2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/drivers/ata/sata_qstor.c
Tejun Heo ff2aeb1eb6 libata: convert to chained sg
libata used private sg iterator to handle padding sg.  Now that sg can
be chained, padding can be handled using standard sg ops.  Convert to
chained sg.

* s/qc->__sg/qc->sg/

* s/qc->pad_sgent/qc->extra_sg[]/.  Because chaining consumes one sg
  entry.  There need to be two extra sg entries.  The renaming is also
  for future addition of other extra sg entries.

* Padding setup is moved into ata_sg_setup_extra() which is organized
  in a way that future addition of other extra sg entries is easy.

* qc->orig_n_elem is unused and removed.

* qc->n_elem now contains the number of sg entries that LLDs should
  map.  qc->mapped_n_elem is added to carry the original number of
  mapped sgs for unmapping.

* The last sg of the original sg list is used to chain to extra sg
  list.  The original last sg is pointed to by qc->last_sg and the
  content is stored in qc->saved_last_sg.  It's restored during
  ata_sg_clean().

* All sg walking code has been updated.  Unnecessary assertions and
  checks for conditions the core layer already guarantees are removed.

Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-01-23 05:24:14 -05:00

702 lines
19 KiB
C

/*
* sata_qstor.c - Pacific Digital Corporation QStor SATA
*
* Maintained by: Mark Lord <mlord@pobox.com>
*
* Copyright 2005 Pacific Digital Corporation.
* (OSL/GPL code release authorized by Jalil Fadavi).
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "sata_qstor"
#define DRV_VERSION "0.09"
enum {
QS_MMIO_BAR = 4,
QS_PORTS = 4,
QS_MAX_PRD = LIBATA_MAX_PRD,
QS_CPB_ORDER = 6,
QS_CPB_BYTES = (1 << QS_CPB_ORDER),
QS_PRD_BYTES = QS_MAX_PRD * 16,
QS_PKT_BYTES = QS_CPB_BYTES + QS_PRD_BYTES,
/* global register offsets */
QS_HCF_CNFG3 = 0x0003, /* host configuration offset */
QS_HID_HPHY = 0x0004, /* host physical interface info */
QS_HCT_CTRL = 0x00e4, /* global interrupt mask offset */
QS_HST_SFF = 0x0100, /* host status fifo offset */
QS_HVS_SERD3 = 0x0393, /* PHY enable offset */
/* global control bits */
QS_HPHY_64BIT = (1 << 1), /* 64-bit bus detected */
QS_CNFG3_GSRST = 0x01, /* global chip reset */
QS_SERD3_PHY_ENA = 0xf0, /* PHY detection ENAble*/
/* per-channel register offsets */
QS_CCF_CPBA = 0x0710, /* chan CPB base address */
QS_CCF_CSEP = 0x0718, /* chan CPB separation factor */
QS_CFC_HUFT = 0x0800, /* host upstream fifo threshold */
QS_CFC_HDFT = 0x0804, /* host downstream fifo threshold */
QS_CFC_DUFT = 0x0808, /* dev upstream fifo threshold */
QS_CFC_DDFT = 0x080c, /* dev downstream fifo threshold */
QS_CCT_CTR0 = 0x0900, /* chan control-0 offset */
QS_CCT_CTR1 = 0x0901, /* chan control-1 offset */
QS_CCT_CFF = 0x0a00, /* chan command fifo offset */
/* channel control bits */
QS_CTR0_REG = (1 << 1), /* register mode (vs. pkt mode) */
QS_CTR0_CLER = (1 << 2), /* clear channel errors */
QS_CTR1_RDEV = (1 << 1), /* sata phy/comms reset */
QS_CTR1_RCHN = (1 << 4), /* reset channel logic */
QS_CCF_RUN_PKT = 0x107, /* RUN a new dma PKT */
/* pkt sub-field headers */
QS_HCB_HDR = 0x01, /* Host Control Block header */
QS_DCB_HDR = 0x02, /* Device Control Block header */
/* pkt HCB flag bits */
QS_HF_DIRO = (1 << 0), /* data DIRection Out */
QS_HF_DAT = (1 << 3), /* DATa pkt */
QS_HF_IEN = (1 << 4), /* Interrupt ENable */
QS_HF_VLD = (1 << 5), /* VaLiD pkt */
/* pkt DCB flag bits */
QS_DF_PORD = (1 << 2), /* Pio OR Dma */
