mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 22:24:09 +08:00
c4d7c51845
When enabling KVM_CAP_ARM_MTE the ioctl checks that there are no VCPUs
created to ensure that the capability is enabled before the VM is
running. However no locks are held at that point so it is
(theoretically) possible for another thread in the VMM to create VCPUs
between the check and actually setting mte_enabled. Close the race by
taking kvm->lock.
Reported-by: Alexandru Elisei <alexandru.elisei@arm.com>
Fixes: 673638f434
("KVM: arm64: Expose KVM_ARM_CAP_MTE")
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210729160036.20433-1-steven.price@arm.com
2194 lines
50 KiB
C
2194 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_irqfd.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/psci.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_arm.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include <kvm/arm_hypercalls.h>
|
|
#include <kvm/arm_pmu.h>
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#ifdef REQUIRES_VIRT
|
|
__asm__(".arch_extension virt");
|
|
#endif
|
|
|
|
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
|
|
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
|
|
|
|
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
|
|
|
|
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
|
|
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
|
|
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
|
|
|
|
/* The VMID used in the VTTBR */
|
|
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
|
|
static u32 kvm_next_vmid;
|
|
static DEFINE_SPINLOCK(kvm_vmid_lock);
|
|
|
|
static bool vgic_present;
|
|
|
|
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
|
|
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void *opaque)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_check_processor_compat(void *opaque)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
int r;
|
|
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
case KVM_CAP_ARM_NISV_TO_USER:
|
|
r = 0;
|
|
kvm->arch.return_nisv_io_abort_to_user = true;
|
|
break;
|
|
case KVM_CAP_ARM_MTE:
|
|
mutex_lock(&kvm->lock);
|
|
if (!system_supports_mte() || kvm->created_vcpus) {
|
|
r = -EINVAL;
|
|
} else {
|
|
r = 0;
|
|
kvm->arch.mte_enabled = true;
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_arm_default_max_vcpus(void)
|
|
{
|
|
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
|
|
}
|
|
|
|
static void set_default_spectre(struct kvm *kvm)
|
|
{
|
|
/*
|
|
* The default is to expose CSV2 == 1 if the HW isn't affected.
|
|
* Although this is a per-CPU feature, we make it global because
|
|
* asymmetric systems are just a nuisance.
|
|
*
|
|
* Userspace can override this as long as it doesn't promise
|
|
* the impossible.
|
|
*/
|
|
if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
|
|
kvm->arch.pfr0_csv2 = 1;
|
|
if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
|
|
kvm->arch.pfr0_csv3 = 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_init_vm - initializes a VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_arm_setup_stage2(kvm, type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
|
|
if (ret)
|
|
goto out_free_stage2_pgd;
|
|
|
|
kvm_vgic_early_init(kvm);
|
|
|
|
/* The maximum number of VCPUs is limited by the host's GIC model */
|
|
kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
|
|
|
|
set_default_spectre(kvm);
|
|
|
|
return ret;
|
|
out_free_stage2_pgd:
|
|
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
|
return ret;
|
|
}
|
|
|
|
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_destroy_vm - destroy the VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
bitmap_free(kvm->arch.pmu_filter);
|
|
|
|
kvm_vgic_destroy(kvm);
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
if (kvm->vcpus[i]) {
|
|
kvm_vcpu_destroy(kvm->vcpus[i]);
|
|
kvm->vcpus[i] = NULL;
|
|
}
|
|
}
|
|
atomic_set(&kvm->online_vcpus, 0);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r;
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
r = vgic_present;
|
|
break;
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_DEVICE_CTRL:
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_ONE_REG:
|
|
case KVM_CAP_ARM_PSCI:
|
|
case KVM_CAP_ARM_PSCI_0_2:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_IMMEDIATE_EXIT:
|
|
case KVM_CAP_VCPU_EVENTS:
|
|
case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
|
|
case KVM_CAP_ARM_NISV_TO_USER:
|
|
case KVM_CAP_ARM_INJECT_EXT_DABT:
|
|
case KVM_CAP_SET_GUEST_DEBUG:
|
|
case KVM_CAP_VCPU_ATTRIBUTES:
|
|
case KVM_CAP_PTP_KVM:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SET_GUEST_DEBUG2:
|
|
return KVM_GUESTDBG_VALID_MASK;
|
|
case KVM_CAP_ARM_SET_DEVICE_ADDR:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = num_online_cpus();
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
case KVM_CAP_MAX_VCPU_ID:
|
|
if (kvm)
|
|
r = kvm->arch.max_vcpus;
|
|
else
|
|
r = kvm_arm_default_max_vcpus();
|
|
break;
|
|
case KVM_CAP_MSI_DEVID:
|
|
if (!kvm)
|
|
r = -EINVAL;
|
|
else
|
|
r = kvm->arch.vgic.msis_require_devid;
|
|
break;
|
|
case KVM_CAP_ARM_USER_IRQ:
|
|
/*
|
|
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
|
|
* (bump this number if adding more devices)
|
|
*/
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_ARM_MTE:
|
|
r = system_supports_mte();
|
|
break;
|
|
case KVM_CAP_STEAL_TIME:
|
|
r = kvm_arm_pvtime_supported();
|
|
break;
|
|
case KVM_CAP_ARM_EL1_32BIT:
|
|
r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
|
|
break;
|
|
case KVM_CAP_GUEST_DEBUG_HW_BPS:
|
|
r = get_num_brps();
|
|
break;
|
|
case KVM_CAP_GUEST_DEBUG_HW_WPS:
|
|
r = get_num_wrps();
|
|
break;
|
|
case KVM_CAP_ARM_PMU_V3:
|
|
r = kvm_arm_support_pmu_v3();
