2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-18 10:13:57 +08:00
linux-next/mm/fadvise.c
Shakeel Butt 3a77d21480 mm: fadvise: avoid fadvise for fs without backing device
The fadvise() manpage is silent on fadvise()'s effect on memory-based
filesystems (shmem, hugetlbfs & ramfs) and pseudo file systems (procfs,
sysfs, kernfs).  The current implementaion of fadvise is mostly a noop
for such filesystems except for FADV_DONTNEED which will trigger
expensive remote LRU cache draining.  This patch makes the noop of
fadvise() on such file systems very explicit.

However this change has two side effects for ramfs and one for tmpfs.
First fadvise(FADV_DONTNEED) could remove the unmapped clean zero'ed
pages of ramfs (allocated through read, readahead & read fault) and
tmpfs (allocated through read fault).  Also fadvise(FADV_WILLNEED) could
create such clean zero'ed pages for ramfs.  This change removes those
possibilities.

One of our generic libraries does fadvise(FADV_DONTNEED).  Recently we
observed high latency in fadvise() and noticed that the users have
started using tmpfs files and the latency was due to expensive remote
LRU cache draining.  For normal tmpfs files (have data written on them),
fadvise(FADV_DONTNEED) will always trigger the unneeded remote cache
draining.

Link: http://lkml.kernel.org/r/20170818011023.181465-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00

187 lines
4.4 KiB
C

/*
* mm/fadvise.c
*
* Copyright (C) 2002, Linus Torvalds
*
* 11Jan2003 Andrew Morton
* Initial version.
*/
#include <linux/kernel.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/fadvise.h>
#include <linux/writeback.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <asm/unistd.h>
/*
* POSIX_FADV_WILLNEED could set PG_Referenced, and POSIX_FADV_NOREUSE could
* deactivate the pages and clear PG_Referenced.
*/
SYSCALL_DEFINE4(fadvise64_64, int, fd, loff_t, offset, loff_t, len, int, advice)
{
struct fd f = fdget(fd);
struct inode *inode;
struct address_space *mapping;
struct backing_dev_info *bdi;
loff_t endbyte; /* inclusive */
pgoff_t start_index;
pgoff_t end_index;
unsigned long nrpages;
int ret = 0;
if (!f.file)
return -EBADF;
inode = file_inode(f.file);
if (S_ISFIFO(inode->i_mode)) {
ret = -ESPIPE;
goto out;
}
mapping = f.file->f_mapping;
if (!mapping || len < 0) {
ret = -EINVAL;
goto out;
}
bdi = inode_to_bdi(mapping->host);
if (IS_DAX(inode) || (bdi == &noop_backing_dev_info)) {
switch (advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_RANDOM:
case POSIX_FADV_SEQUENTIAL:
case POSIX_FADV_WILLNEED:
case POSIX_FADV_NOREUSE:
case POSIX_FADV_DONTNEED:
/* no bad return value, but ignore advice */
break;
default:
ret = -EINVAL;
}
goto out;
}
/* Careful about overflows. Len == 0 means "as much as possible" */
endbyte = offset + len;
if (!len || endbyte < len)
endbyte = -1;
else
endbyte--; /* inclusive */
switch (advice) {
case POSIX_FADV_NORMAL:
f.file->f_ra.ra_pages = bdi->ra_pages;
spin_lock(&f.file->f_lock);
f.file->f_mode &= ~FMODE_RANDOM;
spin_unlock(&f.file->f_lock);
break;
case POSIX_FADV_RANDOM:
spin_lock(&f.file->f_lock);
f.file->f_mode |= FMODE_RANDOM;
spin_unlock(&f.file->f_lock);
break;
case POSIX_FADV_SEQUENTIAL:
f.file->f_ra.ra_pages = bdi->ra_pages * 2;
spin_lock(&f.file->f_lock);
f.file->f_mode &= ~FMODE_RANDOM;
spin_unlock(&f.file->f_lock);
break;
case POSIX_FADV_WILLNEED:
/* First and last PARTIAL page! */
start_index = offset >> PAGE_SHIFT;
end_index = endbyte >> PAGE_SHIFT;
/* Careful about overflow on the "+1" */
nrpages = end_index - start_index + 1;
if (!nrpages)
nrpages = ~0UL;
/*
* Ignore return value because fadvise() shall return
* success even if filesystem can't retrieve a hint,
*/
force_page_cache_readahead(mapping, f.file, start_index,
nrpages);
break;
case POSIX_FADV_NOREUSE:
break;
case POSIX_FADV_DONTNEED:
if (!inode_write_congested(mapping->host))
__filemap_fdatawrite_range(mapping, offset, endbyte,
WB_SYNC_NONE);
/*
* First and last FULL page! Partial pages are deliberately
* preserved on the expectation that it is better to preserve
* needed memory than to discard unneeded memory.
*/
start_index = (offset+(PAGE_SIZE-1)) >> PAGE_SHIFT;
end_index = (endbyte >> PAGE_SHIFT);
if ((endbyte & ~PAGE_MASK) != ~PAGE_MASK) {
/* First page is tricky as 0 - 1 = -1, but pgoff_t
* is unsigned, so the end_index >= start_index
* check below would be true and we'll discard the whole
* file cache which is not what was asked.
*/
if (end_index == 0)
break;
end_index--;
}
if (end_index >= start_index) {
unsigned long count;
/*
* It's common to FADV_DONTNEED right after
* the read or write that instantiates the
* pages, in which case there will be some
* sitting on the local LRU cache. Try to
* avoid the expensive remote drain and the
* second cache tree walk below by flushing
* them out right away.
*/
lru_add_drain();
count = invalidate_mapping_pages(mapping,
start_index, end_index);
/*
* If fewer pages were invalidated than expected then
* it is possible that some of the pages were on
* a per-cpu pagevec for a remote CPU. Drain all
* pagevecs and try again.
*/
if (count < (end_index - start_index + 1)) {
lru_add_drain_all();
invalidate_mapping_pages(mapping, start_index,
end_index);
}
}
break;
default:
ret = -EINVAL;
}
out:
fdput(f);
return ret;
}
#ifdef __ARCH_WANT_SYS_FADVISE64
SYSCALL_DEFINE4(fadvise64, int, fd, loff_t, offset, size_t, len, int, advice)
{
return sys_fadvise64_64(fd, offset, len, advice);
}
#endif