QS_DF_ELBA = (1 << 3), /* Extended LBA (lba48) */
/* PCI device IDs */
board_2068_idx = 0, /* QStor 4-port SATA/RAID */
};
enum {
QS_DMA_BOUNDARY = ~0UL
};
typedef enum { qs_state_mmio, qs_state_pkt } qs_state_t;
struct qs_port_priv {
u8 *pkt;
dma_addr_t pkt_dma;
qs_state_t state;
};
static int qs_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val);
static int qs_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val);
static int qs_ata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
static int qs_port_start(struct ata_port *ap);
static void qs_host_stop(struct ata_host *host);
static void qs_qc_prep(struct ata_queued_cmd *qc);
static unsigned int qs_qc_issue(struct ata_queued_cmd *qc);
static int qs_check_atapi_dma(struct ata_queued_cmd *qc);
static void qs_bmdma_stop(struct ata_queued_cmd *qc);
static u8 qs_bmdma_status(struct ata_port *ap);
static void qs_irq_clear(struct ata_port *ap);
static void qs_freeze(struct ata_port *ap);
static void qs_thaw(struct ata_port *ap);
static void qs_error_handler(struct ata_port *ap);
static struct scsi_host_template qs_ata_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = QS_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ENABLE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = QS_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations qs_ata_ops = {
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.check_atapi_dma = qs_check_atapi_dma,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.qc_prep = qs_qc_prep,
.qc_issue = qs_qc_issue,
.data_xfer = ata_data_xfer,
.freeze = qs_freeze,
.thaw = qs_thaw,
.error_handler = qs_error_handler,
.irq_clear = qs_irq_clear,
.irq_on = ata_irq_on,
.scr_read = qs_scr_read,
.scr_write = qs_scr_write,
.port_start = qs_port_start,
.host_stop = qs_host_stop,
.bmdma_stop = qs_bmdma_stop,
.bmdma_status = qs_bmdma_status,
};
static const struct ata_port_info qs_port_info[] = {
/* board_2068_idx */
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
.pio_mask = 0x10, /* pio4 */
.udma_mask = ATA_UDMA6,
.port_ops = &qs_ata_ops,
},
};
static const struct pci_device_id qs_ata_pci_tbl[] = {
{ PCI_VDEVICE(PDC, 0x2068), board_2068_idx },
{ } /* terminate list */
};
static struct pci_driver qs_ata_pci_driver = {
.name = DRV_NAME,
.id_table = qs_ata_pci_tbl,
.probe = qs_ata_init_one,
.remove = ata_pci_remove_one,
};
static void __iomem *qs_mmio_base(struct ata_host *host)
{
return host->iomap[QS_MMIO_BAR];
}
static int qs_check_atapi_dma(struct ata_queued_cmd *qc)
{
return 1; /* ATAPI DMA not supported */
}
static void qs_bmdma_stop(struct ata_queued_cmd *qc)
{
/* nothing */
}
static u8 qs_bmdma_status(struct ata_port *ap)
{
return 0;
}
static void qs_irq_clear(struct ata_port *ap)
{
/* nothing */
}
static inline void qs_enter_reg_mode(struct ata_port *ap)
{
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
struct qs_port_priv *pp = ap->private_data;
pp->state = qs_state_mmio;
writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
readb(chan + QS_CCT_CTR0); /* flush */
}
static inline void qs_reset_channel_logic(struct ata_port *ap)
{
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
writeb(QS_CTR1_RCHN, chan + QS_CCT_CTR1);
readb(chan + QS_CCT_CTR0); /* flush */
qs_enter_reg_mode(ap);
}
static void qs_freeze(struct ata_port *ap)
{
u8 __iomem *mmio_base = qs_mmio_base(ap->host);
writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
qs_enter_reg_mode(ap);
}
static void qs_thaw(struct ata_port *ap)
