2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/fs/super.c
Konstantin Khlebnikov eb6ef3df4f trylock_super(): replacement for grab_super_passive()
I've noticed significant locking contention in memory reclaimer around
sb_lock inside grab_super_passive(). Grab_super_passive() is called from
two places: in icache/dcache shrinkers (function super_cache_scan) and
from writeback (function __writeback_inodes_wb). Both are required for
progress in memory allocator.

Grab_super_passive() acquires sb_lock to increment sb->s_count and check
sb->s_instances. It seems sb->s_umount locked for read is enough here:
super-block deactivation always runs under sb->s_umount locked for write.
Protecting super-block itself isn't a problem: in super_cache_scan() sb
is protected by shrinker_rwsem: it cannot be freed if its slab shrinkers
are still active. Inside writeback super-block comes from inode from bdi
writeback list under wb->list_lock.

This patch removes locking sb_lock and checks s_instances under s_umount:
generic_shutdown_super() unlinks it under sb->s_umount locked for write.
New variant is called trylock_super() and since it only locks semaphore,
callers must call up_read(&sb->s_umount) instead of drop_super(sb) when
they're done.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-02-22 11:38:42 -05:00

1397 lines
35 KiB
C

/*
* linux/fs/super.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* super.c contains code to handle: - mount structures
* - super-block tables
* - filesystem drivers list
* - mount system call
* - umount system call
* - ustat system call
*
* GK 2/5/95 - Changed to support mounting the root fs via NFS
*
* Added kerneld support: Jacques Gelinas and Bjorn Ekwall
* Added change_root: Werner Almesberger & Hans Lermen, Feb '96
* Added options to /proc/mounts:
* Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
* Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
* Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
*/
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h> /* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/cleancache.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include "internal.h"
static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);
static char *sb_writers_name[SB_FREEZE_LEVELS] = {
"sb_writers",
"sb_pagefaults",
"sb_internal",
};
/*
* One thing we have to be careful of with a per-sb shrinker is that we don't
* drop the last active reference to the superblock from within the shrinker.
* If that happens we could trigger unregistering the shrinker from within the
* shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
* take a passive reference to the superblock to avoid this from occurring.
*/
static unsigned long super_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long fs_objects = 0;
long total_objects;
long freed = 0;
long dentries;
long inodes;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* Deadlock avoidance. We may hold various FS locks, and we don't want
* to recurse into the FS that called us in clear_inode() and friends..
*/
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
if (!trylock_super(sb))
return SHRINK_STOP;
if (sb->s_op->nr_cached_objects)
fs_objects = sb->s_op->nr_cached_objects(sb, sc);
inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects = dentries + inodes + fs_objects + 1;
if (!total_objects)
total_objects = 1;
/* proportion the scan between the caches */
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
/*
* prune the dcache first as the icache is pinned by it, then
* prune the icache, followed by the filesystem specific caches
*
* Ensure that we always scan at least one object - memcg kmem
* accounting uses this to fully empty the caches.
*/
sc->nr_to_scan = dentries + 1;
freed = prune_dcache_sb(sb, sc);
sc->nr_to_scan = inodes + 1;
freed += prune_icache_sb(sb, sc);
if (fs_objects) {
sc->nr_to_scan = fs_objects + 1;
freed += sb->s_op->free_cached_objects(sb, sc);
}
up_read(&sb->s_umount);
return freed;
}
static unsigned long super_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long total_objects = 0;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* Don't call trylock_super as it is a potential
* scalability bottleneck. The counts could get updated
* between super_cache_count and super_cache_scan anyway.
* Call to super_cache_count with shrinker_rwsem held
* ensures the safety of call to list_lru_shrink_count() and
* s_op->nr_cached_objects().
*/
if (sb->s_op && sb->s_op->nr_cached_objects)
total_objects = sb->s_op->nr_cached_objects(sb, sc);
total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
total_objects = vfs_pressure_ratio(total_objects);
return total_objects;
}
/**
* destroy_super - frees a superblock
* @s: superblock to free
*
* Frees a superblock.
