2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 13:44:01 +08:00
linux-next/include/asm-x86/uaccess_32.h
Joe Perches b1fcec7f22 include/asm-x86/uaccess_32.h: checkpatch cleanups - formatting only
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-17 17:41:28 +02:00

641 lines
19 KiB
C

#ifndef __i386_UACCESS_H
#define __i386_UACCESS_H
/*
* User space memory access functions
*/
#include <linux/errno.h>
#include <linux/thread_info.h>
#include <linux/prefetch.h>
#include <linux/string.h>
#include <asm/asm.h>
#include <asm/page.h>
#define VERIFY_READ 0
#define VERIFY_WRITE 1
/*
* The fs value determines whether argument validity checking should be
* performed or not. If get_fs() == USER_DS, checking is performed, with
* get_fs() == KERNEL_DS, checking is bypassed.
*
* For historical reasons, these macros are grossly misnamed.
*/
#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
#define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFFUL)
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
#define get_ds() (KERNEL_DS)
#define get_fs() (current_thread_info()->addr_limit)
#define set_fs(x) (current_thread_info()->addr_limit = (x))
#define segment_eq(a, b) ((a).seg == (b).seg)
/*
* movsl can be slow when source and dest are not both 8-byte aligned
*/
#ifdef CONFIG_X86_INTEL_USERCOPY
extern struct movsl_mask {
int mask;
} ____cacheline_aligned_in_smp movsl_mask;
#endif
#define __addr_ok(addr) \
((unsigned long __force)(addr) < \
(current_thread_info()->addr_limit.seg))
/*
* Test whether a block of memory is a valid user space address.
* Returns 0 if the range is valid, nonzero otherwise.
*
* This is equivalent to the following test:
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg
*
* This needs 33-bit arithmetic. We have a carry...
*/
#define __range_ok(addr, size) \
({ \
unsigned long flag, roksum; \
__chk_user_ptr(addr); \
asm("addl %3,%1 ; sbbl %0,%0; cmpl %1,%4; sbbl $0,%0" \
:"=&r" (flag), "=r" (roksum) \
:"1" (addr), "g" ((int)(size)), \
"rm" (current_thread_info()->addr_limit.seg)); \
flag; \
})
/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
* to write to a block, it is always safe to read from it.
* @addr: User space pointer to start of block to check
* @size: Size of block to check
*
* Context: User context only. This function may sleep.
*
* Checks if a pointer to a block of memory in user space is valid.
*
* Returns true (nonzero) if the memory block may be valid, false (zero)
* if it is definitely invalid.
*
* Note that, depending on architecture, this function probably just
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
#define access_ok(type, addr, size) (likely(__range_ok(addr, size) == 0))
/*
* The exception table consists of pairs of addresses: the first is the
* address of an instruction that is allowed to fault, and the second is
* the address at which the program should continue. No registers are
* modified, so it is entirely up to the continuation code to figure out
* what to do.
*
* All the routines below use bits of fixup code that are out of line
* with the main instruction path. This means when everything is well,
* we don't even have to jump over them. Further, they do not intrude
* on our cache or tlb entries.
*/
struct exception_table_entry {
unsigned long insn, fixup;
};
extern int fixup_exception(struct pt_regs *regs);
/*
* These are the main single-value transfer routines. They automatically
* use the right size if we just have the right pointer type.
*
* This gets kind of ugly. We want to return _two_ values in "get_user()"
* and yet we don't want to do any pointers, because that is too much
* of a performance impact. Thus we have a few rather ugly macros here,
* and hide all the ugliness from the user.
*
* The "__xxx" versions of the user access functions are versions that
* do not verify the address space, that must have been done previously
* with a separate "access_ok()" call (this is used when we do multiple
* accesses to the same area of user memory).
*/
extern void __get_user_1(void);
extern void __get_user_2(void);
extern void __get_user_4(void);
#define __get_user_x(size, ret, x, ptr) \
asm volatile("call __get_user_" #size \
:"=a" (ret),"=d" (x) \
:"0" (ptr))
/* Careful: we have to cast the result to the type of the pointer
* for sign reasons */
/**
* get_user: - Get a simple variable from user space.
* @x: Variable to store result.
* @ptr: Source address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple variable from user space to kernel
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and the result of
* dereferencing @ptr must be assignable to @x without a cast.
*
* Returns zero on success, or -EFAULT on error.