|
|
break;
|
|
case KVM_CAP_ARM_INJECT_SERROR_ESR:
|
|
r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
|
|
break;
|
|
case KVM_CAP_ARM_VM_IPA_SIZE:
|
|
r = get_kvm_ipa_limit();
|
|
break;
|
|
case KVM_CAP_ARM_SVE:
|
|
r = system_supports_sve();
|
|
break;
|
|
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
|
|
case KVM_CAP_ARM_PTRAUTH_GENERIC:
|
|
r = system_has_full_ptr_auth();
|
|
break;
|
|
default:
|
|
r = 0;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct kvm *kvm_arch_alloc_vm(void)
|
|
{
|
|
if (!has_vhe())
|
|
return kzalloc(sizeof(struct kvm), GFP_KERNEL);
|
|
|
|
return vzalloc(sizeof(struct kvm));
|
|
}
|
|
|
|
void kvm_arch_free_vm(struct kvm *kvm)
|
|
{
|
|
if (!has_vhe())
|
|
kfree(kvm);
|
|
else
|
|
vfree(kvm);
|
|
}
|
|
|
|
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
|
|
{
|
|
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
|
|
return -EBUSY;
|
|
|
|
if (id >= kvm->arch.max_vcpus)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
|
|
/* Force users to call KVM_ARM_VCPU_INIT */
|
|
vcpu->arch.target = -1;
|
|
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
|
|
|
|
/* Set up the timer */
|
|
kvm_timer_vcpu_init(vcpu);
|
|
|
|
kvm_pmu_vcpu_init(vcpu);
|
|
|
|
kvm_arm_reset_debug_ptr(vcpu);
|
|
|
|
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
|
|
|
|
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
|
|
|
|
err = kvm_vgic_vcpu_init(vcpu);
|
|
if (err)
|
|
return err;
|
|
|
|
return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
|
|
static_branch_dec(&userspace_irqchip_in_use);
|
|
|
|
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
kvm_timer_vcpu_terminate(vcpu);
|
|
kvm_pmu_vcpu_destroy(vcpu);
|
|
|
|
kvm_arm_vcpu_destroy(vcpu);
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_timer_is_pending(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we're about to block (most likely because we've just hit a
|
|
* WFI), we need to sync back the state of the GIC CPU interface
|
|
* so that we have the latest PMR and group enables. This ensures
|
|
* that kvm_arch_vcpu_runnable has up-to-date data to decide
|
|
* whether we have pending interrupts.
|
|
*
|
|
* For the same reason, we want to tell GICv4 that we need
|
|
* doorbells to be signalled, should an interrupt become pending.
|
|
*/
|
|
preempt_disable();
|
|
kvm_vgic_vmcr_sync(vcpu);
|
|
vgic_v4_put(vcpu, true);
|
|
preempt_enable();
|
|
}
|
|
|
|
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
vgic_v4_load(vcpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct kvm_s2_mmu *mmu;
|
|
int *last_ran;
|
|
|
|
mmu = vcpu->arch.hw_mmu;
|
|
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
|
|
|
|
/*
|
|
* We guarantee that both TLBs and I-cache are private to each
|
|
* vcpu. If detecting that a vcpu from the same VM has
|
|
* previously run on the same physical CPU, call into the
|
|
* hypervisor code to nuke the relevant contexts.
|
|
*
|
|
* We might get preempted before the vCPU actually runs, but
|
|
* over-invalidation doesn't affect correctness.
|
|
*/
|
|
if (*last_ran != vcpu->vcpu_id) {
|
|
kvm_call_hyp(__kvm_flush_cpu_context, mmu);
|
|
*last_ran = vcpu->vcpu_id;
|
|
}
|
|
|
|
vcpu->cpu = cpu;
|
|
|
|
kvm_vgic_load(vcpu);
|
|
kvm_timer_vcpu_load(vcpu);
|
|
if (has_vhe())
|
|
kvm_vcpu_load_sysregs_vhe(vcpu);
|
|
kvm_arch_vcpu_load_fp(vcpu);
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
|
|
kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
|
|
|
|
if (single_task_running())
|
|
vcpu_clear_wfx_traps(vcpu);
|
|
else
|
|
vcpu_set_wfx_traps(vcpu);
|
|
|
|
if (vcpu_has_ptrauth(vcpu))
|
|
vcpu_ptrauth_disable(vcpu);
|
|
kvm_arch_vcpu_load_debug_state_flags(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_put_debug_state_flags(vcpu);
|
|
kvm_arch_vcpu_put_fp(vcpu);
|
|
if (has_vhe())
|
|
kvm_vcpu_put_sysregs_vhe(vcpu);
|
|
kvm_timer_vcpu_put(vcpu);
|
|
kvm_vgic_put(vcpu);
|
|
kvm_vcpu_pmu_restore_host(vcpu);
|
|
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
static void vcpu_power_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.power_off = true;
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
if (vcpu->arch.power_off)
|
|
mp_state->mp_state = KVM_MP_STATE_STOPPED;
|
|
else
|
|
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (mp_state->mp_state) {
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.power_off = false;
|
|
break;
|
|
case KVM_MP_STATE_STOPPED:
|
|
vcpu_power_off(vcpu);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
|
|
* @v: The VCPU pointer
|
|
*
|
|
* If the guest CPU is not waiting for interrupts or an interrupt line is
|
|
* asserted, the CPU is by definition runnable.
|
|
*/
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
|
|
return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
|
|
&& !v->arch.power_off && !v->arch.pause);
|
|
}
|
|
|
|
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu_mode_priv(vcpu);
|
|
}
|
|
|
|
/* Just ensure a guest exit from a particular CPU */
|
|
static void exit_vm_noop(void *info)
|
|
{
|
|
}
|
|
|
|
void force_vm_exit(const cpumask_t *mask)
|
|
{
|
|
preempt_disable();
|
|
smp_call_function_many(mask, exit_vm_noop, NULL, true);
|
|
preempt_enable();
|
|
}
|
|
|
|
/**
|
|
* need_new_vmid_gen - check that the VMID is still valid
|
|
* @vmid: The VMID to check
|
|
*
|
|
* return true if there is a new generation of VMIDs being used
|
|
*
|
|
* The hardware supports a limited set of values with the value zero reserved
|
|
* for the host, so we check if an assigned value belongs to a previous
|
|
* generation, which requires us to assign a new value. If we're the first to
|
|
* use a VMID for the new generation, we must flush necessary caches and TLBs
|
|
* on all CPUs.