{
u8 __iomem *mmio_base = qs_mmio_base(ap->host);
qs_enter_reg_mode(ap);
writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */
}
static int qs_prereset(struct ata_link *link, unsigned long deadline)
{
struct ata_port *ap = link->ap;
qs_reset_channel_logic(ap);
return ata_std_prereset(link, deadline);
}
static int qs_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
*val = readl(ap->ioaddr.scr_addr + (sc_reg * 8));
return 0;
}
static void qs_error_handler(struct ata_port *ap)
{
qs_enter_reg_mode(ap);
ata_do_eh(ap, qs_prereset, NULL, sata_std_hardreset,
ata_std_postreset);
}
static int qs_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
writel(val, ap->ioaddr.scr_addr + (sc_reg * 8));
return 0;
}
static unsigned int qs_fill_sg(struct ata_queued_cmd *qc)
{
struct scatterlist *sg;
struct ata_port *ap = qc->ap;
struct qs_port_priv *pp = ap->private_data;
u8 *prd = pp->pkt + QS_CPB_BYTES;
unsigned int si;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
u64 addr;
u32 len;
addr = sg_dma_address(sg);
*(__le64 *)prd = cpu_to_le64(addr);
prd += sizeof(u64);
len = sg_dma_len(sg);
*(__le32 *)prd = cpu_to_le32(len);
prd += sizeof(u64);
VPRINTK("PRD[%u] = (0x%llX, 0x%X)\n", si,
(unsigned long long)addr, len);
}
return si;
}
static void qs_qc_prep(struct ata_queued_cmd *qc)
{
struct qs_port_priv *pp = qc->ap->private_data;
u8 dflags = QS_DF_PORD, *buf = pp->pkt;
u8 hflags = QS_HF_DAT | QS_HF_IEN | QS_HF_VLD;
u64 addr;
unsigned int nelem;
VPRINTK("ENTER\n");
qs_enter_reg_mode(qc->ap);
if (qc->tf.protocol != ATA_PROT_DMA) {
ata_qc_prep(qc);
return;
}
nelem = qs_fill_sg(qc);
if ((qc->tf.flags & ATA_TFLAG_WRITE))
hflags |= QS_HF_DIRO;
if ((qc->tf.flags & ATA_TFLAG_LBA48))
dflags |= QS_DF_ELBA;
/* host control block (HCB) */
buf[ 0] = QS_HCB_HDR;
buf[ 1] = hflags;
*(__le32 *)(&buf[ 4]) = cpu_to_le32(qc->nbytes);
*(__le32 *)(&buf[ 8]) = cpu_to_le32(nelem);
addr = ((u64)pp->pkt_dma) + QS_CPB_BYTES;
*(__le64 *)(&buf[16]) = cpu_to_le64(addr);
/* device control block (DCB) */
buf[24] = QS_DCB_HDR;
buf[28] = dflags;
/* frame information structure (FIS) */
ata_tf_to_fis(&qc->tf, 0, 1, &buf[32]);
}
static inline void qs_packet_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
VPRINTK("ENTER, ap %p\n", ap);
writeb(QS_CTR0_CLER, chan + QS_CCT_CTR0);
wmb(); /* flush PRDs and pkt to memory */
writel(QS_CCF_RUN_PKT, chan + QS_CCT_CFF);
readl(chan + QS_CCT_CFF); /* flush */
}
static unsigned int qs_qc_issue(struct ata_queued_cmd *qc)
{
struct qs_port_priv *pp = qc->ap->private_data;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
pp->state = qs_state_pkt;
qs_packet_start(qc);
return 0;
case ATAPI_PROT_DMA:
BUG();
break;
default:
break;
}
pp->state = qs_state_mmio;
return ata_qc_issue_prot(qc);
}
static void qs_do_or_die(struct ata_queued_cmd *qc, u8 status)
{
qc->err_mask |= ac_err_mask(status);
if (!qc->err_mask) {
ata_qc_complete(qc);
} else {
struct ata_port *ap = qc->ap;
struct ata_eh_info *ehi = &ap->link.eh_info;
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "status 0x%02X", status);
if (qc->err_mask == AC_ERR_DEV)
ata_port_abort(ap);
else
ata_port_freeze(ap);
}
}
static inline unsigned int qs_intr_pkt(struct ata_host *host)
{
unsigned int handled = 0;
u8 sFFE;
u8 __iomem *mmio_base = qs_mmio_base(host);
do {
u32 sff0 = readl(mmio_base + QS_HST_SFF);
u32 sff1 = readl(mmio_base + QS_HST_SFF + 4);
u8 sEVLD = (sff1 >> 30) & 0x01; /* valid flag */
sFFE = sff1 >> 31; /* empty flag */