*/
static void destroy_super(struct super_block *s)
{
int i;
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
for (i = 0; i < SB_FREEZE_LEVELS; i++)
percpu_counter_destroy(&s->s_writers.counter[i]);
security_sb_free(s);
WARN_ON(!list_empty(&s->s_mounts));
kfree(s->s_subtype);
kfree(s->s_options);
kfree_rcu(s, rcu);
}
/**
* alloc_super - create new superblock
* @type: filesystem type superblock should belong to
* @flags: the mount flags
*
* Allocates and initializes a new &struct super_block. alloc_super()
* returns a pointer new superblock or %NULL if allocation had failed.
*/
static struct super_block *alloc_super(struct file_system_type *type, int flags)
{
struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
static const struct super_operations default_op;
int i;
if (!s)
return NULL;
INIT_LIST_HEAD(&s->s_mounts);
if (security_sb_alloc(s))
goto fail;
for (i = 0; i < SB_FREEZE_LEVELS; i++) {
if (percpu_counter_init(&s->s_writers.counter[i], 0,
GFP_KERNEL) < 0)
goto fail;
lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
&type->s_writers_key[i], 0);
}
init_waitqueue_head(&s->s_writers.wait);
init_waitqueue_head(&s->s_writers.wait_unfrozen);
s->s_bdi = &noop_backing_dev_info;
s->s_flags = flags;
INIT_HLIST_NODE(&s->s_instances);
INIT_HLIST_BL_HEAD(&s->s_anon);
INIT_LIST_HEAD(&s->s_inodes);
if (list_lru_init_memcg(&s->s_dentry_lru))
goto fail;
if (list_lru_init_memcg(&s->s_inode_lru))
goto fail;
init_rwsem(&s->s_umount);
lockdep_set_class(&s->s_umount, &type->s_umount_key);
/*
* sget() can have s_umount recursion.
*
* When it cannot find a suitable sb, it allocates a new
* one (this one), and tries again to find a suitable old
* one.
*
* In case that succeeds, it will acquire the s_umount
* lock of the old one. Since these are clearly distrinct
* locks, and this object isn't exposed yet, there's no
* risk of deadlocks.
*
* Annotate this by putting this lock in a different
* subclass.
*/
down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
s->s_count = 1;
atomic_set(&s->s_active, 1);
mutex_init(&s->s_vfs_rename_mutex);
lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
mutex_init(&s->s_dquot.dqio_mutex);
mutex_init(&s->s_dquot.dqonoff_mutex);
s->s_maxbytes = MAX_NON_LFS;
s->s_op = &default_op;
s->s_time_gran = 1000000000;
s->cleancache_poolid = -1;
s->s_shrink.seeks = DEFAULT_SEEKS;
s->s_shrink.scan_objects = super_cache_scan;
s->s_shrink.count_objects = super_cache_count;
s->s_shrink.batch = 1024;
s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
return s;
fail:
destroy_super(s);
return NULL;
}
/* Superblock refcounting */
/*
* Drop a superblock's refcount. The caller must hold sb_lock.
*/
static void __put_super(struct super_block *sb)
{
if (!--sb->s_count) {
list_del_init(&sb->s_list);
destroy_super(sb);
}
}
/**
* put_super - drop a temporary reference to superblock
* @sb: superblock in question
*
* Drops a temporary reference, frees superblock if there's no
* references left.
*/
static void put_super(struct super_block *sb)
{
spin_lock(&sb_lock);
__put_super(sb);
spin_unlock(&sb_lock);
}
/**
* deactivate_locked_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Drops an active reference to superblock, converting it into a temprory
* one if there is no other active references left. In that case we
* tell fs driver to shut it down and drop the temporary reference we
* had just acquired.
*
* Caller holds exclusive lock on superblock; that lock is released.
*/
void deactivate_locked_super(struct super_block *s)
{
struct file_system_type *fs = s->s_type;
if (atomic_dec_and_test(&s->s_active)) {
cleancache_invalidate_fs(s);
unregister_shrinker(&s->s_shrink);
fs->kill_sb(s);
/*
* Since list_lru_destroy() may sleep, we cannot call it from
* put_super(), where we hold the sb_lock. Therefore we destroy
* the lru lists right now.
