2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/arch/arm/lib/div64.S
Russell King 8478132a87 Revert "arm: move exports to definitions"
This reverts commit 4dd1837d75.

Moving the exports for assembly code into the assembly files breaks
KSYM trimming, but also breaks modversions.

While fixing the KSYM trimming is trivial, fixing modversions brings
us to a technically worse position that we had prior to the above
change:

- We end up with the prototype definitions divorsed from everything
  else, which means that adding or removing assembly level ksyms
  become more fragile:
  * if adding a new assembly ksyms export, a missed prototype in
    asm-prototypes.h results in a successful build if no module in
    the selected configuration makes use of the symbol.
  * when removing a ksyms export, asm-prototypes.h will get forgotten,
    with armksyms.c, you'll get a build error if you forget to touch
    the file.

- We end up with the same amount of include files and prototypes,
  they're just in a header file instead of a .c file with their
  exports.

As for lines of code, we don't get much of a size reduction:
 (original commit)
 47 files changed, 131 insertions(+), 208 deletions(-)
 (fix for ksyms trimming)
 7 files changed, 18 insertions(+), 5 deletions(-)
 (two fixes for modversions)
 1 file changed, 34 insertions(+)
 3 files changed, 7 insertions(+), 2 deletions(-)
which results in a net total of only 25 lines deleted.

As there does not seem to be much benefit from this change of approach,
revert the change.

Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2016-11-23 10:00:03 +00:00

213 lines
4.0 KiB
ArmAsm

/*
* linux/arch/arm/lib/div64.S
*
* Optimized computation of 64-bit dividend / 32-bit divisor
*
* Author: Nicolas Pitre
* Created: Oct 5, 2003
* Copyright: Monta Vista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/unwind.h>
#ifdef __ARMEB__
#define xh r0
#define xl r1
#define yh r2
#define yl r3
#else
#define xl r0
#define xh r1
#define yl r2
#define yh r3
#endif
/*
* __do_div64: perform a division with 64-bit dividend and 32-bit divisor.
*
* Note: Calling convention is totally non standard for optimal code.
* This is meant to be used by do_div() from include/asm/div64.h only.
*
* Input parameters:
* xh-xl = dividend (clobbered)
* r4 = divisor (preserved)
*
* Output values:
* yh-yl = result
* xh = remainder
*
* Clobbered regs: xl, ip
*/
ENTRY(__do_div64)
UNWIND(.fnstart)
@ Test for easy paths first.
subs ip, r4, #1
bls 9f @ divisor is 0 or 1
tst ip, r4
beq 8f @ divisor is power of 2
@ See if we need to handle upper 32-bit result.
cmp xh, r4
mov yh, #0
blo 3f
@ Align divisor with upper part of dividend.
@ The aligned divisor is stored in yl preserving the original.
@ The bit position is stored in ip.
#if __LINUX_ARM_ARCH__ >= 5
clz yl, r4
clz ip, xh
sub yl, yl, ip
mov ip, #1
mov ip, ip, lsl yl
mov yl, r4, lsl yl
#else
mov yl, r4
mov ip, #1
1: cmp yl, #0x80000000
cmpcc yl, xh
movcc yl, yl, lsl #1
movcc ip, ip, lsl #1
bcc 1b
#endif
@ The division loop for needed upper bit positions.
@ Break out early if dividend reaches 0.
2: cmp xh, yl
orrcs yh, yh, ip
subcss xh, xh, yl
movnes ip, ip, lsr #1
mov yl, yl, lsr #1
bne 2b
@ See if we need to handle lower 32-bit result.
3: cmp xh, #0
mov yl, #0
cmpeq xl, r4
movlo xh, xl
retlo lr
@ The division loop for lower bit positions.
@ Here we shift remainer bits leftwards rather than moving the
@ divisor for comparisons, considering the carry-out bit as well.
mov ip, #0x80000000
4: movs xl, xl, lsl #1
adcs xh, xh, xh
beq 6f
cmpcc xh, r4
5: orrcs yl, yl, ip
subcs xh, xh, r4
movs ip, ip, lsr #1
bne 4b
ret lr
@ The top part of remainder became zero. If carry is set
@ (the 33th bit) this is a false positive so resume the loop.
@ Otherwise, if lower part is also null then we are done.
6: bcs 5b
cmp xl, #0
reteq lr
@ We still have remainer bits in the low part. Bring them up.
#if __LINUX_ARM_ARCH__ >= 5
clz xh, xl @ we know xh is zero here so...
add xh, xh, #1
mov xl, xl, lsl xh
mov ip, ip, lsr xh
#else
7: movs xl, xl, lsl #1
mov ip, ip, lsr #1
bcc 7b
#endif
@ Current remainder is now 1. It is worthless to compare with
@ divisor at this point since divisor can not be smaller than 3 here.
@ If possible, branch for another shift in the division loop.
@ If no bit position left then we are done.
movs ip, ip, lsr #1
mov xh, #1
bne 4b
ret lr
8: @ Division by a power of 2: determine what that divisor order is
@ then simply shift values around
#if __LINUX_ARM_ARCH__ >= 5
clz ip, r4
rsb ip, ip, #31
#else
mov yl, r4
cmp r4, #(1 << 16)
mov ip, #0
movhs yl, yl, lsr #16
movhs ip, #16
cmp yl, #(1 << 8)
movhs yl, yl, lsr #8
addhs ip, ip, #8
cmp yl, #(1 << 4)
movhs yl, yl, lsr #4
addhs ip, ip, #4
cmp yl, #(1 << 2)
addhi ip, ip, #3
addls ip, ip, yl, lsr #1
#endif
mov yh, xh, lsr ip
mov yl, xl, lsr ip
rsb ip, ip, #32
ARM( orr yl, yl, xh, lsl ip )
THUMB( lsl xh, xh, ip )
THUMB( orr yl, yl, xh )
mov xh, xl, lsl ip
mov xh, xh, lsr ip
ret lr
@ eq -> division by 1: obvious enough...
9: moveq yl, xl
moveq yh, xh
moveq xh, #0
reteq lr
UNWIND(.fnend)
UNWIND(.fnstart)
UNWIND(.pad #4)
UNWIND(.save {lr})
Ldiv0_64:
@ Division by 0:
str lr, [sp, #-8]!
bl __div0
@ as wrong as it could be...
mov yl, #0
mov yh, #0
mov xh, #0
ldr pc, [sp], #8
UNWIND(.fnend)
ENDPROC(__do_div64)