if (sEVLD) {
u8 sDST = sff0 >> 16; /* dev status */
u8 sHST = sff1 & 0x3f; /* host status */
unsigned int port_no = (sff1 >> 8) & 0x03;
struct ata_port *ap = host->ports[port_no];
DPRINTK("SFF=%08x%08x: sCHAN=%u sHST=%d sDST=%02x\n",
sff1, sff0, port_no, sHST, sDST);
handled = 1;
if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
struct qs_port_priv *pp = ap->private_data;
if (!pp || pp->state != qs_state_pkt)
continue;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
switch (sHST) {
case 0: /* successful CPB */
case 3: /* device error */
qs_enter_reg_mode(qc->ap);
qs_do_or_die(qc, sDST);
break;
default:
break;
}
}
}
}
} while (!sFFE);
return handled;
}
static inline unsigned int qs_intr_mmio(struct ata_host *host)
{
unsigned int handled = 0, port_no;
for (port_no = 0; port_no < host->n_ports; ++port_no) {
struct ata_port *ap;
ap = host->ports[port_no];
if (ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
struct qs_port_priv *pp;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (!qc || !(qc->flags & ATA_QCFLAG_ACTIVE)) {
/*
* The qstor hardware generates spurious
* interrupts from time to time when switching
* in and out of packet mode.
* There's no obvious way to know if we're
* here now due to that, so just ack the irq
* and pretend we knew it was ours.. (ugh).
* This does not affect packet mode.
*/
ata_check_status(ap);
handled = 1;
continue;
}
pp = ap->private_data;
if (!pp || pp->state != qs_state_mmio)
continue;
if (!(qc->tf.flags & ATA_TFLAG_POLLING))
handled |= ata_host_intr(ap, qc);
}
}
return handled;
}
static irqreturn_t qs_intr(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int handled = 0;
unsigned long flags;
VPRINTK("ENTER\n");
spin_lock_irqsave(&host->lock, flags);
handled = qs_intr_pkt(host) | qs_intr_mmio(host);
spin_unlock_irqrestore(&host->lock, flags);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void qs_ata_setup_port(struct ata_ioports *port, void __iomem *base)
{
port->cmd_addr =
port->data_addr = base + 0x400;
port->error_addr =
port->feature_addr = base + 0x408; /* hob_feature = 0x409 */
port->nsect_addr = base + 0x410; /* hob_nsect = 0x411 */
port->lbal_addr = base + 0x418; /* hob_lbal = 0x419 */
port->lbam_addr = base + 0x420; /* hob_lbam = 0x421 */
port->lbah_addr = base + 0x428; /* hob_lbah = 0x429 */
port->device_addr = base + 0x430;
port->status_addr =
port->command_addr = base + 0x438;
port->altstatus_addr =
port->ctl_addr = base + 0x440;
port->scr_addr = base + 0xc00;
}
static int qs_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct qs_port_priv *pp;
void __iomem *mmio_base = qs_mmio_base(ap->host);
void __iomem *chan = mmio_base + (ap->port_no * 0x4000);
u64 addr;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->pkt = dmam_alloc_coherent(dev, QS_PKT_BYTES, &pp->pkt_dma,
GFP_KERNEL);
if (!pp->pkt)
return -ENOMEM;
memset(pp->pkt, 0, QS_PKT_BYTES);
ap->private_data = pp;
qs_enter_reg_mode(ap);
addr = (u64)pp->pkt_dma;
writel((u32) addr, chan + QS_CCF_CPBA);
writel((u32)(addr >> 32), chan + QS_CCF_CPBA + 4);
return 0;
}
static void qs_host_stop(struct ata_host *host)
{
void __iomem *mmio_base = qs_mmio_base(host);
writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
}
static void qs_host_init(struct ata_host *host, unsigned int chip_id)
{
void __iomem *mmio_base = host->iomap[QS_MMIO_BAR];
unsigned int port_no;
writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
/* reset each channel in turn */