|
|
*/
|
|
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
|
|
{
|
|
u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
|
|
smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
|
|
return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
|
|
}
|
|
|
|
/**
|
|
* update_vmid - Update the vmid with a valid VMID for the current generation
|
|
* @vmid: The stage-2 VMID information struct
|
|
*/
|
|
static void update_vmid(struct kvm_vmid *vmid)
|
|
{
|
|
if (!need_new_vmid_gen(vmid))
|
|
return;
|
|
|
|
spin_lock(&kvm_vmid_lock);
|
|
|
|
/*
|
|
* We need to re-check the vmid_gen here to ensure that if another vcpu
|
|
* already allocated a valid vmid for this vm, then this vcpu should
|
|
* use the same vmid.
|
|
*/
|
|
if (!need_new_vmid_gen(vmid)) {
|
|
spin_unlock(&kvm_vmid_lock);
|
|
return;
|
|
}
|
|
|
|
/* First user of a new VMID generation? */
|
|
if (unlikely(kvm_next_vmid == 0)) {
|
|
atomic64_inc(&kvm_vmid_gen);
|
|
kvm_next_vmid = 1;
|
|
|
|
/*
|
|
* On SMP we know no other CPUs can use this CPU's or each
|
|
* other's VMID after force_vm_exit returns since the
|
|
* kvm_vmid_lock blocks them from reentry to the guest.
|
|
*/
|
|
force_vm_exit(cpu_all_mask);
|
|
/*
|
|
* Now broadcast TLB + ICACHE invalidation over the inner
|
|
* shareable domain to make sure all data structures are
|
|
* clean.
|
|
*/
|
|
kvm_call_hyp(__kvm_flush_vm_context);
|
|
}
|
|
|
|
vmid->vmid = kvm_next_vmid;
|
|
kvm_next_vmid++;
|
|
kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
|
|
|
|
smp_wmb();
|
|
WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
|
|
|
|
spin_unlock(&kvm_vmid_lock);
|
|
}
|
|
|
|
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret = 0;
|
|
|
|
if (likely(vcpu->arch.has_run_once))
|
|
return 0;
|
|
|
|
if (!kvm_arm_vcpu_is_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
vcpu->arch.has_run_once = true;
|
|
|
|
kvm_arm_vcpu_init_debug(vcpu);
|
|
|
|
if (likely(irqchip_in_kernel(kvm))) {
|
|
/*
|
|
* Map the VGIC hardware resources before running a vcpu the
|
|
* first time on this VM.
|
|
*/
|
|
ret = kvm_vgic_map_resources(kvm);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* Tell the rest of the code that there are userspace irqchip
|
|
* VMs in the wild.
|
|
*/
|
|
static_branch_inc(&userspace_irqchip_in_use);
|
|
}
|
|
|
|
ret = kvm_timer_enable(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kvm_arm_pmu_v3_enable(vcpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_intc_initialized(struct kvm *kvm)
|
|
{
|
|
return vgic_initialized(kvm);
|
|
}
|
|
|
|
void kvm_arm_halt_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
vcpu->arch.pause = true;
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
|
|
}
|
|
|
|
void kvm_arm_resume_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu->arch.pause = false;
|
|
rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
|
|
}
|
|
}
|
|
|
|
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
|
|
|
|
rcuwait_wait_event(wait,
|
|
(!vcpu->arch.power_off) &&(!vcpu->arch.pause),
|
|
TASK_INTERRUPTIBLE);
|
|
|
|
if (vcpu->arch.power_off || vcpu->arch.pause) {
|
|
/* Awaken to handle a signal, request we sleep again later. */
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
}
|
|
|
|
/*
|
|
* Make sure we will observe a potential reset request if we've
|
|
* observed a change to the power state. Pairs with the smp_wmb() in
|
|
* kvm_psci_vcpu_on().
|
|
*/
|
|
smp_rmb();
|
|
}
|
|
|
|
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.target >= 0;
|
|
}
|
|
|
|
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_request_pending(vcpu)) {
|
|
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
|
|
vcpu_req_sleep(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
|
|
kvm_reset_vcpu(vcpu);
|
|
|
|
/*
|
|
* Clear IRQ_PENDING requests that were made to guarantee
|
|
* that a VCPU sees new virtual interrupts.
|
|
*/
|
|
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
|
|
kvm_update_stolen_time(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
|
|
/* The distributor enable bits were changed */
|
|
preempt_disable();
|
|
vgic_v4_put(vcpu, false);
|
|
vgic_v4_load(vcpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
|
|
kvm_pmu_handle_pmcr(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0));
|
|
}
|
|
}
|
|
|
|
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(!vcpu_mode_is_32bit(vcpu)))
|
|
return false;
|
|
|
|
return !system_supports_32bit_el0() ||
|
|
static_branch_unlikely(&arm64_mismatched_32bit_el0);
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function is called through the VCPU_RUN ioctl called from user space. It
|
|
* will execute VM code in a loop until the time slice for the process is used
|
|
* or some emulation is needed from user space in which case the function will
|
|
* return with return value 0 and with the kvm_run structure filled in with the
|
|
* required data for the requested emulation.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int ret;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
ret = kvm_vcpu_first_run_init(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (run->exit_reason == KVM_EXIT_MMIO) {
|
|
ret = kvm_handle_mmio_return(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (run->immediate_exit) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
|
|
kvm_sigset_activate(vcpu);
|
|
|
|
ret = 1;
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
while (ret > 0) {
|
|
/*
|
|
* Check conditions before entering the guest
|
|
*/
|
|
cond_resched();
|
|
|
|
update_vmid(&vcpu->arch.hw_mmu->vmid);
|
|
|
|
check_vcpu_requests(vcpu);
|
|
|
|
/*
|
|
* Preparing the interrupts to be injected also
|
|
* involves poking the GIC, which must be done in a
|
|
* non-preemptible context.
