2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
linux-next/fs/f2fs/inode.c
Linus Torvalds a02cd4229e f2fs-for-4.15-rc1
In this round, we introduce sysfile-based quota support which is required
 for Android by default. In addition, we allow that users are able to reserve
 some blocks in runtime to mitigate performance drops in low free space.
 
 Enhancement
 - assign proper data segments according to write_hints given by user
 - issue cache_flush on dirty devices only among multiple devices
 - exploit cp_error flag and add more faults to enhance fault injection test
 - conduct more readaheads during f2fs_readdir
 - add a range for discard commands
 
 Bug fix
 - fix zero stat->st_blocks when inline_data is set
 - drop crypto key and free stale memory pointer while evict_inode is failing
 - fix some corner cases in free space and segment management
 - fix wrong last_disk_size
 
 This series includes lots of clean-ups and code enhancement in terms of xattr
 operations, discard/flush command control. In addition, it adds versatile
 debugfs entries to monitor f2fs status.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAloNCPAACgkQQBSofoJI
 UNLYmg/8DbDp/mTXqJ0AURo84Z4OQUOTRxYkWazx4ct2WPZp2+5HCWDDoM8AAtUn
 1J6/t7cU3osjos+zWvpUREZq1SPbp5m0h818HBFFJ/YMBPXucdQcd6wpepniOR5J
 5uKauVd7jd2pbAAL7hKyr+iBSLrJl816wsq34Ml8y8zkDSJe4wO5YsGDqzqyKf4N
 8nxMavUgerb14I/qXPb3ljlYlfaNNRlCT649QGCG78gx5hPeiUtUJ2l5DKV2xPe7
 v+5lZO93FFwW1siGy+Atq+nqQJyUkeiOYGPR1NPx9tfmaPO58iOIXLirfblKASZY
 HXJigVf50fQQBtwdBFL8ICSop6zV6gCKkNGZCHLzcYFWWL2TQwCIP3/iJdj9Wy+j
 +YUYyN0dyl2mmNEDZjRNX1V+QBW1k+msmvBCb0fT1GJTQAyRfA4XfBDyg94cpWQ1
 9YivNywuzG8YtghY7gYU3lCfT2OG19nXCSdz4qYUb5SSwoeGtLahLxMV4mlil4Tg
 dOa8CPLFhJnCqB9ivI4L6SennBr+gNgL26SeZ3PF+B5KimYOTZxbenrll1kTi1xp
 uCU6UR1xJS0W7Cjk8sCIu5hXkJMJwPJ0hcVeTgsxMkujLGvSSRCGb2hmOeILfwRZ
 N4aGn+kVmwwgKaKjD/F4CY4b3yJLdTKMjjl74u5YaMQWe4Bq4qU=
 =c49T
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "In this round, we introduce sysfile-based quota support which is
  required for Android by default. In addition, we allow that users are
  able to reserve some blocks in runtime to mitigate performance drops
  in low free space.

  Enhancements:
   - assign proper data segments according to write_hints given by user
   - issue cache_flush on dirty devices only among multiple devices
   - exploit cp_error flag and add more faults to enhance fault
     injection test
   - conduct more readaheads during f2fs_readdir
   - add a range for discard commands

  Bug fixes:
   - fix zero stat->st_blocks when inline_data is set
   - drop crypto key and free stale memory pointer while evict_inode is
     failing
   - fix some corner cases in free space and segment management
   - fix wrong last_disk_size

  This series includes lots of clean-ups and code enhancement in terms
  of xattr operations, discard/flush command control. In addition, it
  adds versatile debugfs entries to monitor f2fs status"

* tag 'f2fs-for-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (75 commits)
  f2fs: deny accessing encryption policy if encryption is off
  f2fs: inject fault in inc_valid_node_count
  f2fs: fix to clear FI_NO_PREALLOC
  f2fs: expose quota information in debugfs
  f2fs: separate nat entry mem alloc from nat_tree_lock
  f2fs: validate before set/clear free nat bitmap
  f2fs: avoid opened loop codes in __add_ino_entry
  f2fs: apply write hints to select the type of segments for buffered write
  f2fs: introduce scan_curseg_cache for cleanup
  f2fs: optimize the way of traversing free_nid_bitmap
  f2fs: keep scanning until enough free nids are acquired
  f2fs: trace checkpoint reason in fsync()
  f2fs: keep isize once block is reserved cross EOF
  f2fs: avoid race in between GC and block exchange
  f2fs: save a multiplication for last_nid calculation
  f2fs: fix summary info corruption
  f2fs: remove dead code in update_meta_page
  f2fs: remove unneeded semicolon
  f2fs: don't bother with inode->i_version
  f2fs: check curseg space before foreground GC
  ...
2017-11-16 12:10:21 -08:00