*/
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
put_filesystem(fs);
put_super(s);
} else {
up_write(&s->s_umount);
}
}
EXPORT_SYMBOL(deactivate_locked_super);
/**
* deactivate_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Variant of deactivate_locked_super(), except that superblock is *not*
* locked by caller. If we are going to drop the final active reference,
* lock will be acquired prior to that.
*/
void deactivate_super(struct super_block *s)
{
if (!atomic_add_unless(&s->s_active, -1, 1)) {
down_write(&s->s_umount);
deactivate_locked_super(s);
}
}
EXPORT_SYMBOL(deactivate_super);
/**
* grab_super - acquire an active reference
* @s: reference we are trying to make active
*
* Tries to acquire an active reference. grab_super() is used when we
* had just found a superblock in super_blocks or fs_type->fs_supers
* and want to turn it into a full-blown active reference. grab_super()
* is called with sb_lock held and drops it. Returns 1 in case of
* success, 0 if we had failed (superblock contents was already dead or
* dying when grab_super() had been called). Note that this is only
* called for superblocks not in rundown mode (== ones still on ->fs_supers
* of their type), so increment of ->s_count is OK here.
*/
static int grab_super(struct super_block *s) __releases(sb_lock)
{
s->s_count++;
spin_unlock(&sb_lock);
down_write(&s->s_umount);
if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
put_super(s);
return 1;
}
up_write(&s->s_umount);
put_super(s);
return 0;
}
/*
* trylock_super - try to grab ->s_umount shared
* @sb: reference we are trying to grab
*
* Try to prevent fs shutdown. This is used in places where we
* cannot take an active reference but we need to ensure that the
* filesystem is not shut down while we are working on it. It returns
* false if we cannot acquire s_umount or if we lose the race and
* filesystem already got into shutdown, and returns true with the s_umount
* lock held in read mode in case of success. On successful return,
* the caller must drop the s_umount lock when done.
*
* Note that unlike get_super() et.al. this one does *not* bump ->s_count.
* The reason why it's safe is that we are OK with doing trylock instead
* of down_read(). There's a couple of places that are OK with that, but
* it's very much not a general-purpose interface.
*/
bool trylock_super(struct super_block *sb)
{
if (down_read_trylock(&sb->s_umount)) {
if (!hlist_unhashed(&sb->s_instances) &&
sb->s_root && (sb->s_flags & MS_BORN))
return true;
up_read(&sb->s_umount);
}
return false;
}
/**
* generic_shutdown_super - common helper for ->kill_sb()
* @sb: superblock to kill
*
* generic_shutdown_super() does all fs-independent work on superblock
* shutdown. Typical ->kill_sb() should pick all fs-specific objects
* that need destruction out of superblock, call generic_shutdown_super()
* and release aforementioned objects. Note: dentries and inodes _are_
* taken care of and do not need specific handling.
*
* Upon calling this function, the filesystem may no longer alter or
* rearrange the set of dentries belonging to this super_block, nor may it
* change the attachments of dentries to inodes.