|
|
*/
|
|
preempt_disable();
|
|
|
|
kvm_pmu_flush_hwstate(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
kvm_vgic_flush_hwstate(vcpu);
|
|
|
|
/*
|
|
* Exit if we have a signal pending so that we can deliver the
|
|
* signal to user space.
|
|
*/
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
}
|
|
|
|
/*
|
|
* If we're using a userspace irqchip, then check if we need
|
|
* to tell a userspace irqchip about timer or PMU level
|
|
* changes and if so, exit to userspace (the actual level
|
|
* state gets updated in kvm_timer_update_run and
|
|
* kvm_pmu_update_run below).
|
|
*/
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use)) {
|
|
if (kvm_timer_should_notify_user(vcpu) ||
|
|
kvm_pmu_should_notify_user(vcpu)) {
|
|
ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we set mode to IN_GUEST_MODE after we disable
|
|
* interrupts and before the final VCPU requests check.
|
|
* See the comment in kvm_vcpu_exiting_guest_mode() and
|
|
* Documentation/virt/kvm/vcpu-requests.rst
|
|
*/
|
|
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
|
|
|
|
if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
|
|
kvm_request_pending(vcpu)) {
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
isb(); /* Ensure work in x_flush_hwstate is committed */
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
|
kvm_timer_sync_user(vcpu);
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
continue;
|
|
}
|
|
|
|
kvm_arm_setup_debug(vcpu);
|
|
|
|
/**************************************************************
|
|
* Enter the guest
|
|
*/
|
|
trace_kvm_entry(*vcpu_pc(vcpu));
|
|
guest_enter_irqoff();
|
|
|
|
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
vcpu->stat.exits++;
|
|
/*
|
|
* Back from guest
|
|
*************************************************************/
|
|
|
|
kvm_arm_clear_debug(vcpu);
|
|
|
|
/*
|
|
* We must sync the PMU state before the vgic state so
|
|
* that the vgic can properly sample the updated state of the
|
|
* interrupt line.
|
|
*/
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
|
|
/*
|
|
* Sync the vgic state before syncing the timer state because
|
|
* the timer code needs to know if the virtual timer
|
|
* interrupts are active.
|
|
*/
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
|
|
/*
|
|
* Sync the timer hardware state before enabling interrupts as
|
|
* we don't want vtimer interrupts to race with syncing the
|
|
* timer virtual interrupt state.
|
|
*/
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
|
kvm_timer_sync_user(vcpu);
|
|
|
|
kvm_arch_vcpu_ctxsync_fp(vcpu);
|
|
|
|
/*
|
|
* We may have taken a host interrupt in HYP mode (ie
|
|
* while executing the guest). This interrupt is still
|
|
* pending, as we haven't serviced it yet!
|
|
*
|
|
* We're now back in SVC mode, with interrupts
|
|
* disabled. Enabling the interrupts now will have
|
|
* the effect of taking the interrupt again, in SVC
|
|
* mode this time.
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* We do local_irq_enable() before calling guest_exit() so
|
|
* that if a timer interrupt hits while running the guest we
|
|
* account that tick as being spent in the guest. We enable
|
|
* preemption after calling guest_exit() so that if we get
|
|
* preempted we make sure ticks after that is not counted as
|
|
* guest time.
|
|
*/
|
|
guest_exit();
|
|
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
|
|
|
|
/* Exit types that need handling before we can be preempted */
|
|
handle_exit_early(vcpu, ret);
|
|
|
|
preempt_enable();
|
|
|
|
/*
|
|
* The ARMv8 architecture doesn't give the hypervisor
|
|
* a mechanism to prevent a guest from dropping to AArch32 EL0
|
|
* if implemented by the CPU. If we spot the guest in such
|
|
* state and that we decided it wasn't supposed to do so (like
|
|
* with the asymmetric AArch32 case), return to userspace with
|
|
* a fatal error.
|
|
*/
|
|
if (vcpu_mode_is_bad_32bit(vcpu)) {
|
|
/*
|
|
* As we have caught the guest red-handed, decide that
|
|
* it isn't fit for purpose anymore by making the vcpu
|
|
* invalid. The VMM can try and fix it by issuing a
|
|
* KVM_ARM_VCPU_INIT if it really wants to.
|
|
*/
|
|
vcpu->arch.target = -1;
|
|
ret = ARM_EXCEPTION_IL;
|
|
}
|
|
|
|
ret = handle_exit(vcpu, ret);
|
|
}
|
|
|
|
/* Tell userspace about in-kernel device output levels */
|
|
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
|
|
kvm_timer_update_run(vcpu);
|
|
kvm_pmu_update_run(vcpu);
|
|
}
|
|
|
|
kvm_sigset_deactivate(vcpu);
|
|
|
|
out:
|
|
/*
|
|
* In the unlikely event that we are returning to userspace
|
|
* with pending exceptions or PC adjustment, commit these
|
|
* adjustments in order to give userspace a consistent view of
|
|
* the vcpu state. Note that this relies on __kvm_adjust_pc()
|
|
* being preempt-safe on VHE.
|
|
*/
|
|
if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
|
|
KVM_ARM64_INCREMENT_PC)))
|
|
kvm_call_hyp(__kvm_adjust_pc, vcpu);
|
|
|
|
vcpu_put(vcpu);
|
|
return ret;
|
|
}
|
|
|
|
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
|
|
{
|
|
int bit_index;
|
|
bool set;
|
|
unsigned long *hcr;
|
|
|
|
if (number == KVM_ARM_IRQ_CPU_IRQ)
|
|
bit_index = __ffs(HCR_VI);
|
|
else /* KVM_ARM_IRQ_CPU_FIQ */
|
|
bit_index = __ffs(HCR_VF);
|
|
|
|
hcr = vcpu_hcr(vcpu);
|
|
if (level)
|
|
set = test_and_set_bit(bit_index, hcr);
|
|
else
|
|
set = test_and_clear_bit(bit_index, hcr);
|
|
|
|
/*
|
|
* If we didn't change anything, no need to wake up or kick other CPUs
|
|
*/
|
|
if (set == level)
|
|
return 0;
|
|
|
|
/*
|
|
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
|
|
* trigger a world-switch round on the running physical CPU to set the
|
|
* virtual IRQ/FIQ fields in the HCR appropriately.