* On error, the variable @x is set to zero.
*/
#define get_user(x, ptr) \
({ \
int __ret_gu; \
unsigned long __val_gu; \
__chk_user_ptr(ptr); \
switch (sizeof(*(ptr))) { \
case 1: \
__get_user_x(1, __ret_gu, __val_gu, ptr); \
break; \
case 2: \
__get_user_x(2, __ret_gu, __val_gu, ptr); \
break; \
case 4: \
__get_user_x(4, __ret_gu, __val_gu, ptr); \
break; \
default: \
__get_user_x(X, __ret_gu, __val_gu, ptr); \
break; \
} \
(x) = (__typeof__(*(ptr)))__val_gu; \
__ret_gu; \
})
extern void __put_user_bad(void);
/*
* Strange magic calling convention: pointer in %ecx,
* value in %eax(:%edx), return value in %eax, no clobbers.
*/
extern void __put_user_1(void);
extern void __put_user_2(void);
extern void __put_user_4(void);
extern void __put_user_8(void);
#define __put_user_1(x, ptr) \
asm volatile("call __put_user_1" : "=a" (__ret_pu) \
: "0" ((typeof(*(ptr)))(x)), "c" (ptr))
#define __put_user_2(x, ptr) \
asm volatile("call __put_user_2" : "=a" (__ret_pu) \
: "0" ((typeof(*(ptr)))(x)), "c" (ptr))
#define __put_user_4(x, ptr) \
asm volatile("call __put_user_4" : "=a" (__ret_pu) \
: "0" ((typeof(*(ptr)))(x)), "c" (ptr))
#define __put_user_8(x, ptr) \
asm volatile("call __put_user_8" : "=a" (__ret_pu) \
: "A" ((typeof(*(ptr)))(x)), "c" (ptr))
#define __put_user_X(x, ptr) \
asm volatile("call __put_user_X" : "=a" (__ret_pu) \
: "c" (ptr))
/**
* put_user: - Write a simple value into user space.
* @x: Value to copy to user space.
* @ptr: Destination address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple value from kernel space to user
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
* to the result of dereferencing @ptr.
*
* Returns zero on success, or -EFAULT on error.
*/
#ifdef CONFIG_X86_WP_WORKS_OK
#define put_user(x, ptr) \
({ \
int __ret_pu; \
__typeof__(*(ptr)) __pu_val; \
__chk_user_ptr(ptr); \
__pu_val = x; \
switch (sizeof(*(ptr))) { \
case 1: \
__put_user_1(__pu_val, ptr); \
break; \
case 2: \
__put_user_2(__pu_val, ptr); \
break; \
case 4: \
__put_user_4(__pu_val, ptr); \
break; \
case 8: \
__put_user_8(__pu_val, ptr); \
break; \
default: \
__put_user_X(__pu_val, ptr); \
break; \
} \
__ret_pu; \
})
#else
#define put_user(x, ptr) \
({ \
int __ret_pu; \
__typeof__(*(ptr))__pus_tmp = x; \
__ret_pu = 0; \
if (unlikely(__copy_to_user_ll(ptr, &__pus_tmp, \
sizeof(*(ptr))) != 0)) \
__ret_pu = -EFAULT; \
__ret_pu; \
})
#endif
/**
* __get_user: - Get a simple variable from user space, with less checking.
* @x: Variable to store result.
* @ptr: Source address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple variable from user space to kernel
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and the result of
* dereferencing @ptr must be assignable to @x without a cast.
*
* Caller must check the pointer with access_ok() before calling this
* function.
*
* Returns zero on success, or -EFAULT on error.
* On error, the variable @x is set to zero.
*/
#define __get_user(x, ptr) \
__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
/**
* __put_user: - Write a simple value into user space, with less checking.
* @x: Value to copy to user space.
* @ptr: Destination address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple value from kernel space to user
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
* to the result of dereferencing @ptr.
*
* Caller must check the pointer with access_ok() before calling this
* function.
*
* Returns zero on success, or -EFAULT on error.