*/
void generic_shutdown_super(struct super_block *sb)
{
const struct super_operations *sop = sb->s_op;
if (sb->s_root) {
shrink_dcache_for_umount(sb);
sync_filesystem(sb);
sb->s_flags &= ~MS_ACTIVE;
fsnotify_unmount_inodes(&sb->s_inodes);
evict_inodes(sb);
if (sb->s_dio_done_wq) {
destroy_workqueue(sb->s_dio_done_wq);
sb->s_dio_done_wq = NULL;
}
if (sop->put_super)
sop->put_super(sb);
if (!list_empty(&sb->s_inodes)) {
printk("VFS: Busy inodes after unmount of %s. "
"Self-destruct in 5 seconds. Have a nice day...\n",
sb->s_id);
}
}
spin_lock(&sb_lock);
/* should be initialized for __put_super_and_need_restart() */
hlist_del_init(&sb->s_instances);
spin_unlock(&sb_lock);
up_write(&sb->s_umount);
}
EXPORT_SYMBOL(generic_shutdown_super);
/**
* sget - find or create a superblock
* @type: filesystem type superblock should belong to
* @test: comparison callback
* @set: setup callback
* @flags: mount flags
* @data: argument to each of them
*/
struct super_block *sget(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
int flags,
void *data)
{
struct super_block *s = NULL;
struct super_block *old;
int err;
retry:
spin_lock(&sb_lock);
if (test) {
hlist_for_each_entry(old, &type->fs_supers, s_instances) {
if (!test(old, data))
continue;
if (!grab_super(old))
goto retry;
if (s) {
up_write(&s->s_umount);
destroy_super(s);
s = NULL;
}
return old;
}
}
if (!s) {
spin_unlock(&sb_lock);
s = alloc_super(type, flags);
if (!s)
return ERR_PTR(-ENOMEM);
goto retry;
}
err = set(s, data);
if (err) {
spin_unlock(&sb_lock);
up_write(&s->s_umount);
destroy_super(s);
return ERR_PTR(err);
}
s->s_type = type;
strlcpy(s->s_id, type->name, sizeof(s->s_id));
list_add_tail(&s->s_list, &super_blocks);
hlist_add_head(&s->s_instances, &type->fs_supers);
spin_unlock(&sb_lock);
get_filesystem(type);
register_shrinker(&s->s_shrink);
return s;
}
EXPORT_SYMBOL(sget);
void drop_super(struct super_block *sb)
{
up_read(&sb->s_umount);
put_super(sb);
}
EXPORT_SYMBOL(drop_super);
/**
* iterate_supers - call function for all active superblocks
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && (sb->s_flags & MS_BORN))
f(sb, arg);
up_read(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
/**
* iterate_supers_type - call function for superblocks of given type
* @type: fs type
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers_type(struct file_system_type *type,
void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && (sb->s_flags & MS_BORN))
f(sb, arg);
up_read(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
EXPORT_SYMBOL(iterate_supers_type);
/**
* get_super - get the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. %NULL is returned if no match is found.
*/
struct super_block *get_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_bdev == bdev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
/* still alive? */
if (sb->s_root && (sb->s_flags & MS_BORN))
return sb;
up_read(&sb->s_umount);
/* nope, got unmounted */
spin_lock(&sb_lock);
__put_super(sb);
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
EXPORT_SYMBOL(get_super);
/**
* get_super_thawed - get thawed superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device. The superblock is returned once it is thawed
* (or immediately if it was not frozen). %NULL is returned if no match
* is found.
*/
struct super_block *get_super_thawed(struct block_device *bdev)
{
while (1) {
struct super_block *s = get_super(bdev);
if (!s || s->s_writers.frozen == SB_UNFROZEN)
return s;
up_read(&s->s_umount);
wait_event(s->s_writers.wait_unfrozen,
s->s_writers.frozen == SB_UNFROZEN);
put_super(s);
}
}
EXPORT_SYMBOL(get_super_thawed);
/**
* get_active_super - get an active reference to the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. Returns the superblock with an active
* reference or %NULL if none was found.
*/
struct super_block *get_active_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
restart:
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_bdev == bdev) {
if (!grab_super(sb))
goto restart;
up_write(&sb->s_umount);
return sb;
}
}
spin_unlock(&sb_lock);
return NULL;
}
struct super_block *user_get_super(dev_t dev)
{
struct super_block *sb;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_dev == dev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
/* still alive? */
if (sb->s_root && (sb->s_flags & MS_BORN))
return sb;
up_read(&sb->s_umount);
/* nope, got unmounted */
spin_lock(&sb_lock);
__put_super(sb);
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
/**
* do_remount_sb - asks filesystem to change mount options.
* @sb: superblock in question
* @flags: numeric part of options
* @data: the rest of options
* @force: whether or not to force the change
*
* Alters the mount options of a mounted file system.