|
|
*/
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
|
|
bool line_status)
|
|
{
|
|
u32 irq = irq_level->irq;
|
|
unsigned int irq_type, vcpu_idx, irq_num;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
bool level = irq_level->level;
|
|
|
|
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
|
|
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
|
|
vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
|
|
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
|
|
|
|
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
|
|
|
|
switch (irq_type) {
|
|
case KVM_ARM_IRQ_TYPE_CPU:
|
|
if (irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
|
|
return -EINVAL;
|
|
|
|
return vcpu_interrupt_line(vcpu, irq_num, level);
|
|
case KVM_ARM_IRQ_TYPE_PPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
|
|
case KVM_ARM_IRQ_TYPE_SPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (irq_num < VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned int i, ret;
|
|
int phys_target = kvm_target_cpu();
|
|
|
|
if (init->target != phys_target)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same target.
|
|
*/
|
|
if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
|
|
return -EINVAL;
|
|
|
|
/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
|
|
for (i = 0; i < sizeof(init->features) * 8; i++) {
|
|
bool set = (init->features[i / 32] & (1 << (i % 32)));
|
|
|
|
if (set && i >= KVM_VCPU_MAX_FEATURES)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same feature set.
|
|
*/
|
|
if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
|
|
test_bit(i, vcpu->arch.features) != set)
|
|
return -EINVAL;
|
|
|
|
if (set)
|
|
set_bit(i, vcpu->arch.features);
|
|
}
|
|
|
|
vcpu->arch.target = phys_target;
|
|
|
|
/* Now we know what it is, we can reset it. */
|
|
ret = kvm_reset_vcpu(vcpu);
|
|
if (ret) {
|
|
vcpu->arch.target = -1;
|
|
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_init *init)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_set_target(vcpu, init);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Ensure a rebooted VM will fault in RAM pages and detect if the
|
|
* guest MMU is turned off and flush the caches as needed.
|
|
*
|
|
* S2FWB enforces all memory accesses to RAM being cacheable,
|
|
* ensuring that the data side is always coherent. We still
|
|
* need to invalidate the I-cache though, as FWB does *not*
|
|
* imply CTR_EL0.DIC.
|
|
*/
|
|
if (vcpu->arch.has_run_once) {
|
|
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
|
|
stage2_unmap_vm(vcpu->kvm);
|
|
else
|
|
icache_inval_all_pou();
|
|
}
|
|
|
|
vcpu_reset_hcr(vcpu);
|
|
|
|
/*
|
|
* Handle the "start in power-off" case.
|
|
*/
|
|
if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
|
|
vcpu_power_off(vcpu);
|
|
else
|
|
vcpu->arch.power_off = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
memset(events, 0, sizeof(*events));
|
|
|
|
return __kvm_arm_vcpu_get_events(vcpu, events);
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
int i;
|
|
|
|
/* check whether the reserved field is zero */
|
|
for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
|
|
if (events->reserved[i])
|
|
return -EINVAL;
|
|
|
|
/* check whether the pad field is zero */
|
|
for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
|
|
if (events->exception.pad[i])
|
|
return -EINVAL;
|
|
|
|
return __kvm_arm_vcpu_set_events(vcpu, events);
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
struct kvm_device_attr attr;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ARM_VCPU_INIT: {
|
|
struct kvm_vcpu_init init;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&init, argp, sizeof(init)))
|
|
break;
|
|
|
|
r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
|
|
break;
|
|
}
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG: {
|
|
struct kvm_one_reg reg;
|
|
|
|
r = -ENOEXEC;
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
break;
|
|
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
r = kvm_arm_set_reg(vcpu, ®);
|
|
else
|
|
r = kvm_arm_get_reg(vcpu, ®);
|
|
break;
|
|
}
|
|
case KVM_GET_REG_LIST: {
|
|
struct kvm_reg_list __user *user_list = argp;
|
|
struct kvm_reg_list reg_list;
|
|
unsigned n;
|
|
|
|
r = -ENOEXEC;
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
break;
|
|
|
|
r = -EPERM;
|
|
if (!kvm_arm_vcpu_is_finalized(vcpu))
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
|
|
break;
|
|
n = reg_list.n;
|
|
reg_list.n = kvm_arm_num_regs(vcpu);
|
|
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
|
|
break;
|
|
r = -E2BIG;
|
|
if (n < reg_list.n)
|
|
break;
|
|
r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
|
|
break;
|
|
}
|
|
case KVM_SET_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_set_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_GET_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_get_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_HAS_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_has_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
if (kvm_arm_vcpu_get_events(vcpu, &events))
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user(argp, &events, sizeof(events)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
case KVM_SET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
if (copy_from_user(&events, argp, sizeof(events)))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_vcpu_set_events(vcpu, &events);
|
|
}
|
|
case KVM_ARM_VCPU_FINALIZE: {
|
|
int what;
|
|
|
|
if (!kvm_vcpu_initialized(vcpu))
|
|
return -ENOEXEC;
|
|
|
|
if (get_user(what, (const int __user *)argp))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_vcpu_finalize(vcpu, what);
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
|
|
}
|
|
|
|
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
|
|
struct kvm_arm_device_addr *dev_addr)
|
|
{
|
|
unsigned long dev_id, type;
|
|
|
|
dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
|
|
KVM_ARM_DEVICE_ID_SHIFT;
|
|
type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
|
|
KVM_ARM_DEVICE_TYPE_SHIFT;
|
