);
if (ret != -EINPROGRESS)
return ret;
mv_cesa_rearm_engine(engine);
return -EINPROGRESS;
}
static int mv_cesa_add_algs(struct mv_cesa_dev *cesa)
{
int ret;
int i, j;
for (i = 0; i < cesa->caps->ncipher_algs; i++) {
ret = crypto_register_alg(cesa->caps->cipher_algs[i]);
if (ret)
goto err_unregister_crypto;
}
for (i = 0; i < cesa->caps->nahash_algs; i++) {
ret = crypto_register_ahash(cesa->caps->ahash_algs[i]);
if (ret)
goto err_unregister_ahash;
}
return 0;
err_unregister_ahash:
for (j = 0; j < i; j++)
crypto_unregister_ahash(cesa->caps->ahash_algs[j]);
i = cesa->caps->ncipher_algs;
err_unregister_crypto:
for (j = 0; j < i; j++)
crypto_unregister_alg(cesa->caps->cipher_algs[j]);
return ret;
}
static void mv_cesa_remove_algs(struct mv_cesa_dev *cesa)
{
int i;
for (i = 0; i < cesa->caps->nahash_algs; i++)
crypto_unregister_ahash(cesa->caps->ahash_algs[i]);
for (i = 0; i < cesa->caps->ncipher_algs; i++)
crypto_unregister_alg(cesa->caps->cipher_algs[i]);
}
static struct crypto_alg *orion_cipher_algs[] = {
&mv_cesa_ecb_des_alg,
&mv_cesa_cbc_des_alg,
&mv_cesa_ecb_des3_ede_alg,
&mv_cesa_cbc_des3_ede_alg,
&mv_cesa_ecb_aes_alg,
&mv_cesa_cbc_aes_alg,
};
static struct ahash_alg *orion_ahash_algs[] = {
&mv_md5_alg,
&mv_sha1_alg,
&mv_ahmac_md5_alg,
&mv_ahmac_sha1_alg,
};
static struct crypto_alg *armada_370_cipher_algs[] = {
&mv_cesa_ecb_des_alg,
&mv_cesa_cbc_des_alg,
&mv_cesa_ecb_des3_ede_alg,
&mv_cesa_cbc_des3_ede_alg,
&mv_cesa_ecb_aes_alg,
&mv_cesa_cbc_aes_alg,
};
static struct ahash_alg *armada_370_ahash_algs[] = {
&mv_md5_alg,
&mv_sha1_alg,
&mv_sha256_alg,
&mv_ahmac_md5_alg,
&mv_ahmac_sha1_alg,
&mv_ahmac_sha256_alg,
};
static const struct mv_cesa_caps orion_caps = {
.nengines = 1,
.cipher_algs = orion_cipher_algs,
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
.ahash_algs = orion_ahash_algs,
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
.has_tdma = false,
};
static const struct mv_cesa_caps kirkwood_caps = {
.nengines = 1,
.cipher_algs = orion_cipher_algs,
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
.ahash_algs = orion_ahash_algs,
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
.has_tdma = true,
};
static const struct mv_cesa_caps armada_370_caps = {
.nengines = 1,
.cipher_algs = armada_370_cipher_algs,
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
.ahash_algs = armada_370_ahash_algs,
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
.has_tdma = true,
};
static const struct mv_cesa_caps armada_xp_caps = {
.nengines = 2,
.cipher_algs = armada_370_cipher_algs,
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
.ahash_algs = armada_370_ahash_algs,
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
.has_tdma = true,
};
static const struct of_device_id mv_cesa_of_match_table[] = {
{ .compatible = "marvell,orion-crypto", .data = &orion_caps },
{ .compatible = "marvell,kirkwood-crypto", .data = &kirkwood_caps },
{ .compatible = "marvell,dove-crypto", .data = &kirkwood_caps },
{ .compatible = "marvell,armada-370-crypto", .data = &armada_370_caps },
{ .compatible = "marvell,armada-xp-crypto", .data = &armada_xp_caps },
{ .compatible = "marvell,armada-375-crypto", .data = &armada_xp_caps },
{ .compatible = "marvell,armada-38x-crypto", .data = &armada_xp_caps },