*/
int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
{
int retval;
int remount_ro;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
#ifdef CONFIG_BLOCK
if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
return -EACCES;
#endif
remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
if (remount_ro) {
if (!hlist_empty(&sb->s_pins)) {
up_write(&sb->s_umount);
group_pin_kill(&sb->s_pins);
down_write(&sb->s_umount);
if (!sb->s_root)
return 0;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
}
}
shrink_dcache_sb(sb);
/* If we are remounting RDONLY and current sb is read/write,
make sure there are no rw files opened */
if (remount_ro) {
if (force) {
sb->s_readonly_remount = 1;
smp_wmb();
} else {
retval = sb_prepare_remount_readonly(sb);
if (retval)
return retval;
}
}
if (sb->s_op->remount_fs) {
retval = sb->s_op->remount_fs(sb, &flags, data);
if (retval) {
if (!force)
goto cancel_readonly;
/* If forced remount, go ahead despite any errors */
WARN(1, "forced remount of a %s fs returned %i\n",
sb->s_type->name, retval);
}
}
sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
/* Needs to be ordered wrt mnt_is_readonly() */
smp_wmb();
sb->s_readonly_remount = 0;
/*
* Some filesystems modify their metadata via some other path than the
* bdev buffer cache (eg. use a private mapping, or directories in
* pagecache, etc). Also file data modifications go via their own
* mappings. So If we try to mount readonly then copy the filesystem
* from bdev, we could get stale data, so invalidate it to give a best
* effort at coherency.
*/
if (remount_ro && sb->s_bdev)
invalidate_bdev(sb->s_bdev);
return 0;
cancel_readonly:
sb->s_readonly_remount = 0;
return retval;
}
static void do_emergency_remount(struct work_struct *work)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
sb->s_count++;
spin_unlock(&sb_lock);
down_write(&sb->s_umount);
if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
!(sb->s_flags & MS_RDONLY)) {
/*
* What lock protects sb->s_flags??
*/
do_remount_sb(sb, MS_RDONLY, NULL, 1);
}
up_write(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
kfree(work);
printk("Emergency Remount complete\n");
}
void emergency_remount(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_emergency_remount);
schedule_work(work);
}
}
/*
* Unnamed block devices are dummy devices used by virtual
* filesystems which don't use real block-devices. -- jrs
*/
static DEFINE_IDA(unnamed_dev_ida);
static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
/* Many userspace utilities consider an FSID of 0 invalid.
* Always return at least 1 from get_anon_bdev.
*/
static int unnamed_dev_start = 1;
int get_anon_bdev(dev_t *p)
{
int dev;
int error;
retry:
if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
return -ENOMEM;
spin_lock(&unnamed_dev_lock);
error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
if (!error)
unnamed_dev_start = dev + 1;
spin_unlock(&unnamed_dev_lock);
if (error == -EAGAIN)
/* We raced and lost with another CPU. */
goto retry;
else if (error)
return -EAGAIN;
if (dev == (1 << MINORBITS)) {
spin_lock(&unnamed_dev_lock);
ida_remove(&unnamed_dev_ida, dev);
if (unnamed_dev_start > dev)
unnamed_dev_start = dev;
spin_unlock(&unnamed_dev_lock);
return -EMFILE;
}
*p = MKDEV(0, dev & MINORMASK);
return 0;
}
EXPORT_SYMBOL(get_anon_bdev);
void free_anon_bdev(dev_t dev)
{
int slot = MINOR(dev);
spin_lock(&unnamed_dev_lock);
ida_remove(&unnamed_dev_ida, slot);
if (slot < unnamed_dev_start)
unnamed_dev_start = slot;
spin_unlock(&unnamed_dev_lock);
}
EXPORT_SYMBOL(free_anon_bdev);
int set_anon_super(struct super_block *s, void *data)
{
return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);
void kill_anon_super(struct super_block *sb)
{
dev_t dev = sb->s_dev;
generic_shutdown_super(sb);
free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);
void kill_litter_super(struct super_block *sb)
{
if (sb->s_root)
d_genocide(sb->s_root);
kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);
static int ns_test_super(struct super_block *sb, void *data)
{
return sb->s_fs_info == data;
}
static int ns_set_super(struct super_block *sb, void *data)
{
sb->s_fs_info = data;
return set_anon_super(sb, NULL);