|
|
|
switch (dev_id) {
|
|
case KVM_ARM_DEVICE_VGIC_V2:
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (ioctl) {
|
|
case KVM_CREATE_IRQCHIP: {
|
|
int ret;
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
mutex_lock(&kvm->lock);
|
|
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
case KVM_ARM_SET_DEVICE_ADDR: {
|
|
struct kvm_arm_device_addr dev_addr;
|
|
|
|
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
|
|
}
|
|
case KVM_ARM_PREFERRED_TARGET: {
|
|
int err;
|
|
struct kvm_vcpu_init init;
|
|
|
|
err = kvm_vcpu_preferred_target(&init);
|
|
if (err)
|
|
return err;
|
|
|
|
if (copy_to_user(argp, &init, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
case KVM_ARM_MTE_COPY_TAGS: {
|
|
struct kvm_arm_copy_mte_tags copy_tags;
|
|
|
|
if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static unsigned long nvhe_percpu_size(void)
|
|
{
|
|
return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
|
|
(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
|
|
}
|
|
|
|
static unsigned long nvhe_percpu_order(void)
|
|
{
|
|
unsigned long size = nvhe_percpu_size();
|
|
|
|
return size ? get_order(size) : 0;
|
|
}
|
|
|
|
/* A lookup table holding the hypervisor VA for each vector slot */
|
|
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
|
|
|
|
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
|
|
{
|
|
hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
|
|
}
|
|
|
|
static int kvm_init_vector_slots(void)
|
|
{
|
|
int err;
|
|
void *base;
|
|
|
|
base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
|
|
kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
|
|
|
|
base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
|
|
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
|
|
|
|
if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
|
|
return 0;
|
|
|
|
if (!has_vhe()) {
|
|
err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
|
|
__BP_HARDEN_HYP_VECS_SZ, &base);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
|
|
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_prepare_hyp_mode(int cpu)
|
|
{
|
|
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
|
|
unsigned long tcr;
|
|
|
|
/*
|
|
* Calculate the raw per-cpu offset without a translation from the
|
|
* kernel's mapping to the linear mapping, and store it in tpidr_el2
|
|
* so that we can use adr_l to access per-cpu variables in EL2.
|
|
* Also drop the KASAN tag which gets in the way...
|
|
*/
|
|
params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
|
|
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
|
|
|
|
params->mair_el2 = read_sysreg(mair_el1);
|
|
|
|
/*
|
|
* The ID map may be configured to use an extended virtual address
|
|
* range. This is only the case if system RAM is out of range for the
|
|
* currently configured page size and VA_BITS, in which case we will
|
|
* also need the extended virtual range for the HYP ID map, or we won't
|
|
* be able to enable the EL2 MMU.
|
|
*
|
|
* However, at EL2, there is only one TTBR register, and we can't switch
|
|
* between translation tables *and* update TCR_EL2.T0SZ at the same
|
|
* time. Bottom line: we need to use the extended range with *both* our
|
|
* translation tables.
|
|
*
|
|
* So use the same T0SZ value we use for the ID map.
|
|
*/
|
|
tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
|
|
tcr &= ~TCR_T0SZ_MASK;
|
|
tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
|
|
params->tcr_el2 = tcr;
|
|
|
|
params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
|
|
params->pgd_pa = kvm_mmu_get_httbr();
|
|
if (is_protected_kvm_enabled())
|
|
params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
|
|
else
|
|
params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
|
|
params->vttbr = params->vtcr = 0;
|
|
|
|
/*
|
|
* Flush the init params from the data cache because the struct will
|
|
* be read while the MMU is off.
|
|
*/
|
|
kvm_flush_dcache_to_poc(params, sizeof(*params));
|
|
}
|
|
|
|
static void hyp_install_host_vector(void)
|
|
{
|
|
struct kvm_nvhe_init_params *params;
|
|
struct arm_smccc_res res;
|
|
|
|
/* Switch from the HYP stub to our own HYP init vector */
|
|
__hyp_set_vectors(kvm_get_idmap_vector());
|
|
|
|
/*
|
|
* Call initialization code, and switch to the full blown HYP code.
|
|
* If the cpucaps haven't been finalized yet, something has gone very
|
|
* wrong, and hyp will crash and burn when it uses any
|
|
* cpus_have_const_cap() wrapper.
|
|
*/
|
|
BUG_ON(!system_capabilities_finalized());
|
|
params = this_cpu_ptr_nvhe_sym(kvm_init_params);
|
|
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
|
|
WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
|
|
}
|
|
|
|
static void cpu_init_hyp_mode(void)
|
|
{
|
|
hyp_install_host_vector();
|
|
|
|
/*
|
|
* Disabling SSBD on a non-VHE system requires us to enable SSBS
|
|
* at EL2.
|
|
*/
|
|
if (this_cpu_has_cap(ARM64_SSBS) &&
|
|
arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
|
|
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
|
|
}
|
|
}
|
|
|
|
static void cpu_hyp_reset(void)
|
|
{
|
|
if (!is_kernel_in_hyp_mode())
|
|
__hyp_reset_vectors();
|
|
}
|
|
|
|
/*
|
|
* EL2 vectors can be mapped and rerouted in a number of ways,
|
|
* depending on the kernel configuration and CPU present:
|
|
*
|
|
* - If the CPU is affected by Spectre-v2, the hardening sequence is
|
|
* placed in one of the vector slots, which is executed before jumping
|
|
* to the real vectors.
|
|
*
|
|
* - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
|
|
* containing the hardening sequence is mapped next to the idmap page,
|
|
* and executed before jumping to the real vectors.
|
|
*
|
|
* - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
|
|
* empty slot is selected, mapped next to the idmap page, and
|
|
* executed before jumping to the real vectors.
|
|
*
|
|
* Note that ARM64_SPECTRE_V3A is somewhat incompatible with
|
|
* VHE, as we don't have hypervisor-specific mappings. If the system
|
|
* is VHE and yet selects this capability, it will be ignored.