{}
};
MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
static void
mv_cesa_conf_mbus_windows(struct mv_cesa_engine *engine,
const struct mbus_dram_target_info *dram)
{
void __iomem *iobase = engine->regs;
int i;
for (i = 0; i < 4; i++) {
writel(0, iobase + CESA_TDMA_WINDOW_CTRL(i));
writel(0, iobase + CESA_TDMA_WINDOW_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
iobase + CESA_TDMA_WINDOW_CTRL(i));
writel(cs->base, iobase + CESA_TDMA_WINDOW_BASE(i));
}
}
static int mv_cesa_dev_dma_init(struct mv_cesa_dev *cesa)
{
struct device *dev = cesa->dev;
struct mv_cesa_dev_dma *dma;
if (!cesa->caps->has_tdma)
return 0;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->tdma_desc_pool = dmam_pool_create("tdma_desc", dev,
sizeof(struct mv_cesa_tdma_desc),
16, 0);
if (!dma->tdma_desc_pool)
return -ENOMEM;
dma->op_pool = dmam_pool_create("cesa_op", dev,
sizeof(struct mv_cesa_op_ctx), 16, 0);
if (!dma->op_pool)
return -ENOMEM;
dma->cache_pool = dmam_pool_create("cesa_cache", dev,
CESA_MAX_HASH_BLOCK_SIZE, 1, 0);
if (!dma->cache_pool)
return -ENOMEM;
dma->padding_pool = dmam_pool_create("cesa_padding", dev, 72, 1, 0);
if (!dma->padding_pool)
return -ENOMEM;
dma->iv_pool = dmam_pool_create("cesa_iv", dev, 16, 1, 0);
if (!dma->iv_pool)
return -ENOMEM;
cesa->dma = dma;
return 0;
}
static int mv_cesa_get_sram(struct platform_device *pdev, int idx)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
struct mv_cesa_engine *engine = &cesa->engines[idx];
const char *res_name = "sram";
struct resource *res;
engine->pool = of_gen_pool_get(cesa->dev->of_node,
"marvell,crypto-srams", idx);
if (engine->pool) {
engine->sram = gen_pool_dma_alloc(engine->pool,
cesa->sram_size,
&engine->sram_dma);
if (engine->sram)
return 0;
engine->pool = NULL;
return -ENOMEM;
}
if (cesa->caps->nengines > 1) {
if (!idx)
res_name = "sram0";
else
res_name = "sram1";
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
res_name);
if (!res || resource_size(res) < cesa->sram_size)
return -EINVAL;
engine->sram = devm_ioremap_resource(cesa->dev, res);
if (IS_ERR(engine->sram))
return PTR_ERR(engine->sram);
engine->sram_dma = phys_to_dma(cesa->dev,
(phys_addr_t)res->start);
return 0;
}
static void mv_cesa_put_sram(struct platform_device *pdev, int idx)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
struct mv_cesa_engine *engine = &cesa->engines[idx];
if (!engine->pool)
return;
gen_pool_free(engine->pool, (unsigned long)engine->sram,
cesa->sram_size);
}
static int mv_cesa_probe(struct platform_device *pdev)
{
const struct mv_cesa_caps *caps = &orion_caps;
const struct mbus_dram_target_info *dram;
const struct of_device_id *match;
struct device *dev = &pdev->dev;
struct mv_cesa_dev *cesa;
struct mv_cesa_engine *engines;
struct resource *res;
int irq, ret, i;
u32 sram_size;
if (cesa_dev) {
dev_err(&pdev->dev, "Only one CESA device authorized\n");
return -EEXIST;
}
if (dev->of_node) {
match = of_match_node(mv_cesa_of_match_table, dev->of_node);
if (!match || !match->data)
return -ENOTSUPP;
caps = match->data;
}
if ((caps == &orion_caps || caps == &kirkwood_caps) && !allhwsupport)
return -ENOTSUPP;
cesa = devm_kzalloc(dev, sizeof(*cesa), GFP_KERNEL);
if (!cesa)