}
struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
void *data, int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *sb;
sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
if (IS_ERR(sb))
return ERR_CAST(sb);
if (!sb->s_root) {
int err;
err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
if (err) {
deactivate_locked_super(sb);
return ERR_PTR(err);
}
sb->s_flags |= MS_ACTIVE;
}
return dget(sb->s_root);
}
EXPORT_SYMBOL(mount_ns);
#ifdef CONFIG_BLOCK
static int set_bdev_super(struct super_block *s, void *data)
{
s->s_bdev = data;
s->s_dev = s->s_bdev->bd_dev;
/*
* We set the bdi here to the queue backing, file systems can
* overwrite this in ->fill_super()
*/
s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
return 0;
}
static int test_bdev_super(struct super_block *s, void *data)
{
return (void *)s->s_bdev == data;
}
struct dentry *mount_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct block_device *bdev;
struct super_block *s;
fmode_t mode = FMODE_READ | FMODE_EXCL;
int error = 0;
if (!(flags & MS_RDONLY))
mode |= FMODE_WRITE;
bdev = blkdev_get_by_path(dev_name, mode, fs_type);
if (IS_ERR(bdev))
return ERR_CAST(bdev);
/*
* once the super is inserted into the list by sget, s_umount
* will protect the lockfs code from trying to start a snapshot
* while we are mounting
*/
mutex_lock(&bdev->bd_fsfreeze_mutex);
if (bdev->bd_fsfreeze_count > 0) {
mutex_unlock(&bdev->bd_fsfreeze_mutex);
error = -EBUSY;
goto error_bdev;
}
s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
bdev);
mutex_unlock(&bdev->bd_fsfreeze_mutex);
if (IS_ERR(s))
goto error_s;
if (s->s_root) {
if ((flags ^ s->s_flags) & MS_RDONLY) {
deactivate_locked_super(s);
error = -EBUSY;
goto error_bdev;
}
/*
* s_umount nests inside bd_mutex during
* __invalidate_device(). blkdev_put() acquires
* bd_mutex and can't be called under s_umount. Drop
* s_umount temporarily. This is safe as we're
* holding an active reference.
*/
up_write(&s->s_umount);
blkdev_put(bdev, mode);
down_write(&s->s_umount);
} else {
char b[BDEVNAME_SIZE];
s->s_mode = mode;
strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
sb_set_blocksize(s, block_size(bdev));
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
goto error;
}
s->s_flags |= MS_ACTIVE;
bdev->bd_super = s;
}
return dget(s->s_root);
error_s:
error = PTR_ERR(s);
error_bdev:
blkdev_put(bdev, mode);
error:
return ERR_PTR(error);
}
EXPORT_SYMBOL(mount_bdev);
void kill_block_super(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
fmode_t mode = sb->s_mode;
bdev->bd_super = NULL;
generic_shutdown_super(sb);
sync_blockdev(bdev);
WARN_ON_ONCE(!(mode & FMODE_EXCL));
blkdev_put(bdev, mode | FMODE_EXCL);
}
EXPORT_SYMBOL(kill_block_super);
#endif
struct dentry *mount_nodev(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
int error;
struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= MS_ACTIVE;
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);
static int compare_single(struct super_block *s, void *p)
{
return 1;
}
struct dentry *mount_single(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *s;
int error;
s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
if (!s->s_root) {
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= MS_ACTIVE;
} else {
do_remount_sb(s, flags, data, 0);
}
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);
struct dentry *
mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
{
struct dentry *root;
struct super_block *sb;
char *secdata = NULL;
int error = -ENOMEM;
if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
secdata = alloc_secdata();
if (!secdata)
goto out;
error = security_sb_copy_data(data, secdata);
if (error)
goto out_free_secdata;
}
root = type->mount(type, flags, name, data);
if (IS_ERR(root)) {
error = PTR_ERR(root);
goto out_free_secdata;
}
sb = root->d_sb;
BUG_ON(!sb);
WARN_ON(!sb->s_bdi);
sb->s_flags |= MS_BORN;
error = security_sb_kern_mount(sb, flags, secdata);
if (error)
goto out_sb;
/*
* filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
* but s_maxbytes was an unsigned long long for many releases. Throw
* this warning for a little while to try and catch filesystems that
* violate this rule.
