mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 05:04:04 +08:00
e4082de21c
Update the OpenRISC readme to provide some more up-to-date information on how to get started with OpenRISC. This includes: - remove references to southpole who no longer are consulting for OpenRISC (confirmed with Jonas) - suggested QEMU instead of the old or1ksim as QEMU is well supported - include instructions on how to get an FPGA board running Suggested-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Stafford Horne <shorne@gmail.com> |
||
---|---|---|
.. | ||
README | ||
TODO |
OpenRISC Linux ============== This is a port of Linux to the OpenRISC class of microprocessors; the initial target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k). For information about OpenRISC processors and ongoing development: website http://openrisc.io email openrisc@lists.librecores.org --------------------------------------------------------------------- Build instructions for OpenRISC toolchain and Linux =================================================== In order to build and run Linux for OpenRISC, you'll need at least a basic toolchain and, perhaps, the architectural simulator. Steps to get these bits in place are outlined here. 1) Toolchain Toolchain binaries can be obtained from openrisc.io or our github releases page. Instructions for building the different toolchains can be found on openrisc.io or Stafford's toolchain build and release scripts. binaries https://github.com/openrisc/or1k-gcc/releases toolchains https://openrisc.io/software building https://github.com/stffrdhrn/or1k-toolchain-build 2) Building Build the Linux kernel as usual make ARCH=openrisc defconfig make ARCH=openrisc 3) Running on FPGA (optional) The OpenRISC community typically uses FuseSoC to manage building and programming an SoC into an FPGA. The below is an example of programming a De0 Nano development board with the OpenRISC SoC. During the build FPGA RTL is code downloaded from the FuseSoC IP cores repository and built using the FPGA vendor tools. Binaries are loaded onto the board with openocd. git clone https://github.com/olofk/fusesoc cd fusesoc sudo pip install -e . fusesoc init fusesoc build de0_nano fusesoc pgm de0_nano openocd -f interface/altera-usb-blaster.cfg \ -f board/or1k_generic.cfg telnet localhost 4444 > init > halt; load_image vmlinux ; reset 4) Running on a Simulator (optional) QEMU is a processor emulator which we recommend for simulating the OpenRISC platform. Please follow the OpenRISC instructions on the QEMU website to get Linux running on QEMU. You can build QEMU yourself, but your Linux distribution likely provides binary packages to support OpenRISC. qemu openrisc https://wiki.qemu.org/Documentation/Platforms/OpenRISC --------------------------------------------------------------------- Terminology =========== In the code, the following particles are used on symbols to limit the scope to more or less specific processor implementations: openrisc: the OpenRISC class of processors or1k: the OpenRISC 1000 family of processors or1200: the OpenRISC 1200 processor --------------------------------------------------------------------- History ======== 18. 11. 2003 Matjaz Breskvar (phoenix@bsemi.com) initial port of linux to OpenRISC/or32 architecture. all the core stuff is implemented and seams usable. 08. 12. 2003 Matjaz Breskvar (phoenix@bsemi.com) complete change of TLB miss handling. rewrite of exceptions handling. fully functional sash-3.6 in default initrd. a much improved version with changes all around. 10. 04. 2004 Matjaz Breskvar (phoenix@bsemi.com) alot of bugfixes all over. ethernet support, functional http and telnet servers. running many standard linux apps. 26. 06. 2004 Matjaz Breskvar (phoenix@bsemi.com) port to 2.6.x 30. 11. 2004 Matjaz Breskvar (phoenix@bsemi.com) lots of bugfixes and enhancments. added opencores framebuffer driver. 09. 10. 2010 Jonas Bonn (jonas@southpole.se) major rewrite to bring up to par with upstream Linux 2.6.36