2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 13:44:01 +08:00
linux-next/drivers/hwmon/adm1025.c
Jean Delvare 90d6619a91 hwmon: VRM is not read from registers
The VRM value is not read from chip registers, so there's no need
to update the device data cache before exporting the VRM value to
user-space.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Hans de Goede <j.w.r.degoede@hhs.nl>
Signed-off-by: Mark M. Hoffman <mhoffman@lightlink.com>
2007-10-09 22:56:32 -04:00

613 lines
18 KiB
C

/*
* adm1025.c
*
* Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com>
* Copyright (C) 2003-2004 Jean Delvare <khali@linux-fr.org>
*
* The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
* voltages (including its own power source) and up to two temperatures
* (its own plus up to one external one). Voltages are scaled internally
* (which is not the common way) with ratios such that the nominal value
* of each voltage correspond to a register value of 192 (which means a
* resolution of about 0.5% of the nominal value). Temperature values are
* reported with a 1 deg resolution and a 3 deg accuracy. Complete
* datasheet can be obtained from Analog's website at:
* http://www.analog.com/Analog_Root/productPage/productHome/0,2121,ADM1025,00.html
*
* This driver also supports the ADM1025A, which differs from the ADM1025
* only in that it has "open-drain VID inputs while the ADM1025 has
* on-chip 100k pull-ups on the VID inputs". It doesn't make any
* difference for us.
*
* This driver also supports the NE1619, a sensor chip made by Philips.
* That chip is similar to the ADM1025A, with a few differences. The only
* difference that matters to us is that the NE1619 has only two possible
* addresses while the ADM1025A has a third one. Complete datasheet can be
* obtained from Philips's website at:
* http://www.semiconductors.philips.com/pip/NE1619DS.html
*
* Since the ADM1025 was the first chipset supported by this driver, most
* comments will refer to this chipset, but are actually general and
* concern all supported chipsets, unless mentioned otherwise.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/*
* Addresses to scan
* ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
* NE1619 has two possible addresses: 0x2c and 0x2d.
*/
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/*
* Insmod parameters
*/
I2C_CLIENT_INSMOD_2(adm1025, ne1619);
/*
* The ADM1025 registers
*/
#define ADM1025_REG_MAN_ID 0x3E
#define ADM1025_REG_CHIP_ID 0x3F
#define ADM1025_REG_CONFIG 0x40
#define ADM1025_REG_STATUS1 0x41
#define ADM1025_REG_STATUS2 0x42
#define ADM1025_REG_IN(nr) (0x20 + (nr))
#define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
#define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
#define ADM1025_REG_TEMP(nr) (0x26 + (nr))
#define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
#define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
#define ADM1025_REG_VID 0x47
#define ADM1025_REG_VID4 0x49
/*
* Conversions and various macros
* The ADM1025 uses signed 8-bit values for temperatures.
*/
static int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
#define IN_FROM_REG(reg,scale) (((reg) * (scale) + 96) / 192)
#define IN_TO_REG(val,scale) ((val) <= 0 ? 0 : \
(val) * 192 >= (scale) * 255 ? 255 : \
((val) * 192 + (scale)/2) / (scale))
#define TEMP_FROM_REG(reg) ((reg) * 1000)
#define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
(val) >= 126500 ? 127 : \
(((val) < 0 ? (val)-500 : (val)+500) / 1000))
/*
* Functions declaration
*/
static int adm1025_attach_adapter(struct i2c_adapter *adapter);
static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind);
static void adm1025_init_client(struct i2c_client *client);
static int adm1025_detach_client(struct i2c_client *client);
static struct adm1025_data *adm1025_update_device(struct device *dev);
/*
* Driver data (common to all clients)
*/
static struct i2c_driver adm1025_driver = {
.driver = {
.name = "adm1025",
},
.id = I2C_DRIVERID_ADM1025,
.attach_adapter = adm1025_attach_adapter,
.detach_client = adm1025_detach_client,
};
/*
* Client data (each client gets its own)
*/
struct adm1025_data {
struct i2c_client client;
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
u8 in[6]; /* register value */
u8 in_max[6]; /* register value */
u8 in_min[6]; /* register value */
s8 temp[2]; /* register value */
s8 temp_min[2]; /* register value */
s8 temp_max[2]; /* register value */
u16 alarms; /* register values, combined */
u8 vid; /* register values, combined */
u8 vrm;
};
/*
* Sysfs stuff
*/
#define show_in(offset) \
static ssize_t show_in##offset(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%u\n", IN_FROM_REG(data->in[offset], \
in_scale[offset])); \
} \
static ssize_t show_in##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[offset], \
in_scale[offset])); \
} \
static ssize_t show_in##offset##_max(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[offset], \
in_scale[offset])); \
} \
static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL);
show_in(0);
show_in(1);
show_in(2);
show_in(3);
show_in(4);
show_in(5);
#define show_temp(offset) \
static ssize_t show_temp##offset(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[offset-1])); \