*/
WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
"negative value (%lld)\n", type->name, sb->s_maxbytes);
up_write(&sb->s_umount);
free_secdata(secdata);
return root;
out_sb:
dput(root);
deactivate_locked_super(sb);
out_free_secdata:
free_secdata(secdata);
out:
return ERR_PTR(error);
}
/*
* This is an internal function, please use sb_end_{write,pagefault,intwrite}
* instead.
*/
void __sb_end_write(struct super_block *sb, int level)
{
percpu_counter_dec(&sb->s_writers.counter[level-1]);
/*
* Make sure s_writers are updated before we wake up waiters in
* freeze_super().
*/
smp_mb();
if (waitqueue_active(&sb->s_writers.wait))
wake_up(&sb->s_writers.wait);
rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
}
EXPORT_SYMBOL(__sb_end_write);
#ifdef CONFIG_LOCKDEP
/*
* We want lockdep to tell us about possible deadlocks with freezing but
* it's it bit tricky to properly instrument it. Getting a freeze protection
* works as getting a read lock but there are subtle problems. XFS for example
* gets freeze protection on internal level twice in some cases, which is OK
* only because we already hold a freeze protection also on higher level. Due
* to these cases we have to tell lockdep we are doing trylock when we
* already hold a freeze protection for a higher freeze level.
*/
static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
unsigned long ip)
{
int i;
if (!trylock) {
for (i = 0; i < level - 1; i++)
if (lock_is_held(&sb->s_writers.lock_map[i])) {
trylock = true;
break;
}
}
rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
}
#endif
/*
* This is an internal function, please use sb_start_{write,pagefault,intwrite}
* instead.
*/
int __sb_start_write(struct super_block *sb, int level, bool wait)
{
retry:
if (unlikely(sb->s_writers.frozen >= level)) {
if (!wait)
return 0;
wait_event(sb->s_writers.wait_unfrozen,
sb->s_writers.frozen < level);
}
#ifdef CONFIG_LOCKDEP
acquire_freeze_lock(sb, level, !wait, _RET_IP_);
#endif
percpu_counter_inc(&sb->s_writers.counter[level-1]);
/*
* Make sure counter is updated before we check for frozen.
* freeze_super() first sets frozen and then checks the counter.
*/
smp_mb();
if (unlikely(sb->s_writers.frozen >= level)) {
__sb_end_write(sb, level);
goto retry;
}
return 1;
}
EXPORT_SYMBOL(__sb_start_write);
/**
* sb_wait_write - wait until all writers to given file system finish
* @sb: the super for which we wait
* @level: type of writers we wait for (normal vs page fault)
*
* This function waits until there are no writers of given type to given file
* system. Caller of this function should make sure there can be no new writers
* of type @level before calling this function. Otherwise this function can
* livelock.
*/
static void sb_wait_write(struct super_block *sb, int level)
{
s64 writers;
/*
* We just cycle-through lockdep here so that it does not complain
* about returning with lock to userspace
*/
rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
do {
DEFINE_WAIT(wait);
/*
* We use a barrier in prepare_to_wait() to separate setting
* of frozen and checking of the counter
*/
prepare_to_wait(&sb->s_writers.wait, &wait,
TASK_UNINTERRUPTIBLE);
writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
if (writers)
schedule();
finish_wait(&sb->s_writers.wait, &wait);
} while (writers);
}
/**
* freeze_super - lock the filesystem and force it into a consistent state
* @sb: the super to lock
*
* Syncs the super to make sure the filesystem is consistent and calls the fs's
* freeze_fs. Subsequent calls to this without first thawing the fs will return
* -EBUSY.
