2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/arch/mips/math-emu/sp_fmax.c
Aleksandar Markovic 3444c4eb53 MIPS: math-emu: <MAXA|MINA>.<D|S>: Fix cases of both infinite inputs
Fix the value returned by <MAXA|MINA>.<D|S> fd,fs,ft, if both inputs
are infinite. The previous implementation returned always the value
contained in ft in such cases. The correct behavior is specified
in Mips instruction set manual and is as follows:

    fs    ft        MAXA     MINA
  ---------------------------------
    inf   inf        inf      inf
    inf  -inf        inf     -inf
   -inf   inf        inf     -inf
   -inf  -inf       -inf     -inf

A relevant example:

MAXA.S fd,fs,ft:
  If fs contains +inf, and ft contains -inf, fd is going to contain
  +inf (without this patch, it used to contain -inf).

Fixes: a79f5f9ba5 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")

Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: <stable@vger.kernel.org> # 4.3+
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16884/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-08-29 15:21:55 +02:00

256 lines
6.7 KiB
C

/*
* IEEE754 floating point arithmetic
* single precision: MAX{,A}.f
* MAX : Scalar Floating-Point Maximum
* MAXA: Scalar Floating-Point argument with Maximum Absolute Value
*
* MAX.S : FPR[fd] = maxNum(FPR[fs],FPR[ft])
* MAXA.S: FPR[fd] = maxNumMag(FPR[fs],FPR[ft])
*
* MIPS floating point support
* Copyright (C) 2015 Imagination Technologies, Ltd.
* Author: Markos Chandras <markos.chandras@imgtec.com>
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; version 2 of the License.
*/
#include "ieee754sp.h"
union ieee754sp ieee754sp_fmax(union ieee754sp x, union ieee754sp y)
{
COMPXSP;
COMPYSP;
EXPLODEXSP;
EXPLODEYSP;
FLUSHXSP;
FLUSHYSP;
ieee754_clearcx();
switch (CLPAIR(xc, yc)) {
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
return ieee754sp_nanxcpt(y);
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
return ieee754sp_nanxcpt(x);
/*
* Quiet NaN handling
*/
/*
* The case of both inputs quiet NaNs
*/
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
return x;
/*
* The cases of exactly one input quiet NaN (numbers
* are here preferred as returned values to NaNs)
*/
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
return x;
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
return y;
/*
* Infinity and zero handling
*/
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
return xs ? y : x;
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
return ys ? x : y;
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
return ieee754sp_zero(xs & ys);
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
SPDNORMX;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
SPDNORMY;
break;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
SPDNORMX;
}
/* Finally get to do some computation */
assert(xm & SP_HIDDEN_BIT);
assert(ym & SP_HIDDEN_BIT);
/* Compare signs */
if (xs > ys)
return y;
else if (xs < ys)
return x;
/* Signs of inputs are equal, let's compare exponents */
if (xs == 0) {
/* Inputs are both positive */
if (xe > ye)
return x;
else if (xe < ye)
return y;
} else {
/* Inputs are both negative */
if (xe > ye)
return y;
else if (xe < ye)
return x;
}
/* Signs and exponents of inputs are equal, let's compare mantissas */
if (xs == 0) {
/* Inputs are both positive, with equal signs and exponents */
if (xm <= ym)
return y;
return x;
}
/* Inputs are both negative, with equal signs and exponents */
if (xm <= ym)
return x;
return y;
}
union ieee754sp ieee754sp_fmaxa(union ieee754sp x, union ieee754sp y)
{
COMPXSP;
COMPYSP;
EXPLODEXSP;
EXPLODEYSP;
FLUSHXSP;
FLUSHYSP;
ieee754_clearcx();
switch (CLPAIR(xc, yc)) {
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
return ieee754sp_nanxcpt(y);
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
return ieee754sp_nanxcpt(x);
/*
* Quiet NaN handling
*/
/*
* The case of both inputs quiet NaNs
*/
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
return x;
/*
* The cases of exactly one input quiet NaN (numbers
* are here preferred as returned values to NaNs)
*/
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
return x;
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
return y;
/*
* Infinity and zero handling
*/
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
return ieee754sp_inf(xs & ys);
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
return x;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
return y;
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
return ieee754sp_zero(xs & ys);
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
SPDNORMX;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
SPDNORMY;
break;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
SPDNORMX;
}
/* Finally get to do some computation */
assert(xm & SP_HIDDEN_BIT);
assert(ym & SP_HIDDEN_BIT);
/* Compare exponent */
if (xe > ye)
return x;
else if (xe < ye)
return y;
/* Compare mantissa */
if (xm < ym)
return y;
else if (xm > ym)
return x;
else if (xs == 0)
return x;
return y;
}