} \
static ssize_t show_temp##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[offset-1])); \
} \
static ssize_t show_temp##offset##_max(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct adm1025_data *data = adm1025_update_device(dev); \
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[offset-1])); \
}\
static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp##offset, NULL);
show_temp(1);
show_temp(2);
#define set_in(offset) \
static ssize_t set_in##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct adm1025_data *data = i2c_get_clientdata(client); \
long val = simple_strtol(buf, NULL, 10); \
\
mutex_lock(&data->update_lock); \
data->in_min[offset] = IN_TO_REG(val, in_scale[offset]); \
i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(offset), \
data->in_min[offset]); \
mutex_unlock(&data->update_lock); \
return count; \
} \
static ssize_t set_in##offset##_max(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct adm1025_data *data = i2c_get_clientdata(client); \
long val = simple_strtol(buf, NULL, 10); \
\
mutex_lock(&data->update_lock); \
data->in_max[offset] = IN_TO_REG(val, in_scale[offset]); \
i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(offset), \
data->in_max[offset]); \
mutex_unlock(&data->update_lock); \
return count; \
} \
static DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \
show_in##offset##_min, set_in##offset##_min); \
static DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \
show_in##offset##_max, set_in##offset##_max);
set_in(0);
set_in(1);
set_in(2);
set_in(3);
set_in(4);
set_in(5);
#define set_temp(offset) \
static ssize_t set_temp##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct adm1025_data *data = i2c_get_clientdata(client); \
long val = simple_strtol(buf, NULL, 10); \
\
mutex_lock(&data->update_lock); \
data->temp_min[offset-1] = TEMP_TO_REG(val); \
i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(offset-1), \
data->temp_min[offset-1]); \
mutex_unlock(&data->update_lock); \
return count; \
} \
static ssize_t set_temp##offset##_max(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct adm1025_data *data = i2c_get_clientdata(client); \
long val = simple_strtol(buf, NULL, 10); \
\
mutex_lock(&data->update_lock); \
data->temp_max[offset-1] = TEMP_TO_REG(val); \
i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(offset-1), \
data->temp_max[offset-1]); \
mutex_unlock(&data->update_lock); \
return count; \
} \
static DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \
show_temp##offset##_min, set_temp##offset##_min); \
static DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \
show_temp##offset##_max, set_temp##offset##_max);
set_temp(1);
set_temp(2);
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->vrm);
}
static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1025_data *data = i2c_get_clientdata(client);
data->vrm = simple_strtoul(buf, NULL, 10);
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
/*
* Real code
*/
static int adm1025_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, adm1025_detect);
}
static struct attribute *adm1025_attributes[] = {
&dev_attr_in0_input.attr,
&dev_attr_in1_input.attr,
&dev_attr_in2_input.attr,
&dev_attr_in3_input.attr,
&dev_attr_in5_input.attr,
&dev_attr_in0_min.attr,
&dev_attr_in1_min.attr,
&dev_attr_in2_min.attr,
&dev_attr_in3_min.attr,
&dev_attr_in5_min.attr,
&dev_attr_in0_max.attr,
&dev_attr_in1_max.attr,
&dev_attr_in2_max.attr,
&dev_attr_in3_max.attr,
&dev_attr_in5_max.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp2_input.attr,
&dev_attr_temp1_min.attr,
&dev_attr_temp2_min.attr,
&dev_attr_temp1_max.attr,
&dev_attr_temp2_max.attr,
&dev_attr_alarms.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
NULL
};
static const struct attribute_group adm1025_group = {
.attrs = adm1025_attributes,
};
static struct attribute *adm1025_attributes_opt[] = {
&dev_attr_in4_input.attr,
&dev_attr_in4_min.attr,
&dev_attr_in4_max.attr,
NULL
};
static const struct attribute_group adm1025_group_opt = {
.attrs = adm1025_attributes_opt,
};
/*
* The following function does more than just detection. If detection
* succeeds, it also registers the new chip.
*/
static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind)
{
struct i2c_client *new_client;
struct adm1025_data *data;
int err = 0;
const char *name = "";
u8 config;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
goto exit;
if (!(data = kzalloc(sizeof(struct adm1025_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
/* The common I2C client data is placed right before the
ADM1025-specific data. */
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &adm1025_driver;
new_client->flags = 0;
/*
* Now we do the remaining detection. A negative kind means that
* the driver was loaded with no force parameter (default), so we
* must both detect and identify the chip. A zero kind means that
* the driver was loaded with the force parameter, the detection
* step shall be skipped. A positive kind means that the driver
* was loaded with the force parameter and a given kind of chip is
* requested, so both the detection and the identification steps
* are skipped.