return -ENOMEM;
cesa->caps = caps;
cesa->dev = dev;
sram_size = CESA_SA_DEFAULT_SRAM_SIZE;
of_property_read_u32(cesa->dev->of_node, "marvell,crypto-sram-size",
&sram_size);
if (sram_size < CESA_SA_MIN_SRAM_SIZE)
sram_size = CESA_SA_MIN_SRAM_SIZE;
cesa->sram_size = sram_size;
cesa->engines = devm_kzalloc(dev, caps->nengines * sizeof(*engines),
GFP_KERNEL);
if (!cesa->engines)
return -ENOMEM;
spin_lock_init(&cesa->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
cesa->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(cesa->regs))
return PTR_ERR(cesa->regs);
ret = mv_cesa_dev_dma_init(cesa);
if (ret)
return ret;
dram = mv_mbus_dram_info_nooverlap();
platform_set_drvdata(pdev, cesa);
for (i = 0; i < caps->nengines; i++) {
struct mv_cesa_engine *engine = &cesa->engines[i];
char res_name[7];
engine->id = i;
spin_lock_init(&engine->lock);
ret = mv_cesa_get_sram(pdev, i);
if (ret)
goto err_cleanup;
irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = irq;
goto err_cleanup;
}
/*
* Not all platforms can gate the CESA clocks: do not complain
* if the clock does not exist.
*/
snprintf(res_name, sizeof(res_name), "cesa%d", i);
engine->clk = devm_clk_get(dev, res_name);
if (IS_ERR(engine->clk)) {
engine->clk = devm_clk_get(dev, NULL);
if (IS_ERR(engine->clk))
engine->clk = NULL;
}
snprintf(res_name, sizeof(res_name), "cesaz%d", i);
engine->zclk = devm_clk_get(dev, res_name);
if (IS_ERR(engine->zclk))
engine->zclk = NULL;
ret = clk_prepare_enable(engine->clk);
if (ret)
goto err_cleanup;
ret = clk_prepare_enable(engine->zclk);
if (ret)
goto err_cleanup;
engine->regs = cesa->regs + CESA_ENGINE_OFF(i);
if (dram && cesa->caps->has_tdma)
mv_cesa_conf_mbus_windows(engine, dram);
writel(0, engine->regs + CESA_SA_INT_STATUS);
writel(CESA_SA_CFG_STOP_DIG_ERR,
engine->regs + CESA_SA_CFG);
writel(engine->sram_dma & CESA_SA_SRAM_MSK,
engine->regs + CESA_SA_DESC_P0);
ret = devm_request_threaded_irq(dev, irq, NULL, mv_cesa_int,
IRQF_ONESHOT,
dev_name(&pdev->dev),
engine);
if (ret)
goto err_cleanup;
crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN);
atomic_set(&engine->load, 0);
INIT_LIST_HEAD(&engine->complete_queue);
}
cesa_dev = cesa;
ret = mv_cesa_add_algs(cesa);
if (ret) {
cesa_dev = NULL;
goto err_cleanup;
}
dev_info(dev, "CESA device successfully registered\n");
return 0;
err_cleanup:
for (i = 0; i < caps->nengines; i++) {
clk_disable_unprepare(cesa->engines[i].zclk);
clk_disable_unprepare(cesa->engines[i].clk);
mv_cesa_put_sram(pdev, i);
}
return ret;
}
static int mv_cesa_remove(struct platform_device *pdev)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
int i;
mv_cesa_remove_algs(cesa);
for (i = 0; i < cesa->caps->nengines; i++) {
clk_disable_unprepare(cesa->engines[i].zclk);
clk_disable_unprepare(cesa->engines[i].clk);
mv_cesa_put_sram(pdev, i);
}
return 0;
}
static struct platform_driver marvell_cesa = {
.probe = mv_cesa_probe,
.remove = mv_cesa_remove,
.driver = {
.name = "marvell-cesa",
.of_match_table = mv_cesa_of_match_table,
},
};
module_platform_driver(marvell_cesa);
MODULE_ALIAS("platform:mv_crypto");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_AUTHOR("Arnaud Ebalard <arno@natisbad.org>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL v2");