2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/arch/x86/kvm/irq.c
Thomas Gleixner 3b20eb2372 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 320
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation inc 59 temple place suite 330 boston ma 02111
  1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 33 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000435.254582722@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:37:05 +02:00

170 lines
4.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* irq.c: API for in kernel interrupt controller
* Copyright (c) 2007, Intel Corporation.
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaozu (Eddie) Dong <Eddie.dong@intel.com>
*/
#include <linux/export.h>
#include <linux/kvm_host.h>
#include "irq.h"
#include "i8254.h"
#include "x86.h"
/*
* check if there are pending timer events
* to be processed.
*/
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu))
return apic_has_pending_timer(vcpu);
return 0;
}
EXPORT_SYMBOL(kvm_cpu_has_pending_timer);
/*
* check if there is a pending userspace external interrupt
*/
static int pending_userspace_extint(struct kvm_vcpu *v)
{
return v->arch.pending_external_vector != -1;
}
/*
* check if there is pending interrupt from
* non-APIC source without intack.
*/
static int kvm_cpu_has_extint(struct kvm_vcpu *v)
{
u8 accept = kvm_apic_accept_pic_intr(v);
if (accept) {
if (irqchip_split(v->kvm))
return pending_userspace_extint(v);
else
return v->kvm->arch.vpic->output;
} else
return 0;
}
/*
* check if there is injectable interrupt:
* when virtual interrupt delivery enabled,
* interrupt from apic will handled by hardware,
* we don't need to check it here.
*/
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v)
{
/*
* FIXME: interrupt.injected represents an interrupt that it's
* side-effects have already been applied (e.g. bit from IRR
* already moved to ISR). Therefore, it is incorrect to rely
* on interrupt.injected to know if there is a pending
* interrupt in the user-mode LAPIC.
* This leads to nVMX/nSVM not be able to distinguish
* if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on
* pending interrupt or should re-inject an injected
* interrupt.
*/
if (!lapic_in_kernel(v))
return v->arch.interrupt.injected;
if (kvm_cpu_has_extint(v))
return 1;
if (!is_guest_mode(v) && kvm_vcpu_apicv_active(v))
return 0;
return kvm_apic_has_interrupt(v) != -1; /* LAPIC */
}
/*
* check if there is pending interrupt without
* intack.
*/
int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
{
/*
* FIXME: interrupt.injected represents an interrupt that it's
* side-effects have already been applied (e.g. bit from IRR
* already moved to ISR). Therefore, it is incorrect to rely
* on interrupt.injected to know if there is a pending
* interrupt in the user-mode LAPIC.
* This leads to nVMX/nSVM not be able to distinguish
* if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on
* pending interrupt or should re-inject an injected
* interrupt.
*/
if (!lapic_in_kernel(v))
return v->arch.interrupt.injected;
if (kvm_cpu_has_extint(v))
return 1;
return kvm_apic_has_interrupt(v) != -1; /* LAPIC */
}
EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt);
/*
* Read pending interrupt(from non-APIC source)
* vector and intack.
*/
static int kvm_cpu_get_extint(struct kvm_vcpu *v)
{
if (kvm_cpu_has_extint(v)) {
if (irqchip_split(v->kvm)) {
int vector = v->arch.pending_external_vector;
v->arch.pending_external_vector = -1;
return vector;
} else
return kvm_pic_read_irq(v->kvm); /* PIC */
} else
return -1;
}
/*
* Read pending interrupt vector and intack.
*/
int kvm_cpu_get_interrupt(struct kvm_vcpu *v)
{
int vector;
if (!lapic_in_kernel(v))
return v->arch.interrupt.nr;
vector = kvm_cpu_get_extint(v);
if (vector != -1)
return vector; /* PIC */
return kvm_get_apic_interrupt(v); /* APIC */
}
EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt);
void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu))
kvm_inject_apic_timer_irqs(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_inject_pending_timer_irqs);
void __kvm_migrate_timers(struct kvm_vcpu *vcpu)
{
__kvm_migrate_apic_timer(vcpu);
__kvm_migrate_pit_timer(vcpu);
}
bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args)
{
bool resample = args->flags & KVM_IRQFD_FLAG_RESAMPLE;
return resample ? irqchip_kernel(kvm) : irqchip_in_kernel(kvm);
}