|
|
*/
|
|
static void cpu_set_hyp_vector(void)
|
|
{
|
|
struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
|
|
void *vector = hyp_spectre_vector_selector[data->slot];
|
|
|
|
if (!is_protected_kvm_enabled())
|
|
*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
|
|
else
|
|
kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
|
|
}
|
|
|
|
static void cpu_hyp_reinit(void)
|
|
{
|
|
kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
|
|
|
|
cpu_hyp_reset();
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
kvm_timer_init_vhe();
|
|
else
|
|
cpu_init_hyp_mode();
|
|
|
|
cpu_set_hyp_vector();
|
|
|
|
kvm_arm_init_debug();
|
|
|
|
if (vgic_present)
|
|
kvm_vgic_init_cpu_hardware();
|
|
}
|
|
|
|
static void _kvm_arch_hardware_enable(void *discard)
|
|
{
|
|
if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
|
|
cpu_hyp_reinit();
|
|
__this_cpu_write(kvm_arm_hardware_enabled, 1);
|
|
}
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void)
|
|
{
|
|
_kvm_arch_hardware_enable(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void _kvm_arch_hardware_disable(void *discard)
|
|
{
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled)) {
|
|
cpu_hyp_reset();
|
|
__this_cpu_write(kvm_arm_hardware_enabled, 0);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
_kvm_arch_hardware_disable(NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd,
|
|
void *v)
|
|
{
|
|
/*
|
|
* kvm_arm_hardware_enabled is left with its old value over
|
|
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
|
|
* re-enable hyp.
|
|
*/
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled))
|
|
/*
|
|
* don't update kvm_arm_hardware_enabled here
|
|
* so that the hardware will be re-enabled
|
|
* when we resume. See below.
|
|
*/
|
|
cpu_hyp_reset();
|
|
|
|
return NOTIFY_OK;
|
|
case CPU_PM_ENTER_FAILED:
|
|
case CPU_PM_EXIT:
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled))
|
|
/* The hardware was enabled before suspend. */
|
|
cpu_hyp_reinit();
|
|
|
|
return NOTIFY_OK;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
|
|
static struct notifier_block hyp_init_cpu_pm_nb = {
|
|
.notifier_call = hyp_init_cpu_pm_notifier,
|
|
};
|
|
|
|
static void hyp_cpu_pm_init(void)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
static void hyp_cpu_pm_exit(void)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
#else
|
|
static inline void hyp_cpu_pm_init(void)
|
|
{
|
|
}
|
|
static inline void hyp_cpu_pm_exit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void init_cpu_logical_map(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* Copy the MPIDR <-> logical CPU ID mapping to hyp.
|
|
* Only copy the set of online CPUs whose features have been chacked
|
|
* against the finalized system capabilities. The hypervisor will not
|
|
* allow any other CPUs from the `possible` set to boot.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
|
|
}
|
|
|
|
#define init_psci_0_1_impl_state(config, what) \
|
|
config.psci_0_1_ ## what ## _implemented = psci_ops.what
|
|
|
|
static bool init_psci_relay(void)
|
|
{
|
|
/*
|
|
* If PSCI has not been initialized, protected KVM cannot install
|
|
* itself on newly booted CPUs.
|
|
*/
|
|
if (!psci_ops.get_version) {
|
|
kvm_err("Cannot initialize protected mode without PSCI\n");
|
|
return false;
|
|
}
|
|
|
|
kvm_host_psci_config.version = psci_ops.get_version();
|
|
|
|
if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
|
|
kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int init_common_resources(void)
|
|
{
|
|
return kvm_set_ipa_limit();
|
|
}
|
|
|
|
static int init_subsystems(void)
|
|
{
|
|
int err = 0;
|
|
|
|
/*
|
|
* Enable hardware so that subsystem initialisation can access EL2.
|
|
*/
|
|
on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
|
|
|
|
/*
|
|
* Register CPU lower-power notifier
|
|
*/
|
|
hyp_cpu_pm_init();
|
|
|
|
/*
|
|
* Init HYP view of VGIC
|
|
*/
|
|
err = kvm_vgic_hyp_init();
|
|
switch (err) {
|
|
case 0:
|
|
vgic_present = true;
|
|
break;
|
|
case -ENODEV:
|
|
case -ENXIO:
|
|
vgic_present = false;
|
|
err = 0;
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Init HYP architected timer support
|
|
*/
|
|
err = kvm_timer_hyp_init(vgic_present);
|
|
if (err)
|
|
goto out;
|
|
|
|
kvm_perf_init();
|
|
kvm_sys_reg_table_init();
|
|
|
|
out:
|
|
if (err || !is_protected_kvm_enabled())
|
|
on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void teardown_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
|
|
free_hyp_pgds();
|
|
for_each_possible_cpu(cpu) {
|
|
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
|
|
}
|
|
}
|
|
|
|
static int do_pkvm_init(u32 hyp_va_bits)
|
|
{
|
|
void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
|
|
int ret;
|
|
|
|
preempt_disable();
|
|
hyp_install_host_vector();
|
|
ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
|
|
num_possible_cpus(), kern_hyp_va(per_cpu_base),
|
|
hyp_va_bits);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_hyp_init_protection(u32 hyp_va_bits)
|
|
{
|
|
void *addr = phys_to_virt(hyp_mem_base);
|
|
int ret;
|
|
|
|
kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
|
|
ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_pkvm_init(hyp_va_bits);
|
|
if (ret)
|
|
return ret;
|
|
|
|
free_hyp_pgds();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Inits Hyp-mode on all online CPUs
|
|
*/
|
|
static int init_hyp_mode(void)
|
|
{
|
|
u32 hyp_va_bits;
|
|
int cpu;
|
|
int err = -ENOMEM;
|
|
|
|
/*
|
|
* The protected Hyp-mode cannot be initialized if the memory pool
|
|
* allocation has failed.