624 lines
16 KiB
C

/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
{
if (f2fs_inode_dirtied(inode, sync))
return;
mark_inode_dirty_sync(inode);
}
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & FS_SYNC_FL)
new_fl |= S_SYNC;
if (flags & FS_APPEND_FL)
new_fl |= S_APPEND;
if (flags & FS_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & FS_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & FS_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
if (f2fs_encrypted_inode(inode))
new_fl |= S_ENCRYPTED;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|
S_ENCRYPTED);
}
static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
if (ri->i_addr[extra_size])
inode->i_rdev = old_decode_dev(
le32_to_cpu(ri->i_addr[extra_size]));
else
inode->i_rdev = new_decode_dev(
le32_to_cpu(ri->i_addr[extra_size + 1]));
}
}
static bool __written_first_block(struct f2fs_inode *ri)
{
block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
if (addr != NEW_ADDR && addr != NULL_ADDR)
return true;
return false;
}
static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[extra_size] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 1] = 0;
} else {
ri->i_addr[extra_size] = 0;
ri->i_addr[extra_size + 1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 2] = 0;
}
}
}
static void __recover_inline_status(struct inode *inode, struct page *ipage)
{
void *inline_data = inline_data_addr(inode, ipage);
__le32 *start = inline_data;
__le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
while (start < end) {
if (*start++) {
f2fs_wait_on_page_writeback(ipage, NODE, true);
set_inode_flag(inode, FI_DATA_EXIST);
set_raw_inline(inode, F2FS_INODE(ipage));
set_page_dirty(ipage);
return;
}
}
return;
}
static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
int extra_isize = le32_to_cpu(ri->i_extra_isize);
if (!f2fs_sb_has_inode_chksum(sbi->sb))
return false;
if (!RAW_IS_INODE(F2FS_NODE(page)) || !(ri->i_inline & F2FS_EXTRA_ATTR))
return false;
if (!F2FS_FITS_IN_INODE(ri, extra_isize, i_inode_checksum))
return false;
return true;
}
static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_node *node = F2FS_NODE(page);
struct f2fs_inode *ri = &node->i;
__le32 ino = node->footer.ino;
__le32 gen = ri->i_generation;
__u32 chksum, chksum_seed;
__u32 dummy_cs = 0;
unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
unsigned int cs_size = sizeof(dummy_cs);
chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino,
sizeof(ino));
chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen));
chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset);
chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size);
offset += cs_size;
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset,
F2FS_BLKSIZE - offset);
return chksum;
}
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri;
__u32 provided, calculated;
if (!f2fs_enable_inode_chksum(sbi, page) ||
PageDirty(page) || PageWriteback(page))
return true;
ri = &F2FS_NODE(page)->i;
provided = le32_to_cpu(ri->i_inode_checksum);
calculated = f2fs_inode_chksum(sbi, page);
if (provided != calculated)
f2fs_msg(sbi->sb, KERN_WARNING,
"checksum invalid, ino = %x, %x vs. %x",
ino_of_node(page), provided, calculated);
return provided == calculated;
}
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
if (!f2fs_enable_inode_chksum(sbi, page))
return;
ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page));
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_inode *ri;
projid_t i_projid;
/* Check if ino is within scope */
if (check_nid_range(sbi, inode->i_ino)) {
f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
(unsigned long) inode->i_ino);
WARN_ON(1);
return -EINVAL;
}
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
ri = F2FS_INODE(node_page);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
fi->flags = 0;
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
fi->i_dir_level = ri->i_dir_level;
if (f2fs_init_extent_tree(inode, &ri->i_ext))
set_page_dirty(node_page);
get_inline_info(inode, ri);
fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
le16_to_cpu(ri->i_extra_isize) : 0;
if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) {
f2fs_bug_on(sbi, !f2fs_has_extra_attr(inode));
fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size);
} else if (f2fs_has_inline_xattr(inode) ||
f2fs_has_inline_dentry(inode)) {
fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
} else {
/*
* Previous inline data or directory always reserved 200 bytes
* in inode layout, even if inline_xattr is disabled. In order
* to keep inline_dentry's structure for backward compatibility,
* we get the space back only from inline_data.
*/
fi->i_inline_xattr_size = 0;
}
/* check data exist */
if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
__recover_inline_status(inode, node_page);
/* get rdev by using inline_info */
__get_inode_rdev(inode, ri);
if (__written_first_block(ri))
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
if (!need_inode_block_update(sbi, inode->i_ino))
fi->last_disk_size = inode->i_size;
if (fi->i_flags & FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
i_projid = (projid_t)le32_to_cpu(ri->i_projid);
else
i_projid = F2FS_DEF_PROJID;
fi->i_projid = make_kprojid(&init_user_ns, i_projid);
f2fs_put_page(node_page, 1);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
return 0;
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret = 0;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
trace_f2fs_iget(inode);