for (port_no = 0; port_no < host->n_ports; ++port_no) {
u8 __iomem *chan = mmio_base + (port_no * 0x4000);
writeb(QS_CTR1_RDEV|QS_CTR1_RCHN, chan + QS_CCT_CTR1);
writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
readb(chan + QS_CCT_CTR0); /* flush */
}
writeb(QS_SERD3_PHY_ENA, mmio_base + QS_HVS_SERD3); /* enable phy */
for (port_no = 0; port_no < host->n_ports; ++port_no) {
u8 __iomem *chan = mmio_base + (port_no * 0x4000);
/* set FIFO depths to same settings as Windows driver */
writew(32, chan + QS_CFC_HUFT);
writew(32, chan + QS_CFC_HDFT);
writew(10, chan + QS_CFC_DUFT);
writew( 8, chan + QS_CFC_DDFT);
/* set CPB size in bytes, as a power of two */
writeb(QS_CPB_ORDER, chan + QS_CCF_CSEP);
}
writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */
}
/*
* The QStor understands 64-bit buses, and uses 64-bit fields
* for DMA pointers regardless of bus width. We just have to
* make sure our DMA masks are set appropriately for whatever
* bridge lies between us and the QStor, and then the DMA mapping
* code will ensure we only ever "see" appropriate buffer addresses.
* If we're 32-bit limited somewhere, then our 64-bit fields will
* just end up with zeros in the upper 32-bits, without any special
* logic required outside of this routine (below).
*/
static int qs_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
{
u32 bus_info = readl(mmio_base + QS_HID_HPHY);
int rc, have_64bit_bus = (bus_info & QS_HPHY_64BIT);
if (have_64bit_bus &&
!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (rc) {
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"64-bit DMA enable failed\n");
return rc;
}
}
} else {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit DMA enable failed\n");
return rc;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
}
return 0;
}
static int qs_ata_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version;
unsigned int board_idx = (unsigned int) ent->driver_data;
const struct ata_port_info *ppi[] = { &qs_port_info[board_idx], NULL };
struct ata_host *host;
int rc, port_no;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
/* alloc host */
host = ata_host_alloc_pinfo(&pdev->dev, ppi, QS_PORTS);
if (!host)
return -ENOMEM;
/* acquire resources and fill host */
rc = pcim_enable_device(pdev);
if (rc)
return rc;
if ((pci_resource_flags(pdev, QS_MMIO_BAR) & IORESOURCE_MEM) == 0)
return -ENODEV;
rc = pcim_iomap_regions(pdev, 1 << QS_MMIO_BAR, DRV_NAME);
if (rc)
return rc;
host->iomap = pcim_iomap_table(pdev);
rc = qs_set_dma_masks(pdev, host->iomap[QS_MMIO_BAR]);
if (rc)
return rc;
for (port_no = 0; port_no < host->n_ports; ++port_no) {
struct ata_port *ap = host->ports[port_no];
unsigned int offset = port_no * 0x4000;
void __iomem *chan = host->iomap[QS_MMIO_BAR] + offset;
qs_ata_setup_port(&ap->ioaddr, chan);
ata_port_pbar_desc(ap, QS_MMIO_BAR, -1, "mmio");
ata_port_pbar_desc(ap, QS_MMIO_BAR, offset, "port");
}
/* initialize adapter */
qs_host_init(host, board_idx);
pci_set_master(pdev);
return ata_host_activate(host, pdev->irq, qs_intr, IRQF_SHARED,
&qs_ata_sht);
}
static int __init qs_ata_init(void)
{
return pci_register_driver(&qs_ata_pci_driver);
}
static void __exit qs_ata_exit(void)
{
pci_unregister_driver(&qs_ata_pci_driver);
}
MODULE_AUTHOR("Mark Lord");
MODULE_DESCRIPTION("Pacific Digital Corporation QStor SATA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, qs_ata_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_init(qs_ata_init);
module_exit(qs_ata_exit);