*
* During this function, sb->s_writers.frozen goes through these values:
*
* SB_UNFROZEN: File system is normal, all writes progress as usual.
*
* SB_FREEZE_WRITE: The file system is in the process of being frozen. New
* writes should be blocked, though page faults are still allowed. We wait for
* all writes to complete and then proceed to the next stage.
*
* SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
* but internal fs threads can still modify the filesystem (although they
* should not dirty new pages or inodes), writeback can run etc. After waiting
* for all running page faults we sync the filesystem which will clean all
* dirty pages and inodes (no new dirty pages or inodes can be created when
* sync is running).
*
* SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
* modification are blocked (e.g. XFS preallocation truncation on inode
* reclaim). This is usually implemented by blocking new transactions for
* filesystems that have them and need this additional guard. After all
* internal writers are finished we call ->freeze_fs() to finish filesystem
* freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
* mostly auxiliary for filesystems to verify they do not modify frozen fs.
*
* sb->s_writers.frozen is protected by sb->s_umount.
*/
int freeze_super(struct super_block *sb)
{
int ret;
atomic_inc(&sb->s_active);
down_write(&sb->s_umount);
if (sb->s_writers.frozen != SB_UNFROZEN) {
deactivate_locked_super(sb);
return -EBUSY;
}
if (!(sb->s_flags & MS_BORN)) {
up_write(&sb->s_umount);
return 0; /* sic - it's "nothing to do" */
}
if (sb->s_flags & MS_RDONLY) {
/* Nothing to do really... */
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
up_write(&sb->s_umount);
return 0;
}
/* From now on, no new normal writers can start */
sb->s_writers.frozen = SB_FREEZE_WRITE;
smp_wmb();
/* Release s_umount to preserve sb_start_write -> s_umount ordering */
up_write(&sb->s_umount);
sb_wait_write(sb, SB_FREEZE_WRITE);
/* Now we go and block page faults... */
down_write(&sb->s_umount);
sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
smp_wmb();
sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
/* All writers are done so after syncing there won't be dirty data */
sync_filesystem(sb);
/* Now wait for internal filesystem counter */
sb->s_writers.frozen = SB_FREEZE_FS;
smp_wmb();
sb_wait_write(sb, SB_FREEZE_FS);
if (sb->s_op->freeze_fs) {
ret = sb->s_op->freeze_fs(sb);
if (ret) {
printk(KERN_ERR
"VFS:Filesystem freeze failed\n");
sb->s_writers.frozen = SB_UNFROZEN;
smp_wmb();
wake_up(&sb->s_writers.wait_unfrozen);
deactivate_locked_super(sb);
return ret;
}
}
/*
* This is just for debugging purposes so that fs can warn if it
* sees write activity when frozen is set to SB_FREEZE_COMPLETE.
*/
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
up_write(&sb->s_umount);
return 0;
}
EXPORT_SYMBOL(freeze_super);
/**
* thaw_super -- unlock filesystem
* @sb: the super to thaw
*
* Unlocks the filesystem and marks it writeable again after freeze_super().
*/
int thaw_super(struct super_block *sb)
{
int error;
down_write(&sb->s_umount);
if (sb->s_writers.frozen == SB_UNFROZEN) {
up_write(&sb->s_umount);
return -EINVAL;
}
if (sb->s_flags & MS_RDONLY)
goto out;
if (sb->s_op->unfreeze_fs) {
error = sb->s_op->unfreeze_fs(sb);
if (error) {
printk(KERN_ERR
"VFS:Filesystem thaw failed\n");
up_write(&sb->s_umount);
return error;
}
}
out:
sb->s_writers.frozen = SB_UNFROZEN;
smp_wmb();
wake_up(&sb->s_writers.wait_unfrozen);
deactivate_locked_super(sb);
return 0;
}
EXPORT_SYMBOL(thaw_super);