return inode;
}
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
} else if (S_ISLNK(inode->i_mode)) {
if (f2fs_encrypted_inode(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
f2fs_set_inode_flags(inode);
unlock_new_inode(inode);
trace_f2fs_iget(inode);
return inode;
bad_inode:
iget_failed(inode);
trace_f2fs_iget_exit(inode, ret);
return ERR_PTR(ret);
}
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
{
struct inode *inode;
retry:
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode)) {
if (PTR_ERR(inode) == -ENOMEM) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
}
return inode;
}
int update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_inode *ri;
struct extent_tree *et = F2FS_I(inode)->extent_tree;
f2fs_inode_synced(inode);
f2fs_wait_on_page_writeback(node_page, NODE, true);
ri = F2FS_INODE(node_page);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
if (et) {
read_lock(&et->lock);
set_raw_extent(&et->largest, &ri->i_ext);
read_unlock(&et->lock);
} else {
memset(&ri->i_ext, 0, sizeof(ri->i_ext));
}
set_raw_inline(inode, ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
ri->i_dir_level = F2FS_I(inode)->i_dir_level;
if (f2fs_has_extra_attr(inode)) {
ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)->sb))
ri->i_inline_xattr_size =
cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size);
if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_projid)) {
projid_t i_projid;
i_projid = from_kprojid(&init_user_ns,
F2FS_I(inode)->i_projid);
ri->i_projid = cpu_to_le32(i_projid);
}
}
__set_inode_rdev(inode, ri);
set_cold_node(inode, node_page);
/* deleted inode */
if (inode->i_nlink == 0)
clear_inline_node(node_page);
return set_page_dirty(node_page);
}
int update_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *node_page;
int ret = 0;
retry:
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
int err = PTR_ERR(node_page);
if (err == -ENOMEM) {
cond_resched();
goto retry;
} else if (err != -ENOENT) {
f2fs_stop_checkpoint(sbi, false);
}
return 0;
}
ret = update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
return ret;
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
return 0;
/*
* We need to balance fs here to prevent from producing dirty node pages
* during the urgent cleaning time when runing out of free sections.
*/
update_inode_page(inode);
if (wbc && wbc->nr_to_write)
f2fs_balance_fs(sbi, true);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
int err = 0;
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
drop_inmem_pages(inode);
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
goto out_clear;
f2fs_bug_on(sbi, get_dirty_pages(inode));
remove_dirty_inode(inode);
f2fs_destroy_extent_tree(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
dquot_initialize(inode);
remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
remove_ino_entry(sbi, inode->i_ino, FLUSH_INO);
sb_start_intwrite(inode->i_sb);
set_inode_flag(inode, FI_NO_ALLOC);
i_size_write(inode, 0);
retry:
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode);
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_EVICT_INODE)) {
f2fs_show_injection_info(FAULT_EVICT_INODE);
err = -EIO;
}
#endif
if (!err) {
f2fs_lock_op(sbi);
err = remove_inode_page(inode);
f2fs_unlock_op(sbi);
if (err == -ENOENT)
err = 0;
}
/* give more chances, if ENOMEM case */
if (err == -ENOMEM) {
err = 0;
goto retry;
}
if (err)
update_inode_page(inode);
dquot_free_inode(inode);
sb_end_intwrite(inode->i_sb);
no_delete:
dquot_drop(inode);
stat_dec_inline_xattr(inode);
stat_dec_inline_dir(inode);
stat_dec_inline_inode(inode);
if (likely(!is_set_ckpt_flags(sbi, CP_ERROR_FLAG)))
f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
else
f2fs_inode_synced(inode);
/* ino == 0, if f2fs_new_inode() was failed t*/
if (inode->i_ino)
invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
inode->i_ino);
if (xnid)
invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
if (inode->i_nlink) {
if (is_inode_flag_set(inode, FI_APPEND_WRITE))
add_ino_entry(sbi, inode->i_ino, APPEND_INO);
if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
}
if (is_inode_flag_set(inode, FI_FREE_NID)) {
alloc_nid_failed(sbi, inode->i_ino);
clear_inode_flag(inode, FI_FREE_NID);
} else {
f2fs_bug_on(sbi, err &&
!exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
}
out_clear:
fscrypt_put_encryption_info(inode, NULL);
clear_inode(inode);
}
/* caller should call f2fs_lock_op() */
void handle_failed_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct node_info ni;
/*
* clear nlink of inode in order to release resource of inode
* immediately.
*/
clear_nlink(inode);
/*
* we must call this to avoid inode being remained as dirty, resulting
* in a panic when flushing dirty inodes in gdirty_list.
*/
update_inode_page(inode);
f2fs_inode_synced(inode);
/* don't make bad inode, since it becomes a regular file. */
unlock_new_inode(inode);
/*
* Note: we should add inode to orphan list before f2fs_unlock_op()
* so we can prevent losing this orphan when encoutering checkpoint
* and following suddenly power-off.
*/
get_node_info(sbi, inode->i_ino, &ni);
if (ni.blk_addr != NULL_ADDR) {
int err = acquire_orphan_inode(sbi);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"Too many orphan inodes, run fsck to fix.");
} else {
add_orphan_inode(inode);
}
alloc_nid_done(sbi, inode->i_ino);
} else {
set_inode_flag(inode, FI_FREE_NID);
}
f2fs_unlock_op(sbi);
/* iput will drop the inode object */
iput(inode);
}