*/
config = i2c_smbus_read_byte_data(new_client, ADM1025_REG_CONFIG);
if (kind < 0) { /* detection */
if ((config & 0x80) != 0x00
|| (i2c_smbus_read_byte_data(new_client,
ADM1025_REG_STATUS1) & 0xC0) != 0x00
|| (i2c_smbus_read_byte_data(new_client,
ADM1025_REG_STATUS2) & 0xBC) != 0x00) {
dev_dbg(&adapter->dev,
"ADM1025 detection failed at 0x%02x.\n",
address);
goto exit_free;
}
}
if (kind <= 0) { /* identification */
u8 man_id, chip_id;
man_id = i2c_smbus_read_byte_data(new_client,
ADM1025_REG_MAN_ID);
chip_id = i2c_smbus_read_byte_data(new_client,
ADM1025_REG_CHIP_ID);
if (man_id == 0x41) { /* Analog Devices */
if ((chip_id & 0xF0) == 0x20) { /* ADM1025/ADM1025A */
kind = adm1025;
}
} else
if (man_id == 0xA1) { /* Philips */
if (address != 0x2E
&& (chip_id & 0xF0) == 0x20) { /* NE1619 */
kind = ne1619;
}
}
if (kind <= 0) { /* identification failed */
dev_info(&adapter->dev,
"Unsupported chip (man_id=0x%02X, "
"chip_id=0x%02X).\n", man_id, chip_id);
goto exit_free;
}
}
if (kind == adm1025) {
name = "adm1025";
} else if (kind == ne1619) {
name = "ne1619";
}
/* We can fill in the remaining client fields */
strlcpy(new_client->name, name, I2C_NAME_SIZE);
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto exit_free;
/* Initialize the ADM1025 chip */
adm1025_init_client(new_client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1025_group)))
goto exit_detach;
/* Pin 11 is either in4 (+12V) or VID4 */
if (!(config & 0x20)) {
if ((err = device_create_file(&new_client->dev,
&dev_attr_in4_input))
|| (err = device_create_file(&new_client->dev,
&dev_attr_in4_min))
|| (err = device_create_file(&new_client->dev,
&dev_attr_in4_max)))
goto exit_remove;
}
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&new_client->dev.kobj, &adm1025_group);
sysfs_remove_group(&new_client->dev.kobj, &adm1025_group_opt);
exit_detach:
i2c_detach_client(new_client);
exit_free:
kfree(data);
exit:
return err;
}
static void adm1025_init_client(struct i2c_client *client)
{
u8 reg;
struct adm1025_data *data = i2c_get_clientdata(client);
int i;
data->vrm = vid_which_vrm();
/*
* Set high limits
* Usually we avoid setting limits on driver init, but it happens
* that the ADM1025 comes with stupid default limits (all registers
* set to 0). In case the chip has not gone through any limit
* setting yet, we better set the high limits to the max so that
* no alarm triggers.
*/
for (i=0; i<6; i++) {
reg = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MAX(i));
if (reg == 0)
i2c_smbus_write_byte_data(client,
ADM1025_REG_IN_MAX(i),
0xFF);
}
for (i=0; i<2; i++) {
reg = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_HIGH(i));
if (reg == 0)
i2c_smbus_write_byte_data(client,
ADM1025_REG_TEMP_HIGH(i),
0x7F);
}
/*
* Start the conversions
*/
reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
if (!(reg & 0x01))
i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
(reg&0x7E)|0x01);
}
static int adm1025_detach_client(struct i2c_client *client)
{
struct adm1025_data *data = i2c_get_clientdata(client);
int err;
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &adm1025_group);
sysfs_remove_group(&client->dev.kobj, &adm1025_group_opt);
if ((err = i2c_detach_client(client)))
return err;
kfree(data);
return 0;
}
static struct adm1025_data *adm1025_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1025_data *data = i2c_get_clientdata(client);
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
int i;
dev_dbg(&client->dev, "Updating data.\n");
for (i=0; i<6; i++) {
data->in[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN(i));
data->in_min[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MIN(i));
data->in_max[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MAX(i));
}
for (i=0; i<2; i++) {
data->temp[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP(i));
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_LOW(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_HIGH(i));
}
data->alarms = i2c_smbus_read_byte_data(client,
ADM1025_REG_STATUS1)
| (i2c_smbus_read_byte_data(client,
ADM1025_REG_STATUS2) << 8);
data->vid = (i2c_smbus_read_byte_data(client,
ADM1025_REG_VID) & 0x0f)
| ((i2c_smbus_read_byte_data(client,
ADM1025_REG_VID4) & 0x01) << 4);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __init sensors_adm1025_init(void)
{
return i2c_add_driver(&adm1025_driver);
}
static void __exit sensors_adm1025_exit(void)
{
i2c_del_driver(&adm1025_driver);
}
MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("ADM1025 driver");
MODULE_LICENSE("GPL");
module_init(sensors_adm1025_init);
module_exit(sensors_adm1025_exit);