*/
#define __put_user(x, ptr) \
__put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
#define __put_user_nocheck(x, ptr, size) \
({ \
long __pu_err; \
__put_user_size((x), (ptr), (size), __pu_err, -EFAULT); \
__pu_err; \
})
#define __put_user_u64(x, addr, err) \
asm volatile("1: movl %%eax,0(%2)\n" \
"2: movl %%edx,4(%2)\n" \
"3:\n" \
".section .fixup,\"ax\"\n" \
"4: movl %3,%0\n" \
" jmp 3b\n" \
".previous\n" \
_ASM_EXTABLE(1b, 4b) \
_ASM_EXTABLE(2b, 4b) \
: "=r" (err) \
: "A" (x), "r" (addr), "i" (-EFAULT), "0" (err))
#ifdef CONFIG_X86_WP_WORKS_OK
#define __put_user_size(x, ptr, size, retval, errret) \
do { \
retval = 0; \
__chk_user_ptr(ptr); \
switch (size) { \
case 1: \
__put_user_asm(x, ptr, retval, "b", "b", "iq", errret); \
break; \
case 2: \
__put_user_asm(x, ptr, retval, "w", "w", "ir", errret); \
break; \
case 4: \
__put_user_asm(x, ptr, retval, "l", "", "ir", errret); \
break; \
case 8: \
__put_user_u64((__typeof__(*ptr))(x), ptr, retval); \
break; \
default: \
__put_user_bad(); \
} \
} while (0)
#else
#define __put_user_size(x, ptr, size, retval, errret) \
do { \
__typeof__(*(ptr))__pus_tmp = x; \
retval = 0; \
\
if (unlikely(__copy_to_user_ll(ptr, &__pus_tmp, size) != 0)) \
retval = errret; \
} while (0)
#endif
struct __large_struct { unsigned long buf[100]; };
#define __m(x) (*(struct __large_struct __user *)(x))
/*
* Tell gcc we read from memory instead of writing: this is because
* we do not write to any memory gcc knows about, so there are no
* aliasing issues.
*/
#define __put_user_asm(x, addr, err, itype, rtype, ltype, errret) \
asm volatile("1: mov"itype" %"rtype"1,%2\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: movl %3,%0\n" \
" jmp 2b\n" \
".previous\n" \
_ASM_EXTABLE(1b, 3b) \
: "=r"(err) \
: ltype (x), "m" (__m(addr)), "i" (errret), "0" (err))
#define __get_user_nocheck(x, ptr, size) \
({ \
long __gu_err; \
unsigned long __gu_val; \
__get_user_size(__gu_val, (ptr), (size), __gu_err, -EFAULT); \
(x) = (__typeof__(*(ptr)))__gu_val; \
__gu_err; \
})
extern long __get_user_bad(void);
#define __get_user_size(x, ptr, size, retval, errret) \
do { \
retval = 0; \
__chk_user_ptr(ptr); \
switch (size) { \
case 1: \
__get_user_asm(x, ptr, retval, "b", "b", "=q", errret); \
break; \
case 2: \
__get_user_asm(x, ptr, retval, "w", "w", "=r", errret); \
break; \
case 4: \
__get_user_asm(x, ptr, retval, "l", "", "=r", errret); \
break; \
default: \
(x) = __get_user_bad(); \
} \
} while (0)
#define __get_user_asm(x, addr, err, itype, rtype, ltype, errret) \
asm volatile("1: mov"itype" %2,%"rtype"1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: movl %3,%0\n" \
" xor"itype" %"rtype"1,%"rtype"1\n" \
" jmp 2b\n" \
".previous\n" \
_ASM_EXTABLE(1b, 3b) \
: "=r" (err), ltype (x) \
: "m" (__m(addr)), "i" (errret), "0" (err))
unsigned long __must_check __copy_to_user_ll
(void __user *to, const void *from, unsigned long n);
unsigned long __must_check __copy_from_user_ll
(void *to, const void __user *from, unsigned long n);
unsigned long __must_check __copy_from_user_ll_nozero
(void *to, const void __user *from, unsigned long n);
unsigned long __must_check __copy_from_user_ll_nocache
(void *to, const void __user *from, unsigned long n);
unsigned long __must_check __copy_from_user_ll_nocache_nozero
(void *to, const void __user *from, unsigned long n);
/**
* __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only.
*
* Copy data from kernel space to user space. Caller must check
* the specified block with access_ok() before calling this function.
* The caller should also make sure he pins the user space address
* so that the we don't result in page fault and sleep.
*
* Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault
* we return the initial request size (1, 2 or 4), as copy_*_user should do.
* If a store crosses a page boundary and gets a fault, the x86 will not write
* anything, so this is accurate.