|
|
*/
|
|
if (is_protected_kvm_enabled() && !hyp_mem_base)
|
|
goto out_err;
|
|
|
|
/*
|
|
* Allocate Hyp PGD and setup Hyp identity mapping
|
|
*/
|
|
err = kvm_mmu_init(&hyp_va_bits);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/*
|
|
* Allocate stack pages for Hypervisor-mode
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long stack_page;
|
|
|
|
stack_page = __get_free_page(GFP_KERNEL);
|
|
if (!stack_page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize pages for Hypervisor-mode percpu regions.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct page *page;
|
|
void *page_addr;
|
|
|
|
page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
page_addr = page_address(page);
|
|
memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
|
|
kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp-code called directly from the host
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
|
|
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
|
|
if (err) {
|
|
kvm_err("Cannot map world-switch code\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
|
|
kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map .hyp.rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
|
|
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* .hyp.bss is guaranteed to be placed at the beginning of the .bss
|
|
* section thanks to an assertion in the linker script. Map it RW and
|
|
* the rest of .bss RO.
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
|
|
kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Cannot map hyp bss section: %d\n", err);
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
|
|
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map bss section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp stack pages
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
|
|
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
|
|
PAGE_HYP);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map hyp stack\n");
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
|
|
char *percpu_end = percpu_begin + nvhe_percpu_size();
|
|
|
|
/* Map Hyp percpu pages */
|
|
err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Cannot map hyp percpu region\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/* Prepare the CPU initialization parameters */
|
|
cpu_prepare_hyp_mode(cpu);
|
|
}
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
init_cpu_logical_map();
|
|
|
|
if (!init_psci_relay()) {
|
|
err = -ENODEV;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
err = kvm_hyp_init_protection(hyp_va_bits);
|
|
if (err) {
|
|
kvm_err("Failed to init hyp memory protection\n");
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
teardown_hyp_mode();
|
|
kvm_err("error initializing Hyp mode: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
static void _kvm_host_prot_finalize(void *discard)
|
|
{
|
|
WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
|
|
}
|
|
|
|
static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
|
|
{
|
|
return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
|
|
}
|
|
|
|
#define pkvm_mark_hyp_section(__section) \
|
|
pkvm_mark_hyp(__pa_symbol(__section##_start), \
|
|
__pa_symbol(__section##_end))
|
|
|
|
static int finalize_hyp_mode(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
if (!is_protected_kvm_enabled())
|
|
return 0;
|
|
|
|
ret = pkvm_mark_hyp_section(__hyp_idmap_text);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pkvm_mark_hyp_section(__hyp_text);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pkvm_mark_hyp_section(__hyp_rodata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pkvm_mark_hyp_section(__hyp_bss);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
|
|
phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
|
|
|
|
ret = pkvm_mark_hyp(start, end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
end = start + PAGE_SIZE;
|
|
ret = pkvm_mark_hyp(start, end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Flip the static key upfront as that may no longer be possible
|
|
* once the host stage 2 is installed.
|
|
*/
|
|
static_branch_enable(&kvm_protected_mode_initialized);
|
|
on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void check_kvm_target_cpu(void *ret)
|
|
{
|
|
*(int *)ret = kvm_target_cpu();
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
|
|
return vcpu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool kvm_arch_has_irq_bypass(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
|
|
&irqfd->irq_entry);
|
|
}
|
|
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
|
|
&irqfd->irq_entry);
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_arm_halt_guest(irqfd->kvm);
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_arm_resume_guest(irqfd->kvm);
|
|
}
|
|
|
|
/**
|
|
* Initialize Hyp-mode and memory mappings on all CPUs.
|
|
*/
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int err;
|
|
int ret, cpu;
|
|
bool in_hyp_mode;
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
kvm_info("HYP mode not available\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
in_hyp_mode = is_kernel_in_hyp_mode();
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
|
|
cpus_have_final_cap(ARM64_WORKAROUND_1508412))
|
|
kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
|
|
"Only trusted guests should be used on this system.\n");
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
|
|
if (ret < 0) {
|
|
kvm_err("Error, CPU %d not supported!\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
err = init_common_resources();
|
|
if (err)
|
|
return err;
|
|
|
|
err = kvm_arm_init_sve();
|
|
if (err)
|
|
return err;
|
|
|
|
if (!in_hyp_mode) {
|
|
err = init_hyp_mode();
|
|
if (err)
|
|
goto out_err;
|
|
}
|
|
|
|
err = kvm_init_vector_slots();
|
|
if (err) {
|
|
kvm_err("Cannot initialise vector slots\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = init_subsystems();
|
|
if (err)
|
|
goto out_hyp;
|
|
|
|
if (!in_hyp_mode) {
|
|
err = finalize_hyp_mode();
|
|
if (err) {
|
|
kvm_err("Failed to finalize Hyp protection\n");
|
|
goto out_hyp;
|
|
}
|
|
}
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
kvm_info("Protected nVHE mode initialized successfully\n");
|
|
} else if (in_hyp_mode) {
|
|
kvm_info("VHE mode initialized successfully\n");
|
|
} else {
|
|
kvm_info("Hyp mode initialized successfully\n");
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_hyp:
|
|
hyp_cpu_pm_exit();
|
|
if (!in_hyp_mode)
|
|
teardown_hyp_mode();
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
/* NOP: Compiling as a module not supported */
|
|
void kvm_arch_exit(void)
|
|
{
|
|
kvm_perf_teardown();
|
|
}
|
|
|
|
static int __init early_kvm_mode_cfg(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (strcmp(arg, "protected") == 0) {
|
|
kvm_mode = KVM_MODE_PROTECTED;
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
early_param("kvm-arm.mode", early_kvm_mode_cfg);
|
|
|
|
enum kvm_mode kvm_get_mode(void)
|
|
{
|
|
return kvm_mode;
|
|
}
|
|
|
|
static int arm_init(void)
|
|
{
|
|
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
return rc;
|
|
}
|
|
|
|
module_init(arm_init);
|