*/
static __always_inline unsigned long __must_check
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
{
if (__builtin_constant_p(n)) {
unsigned long ret;
switch (n) {
case 1:
__put_user_size(*(u8 *)from, (u8 __user *)to,
1, ret, 1);
return ret;
case 2:
__put_user_size(*(u16 *)from, (u16 __user *)to,
2, ret, 2);
return ret;
case 4:
__put_user_size(*(u32 *)from, (u32 __user *)to,
4, ret, 4);
return ret;
}
}
return __copy_to_user_ll(to, from, n);
}
/**
* __copy_to_user: - Copy a block of data into user space, with less checking.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from kernel space to user space. Caller must check
* the specified block with access_ok() before calling this function.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*/
static __always_inline unsigned long __must_check
__copy_to_user(void __user *to, const void *from, unsigned long n)
{
might_sleep();
return __copy_to_user_inatomic(to, from, n);
}
static __always_inline unsigned long
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
{
/* Avoid zeroing the tail if the copy fails..
* If 'n' is constant and 1, 2, or 4, we do still zero on a failure,
* but as the zeroing behaviour is only significant when n is not
* constant, that shouldn't be a problem.
*/
if (__builtin_constant_p(n)) {
unsigned long ret;
switch (n) {
case 1:
__get_user_size(*(u8 *)to, from, 1, ret, 1);
return ret;
case 2:
__get_user_size(*(u16 *)to, from, 2, ret, 2);
return ret;
case 4:
__get_user_size(*(u32 *)to, from, 4, ret, 4);
return ret;
}
}
return __copy_from_user_ll_nozero(to, from, n);
}
/**
* __copy_from_user: - Copy a block of data from user space, with less checking.
* @to: Destination address, in kernel space.
* @from: Source address, in user space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from user space to kernel space. Caller must check
* the specified block with access_ok() before calling this function.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*
* If some data could not be copied, this function will pad the copied
* data to the requested size using zero bytes.
*
* An alternate version - __copy_from_user_inatomic() - may be called from
* atomic context and will fail rather than sleep. In this case the
* uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h
* for explanation of why this is needed.
*/
static __always_inline unsigned long
__copy_from_user(void *to, const void __user *from, unsigned long n)
{
might_sleep();
if (__builtin_constant_p(n)) {
unsigned long ret;
switch (n) {
case 1:
__get_user_size(*(u8 *)to, from, 1, ret, 1);
return ret;
case 2:
__get_user_size(*(u16 *)to, from, 2, ret, 2);
return ret;
case 4:
__get_user_size(*(u32 *)to, from, 4, ret, 4);
return ret;
}
}
return __copy_from_user_ll(to, from, n);
}
#define ARCH_HAS_NOCACHE_UACCESS
static __always_inline unsigned long __copy_from_user_nocache(void *to,
const void __user *from, unsigned long n)
{
might_sleep();
if (__builtin_constant_p(n)) {
unsigned long ret;
switch (n) {
case 1:
__get_user_size(*(u8 *)to, from, 1, ret, 1);
return ret;
case 2:
__get_user_size(*(u16 *)to, from, 2, ret, 2);
return ret;
case 4:
__get_user_size(*(u32 *)to, from, 4, ret, 4);
return ret;
}
}
return __copy_from_user_ll_nocache(to, from, n);
}
static __always_inline unsigned long
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
unsigned long n)
{
return __copy_from_user_ll_nocache_nozero(to, from, n);
}
unsigned long __must_check copy_to_user(void __user *to,
const void *from, unsigned long n);
unsigned long __must_check copy_from_user(void *to,
const void __user *from,
unsigned long n);
long __must_check strncpy_from_user(char *dst, const char __user *src,
long count);
long __must_check __strncpy_from_user(char *dst,
const char __user *src, long count);
/**
* strlen_user: - Get the size of a string in user space.
* @str: The string to measure.
*
* Context: User context only. This function may sleep.
*
* Get the size of a NUL-terminated string in user space.
*
* Returns the size of the string INCLUDING the terminating NUL.
* On exception, returns 0.
*
* If there is a limit on the length of a valid string, you may wish to
* consider using strnlen_user() instead.
*/
#define strlen_user(str) strnlen_user(str, LONG_MAX)
long strnlen_user(const char __user *str, long n);
unsigned long __must_check clear_user(void __user *mem, unsigned long len);
unsigned long __must_check __clear_user(void __user *mem, unsigned long len);
#endif /* __i386_UACCESS_H */