2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/lib/rhashtable.c
Herbert Xu ca26893f05 rhashtable: Add rhlist interface
The insecure_elasticity setting is an ugly wart brought out by
users who need to insert duplicate objects (that is, distinct
objects with identical keys) into the same table.

In fact, those users have a much bigger problem.  Once those
duplicate objects are inserted, they don't have an interface to
find them (unless you count the walker interface which walks
over the entire table).

Some users have resorted to doing a manual walk over the hash
table which is of course broken because they don't handle the
potential existence of multiple hash tables.  The result is that
they will break sporadically when they encounter a hash table
resize/rehash.

This patch provides a way out for those users, at the expense
of an extra pointer per object.  Essentially each object is now
a list of objects carrying the same key.  The hash table will
only see the lists so nothing changes as far as rhashtable is
concerned.

To use this new interface, you need to insert a struct rhlist_head
into your objects instead of struct rhash_head.  While the hash
table is unchanged, for type-safety you'll need to use struct
rhltable instead of struct rhashtable.  All the existing interfaces
have been duplicated for rhlist, including the hash table walker.

One missing feature is nulls marking because AFAIK the only potential
user of it does not need duplicate objects.  Should anyone need
this it shouldn't be too hard to add.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 04:43:36 -04:00

1010 lines
24 KiB
C

/*
* Resizable, Scalable, Concurrent Hash Table
*
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
* Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
*
* Code partially derived from nft_hash
* Rewritten with rehash code from br_multicast plus single list
* pointer as suggested by Josh Triplett
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/rhashtable.h>
#include <linux/err.h>
#include <linux/export.h>
#define HASH_DEFAULT_SIZE 64UL
#define HASH_MIN_SIZE 4U
#define BUCKET_LOCKS_PER_CPU 32UL
static u32 head_hashfn(struct rhashtable *ht,
const struct bucket_table *tbl,
const struct rhash_head *he)
{
return rht_head_hashfn(ht, tbl, he, ht->p);
}
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
spinlock_t *lock = rht_bucket_lock(tbl, hash);
return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
gfp_t gfp)
{
unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
unsigned int nr_pcpus = 2;
#else
unsigned int nr_pcpus = num_possible_cpus();
#endif
nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
/* Never allocate more than 0.5 locks per bucket */
size = min_t(unsigned int, size, tbl->size >> 1);
if (sizeof(spinlock_t) != 0) {
tbl->locks = NULL;
#ifdef CONFIG_NUMA
if (size * sizeof(spinlock_t) > PAGE_SIZE &&
gfp == GFP_KERNEL)
tbl->locks = vmalloc(size * sizeof(spinlock_t));
#endif
if (gfp != GFP_KERNEL)
gfp |= __GFP_NOWARN | __GFP_NORETRY;
if (!tbl->locks)
tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
gfp);
if (!tbl->locks)
return -ENOMEM;
for (i = 0; i < size; i++)
spin_lock_init(&tbl->locks[i]);
}
tbl->locks_mask = size - 1;
return 0;
}
static void bucket_table_free(const struct bucket_table *tbl)
{
if (tbl)
kvfree(tbl->locks);
kvfree(tbl);
}
static void bucket_table_free_rcu(struct rcu_head *head)
{
bucket_table_free(container_of(head, struct bucket_table, rcu));
}
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
size_t nbuckets,
gfp_t gfp)
{
struct bucket_table *tbl = NULL;
size_t size;
int i;
size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
gfp != GFP_KERNEL)
tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
if (tbl == NULL && gfp == GFP_KERNEL)
tbl = vzalloc(size);
if (tbl == NULL)
return NULL;
tbl->size = nbuckets;
if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
bucket_table_free(tbl);
return NULL;
}
INIT_LIST_HEAD(&tbl->walkers);
get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
for (i = 0; i < nbuckets; i++)
INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
return tbl;
}
static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
struct bucket_table *tbl)
{
struct bucket_table *new_tbl;
do {
new_tbl = tbl;
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
} while (tbl);
return new_tbl;
}
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
struct bucket_table *new_tbl = rhashtable_last_table(ht,
rht_dereference_rcu(old_tbl->future_tbl, ht));
struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
int err = -ENOENT;
struct rhash_head *head, *next, *entry;
spinlock_t *new_bucket_lock;
unsigned int new_hash;
rht_for_each(entry, old_tbl, old_hash) {
err = 0;
next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
if (rht_is_a_nulls(next))
break;
pprev = &entry->next;
}
if (err)
goto out;
new_hash = head_hashfn(ht, new_tbl, entry);
new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
head = rht_dereference_bucket(new_tbl->buckets[new_hash],
new_tbl, new_hash);
RCU_INIT_POINTER(entry->next, head);
rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
spin_unlock(new_bucket_lock);
rcu_assign_pointer(*pprev, next);
out:
return err;
}
static void rhashtable_rehash_chain(struct rhashtable *ht,
unsigned int old_hash)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
spinlock_t *old_bucket_lock;
old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
spin_lock_bh(old_bucket_lock);
while (!rhashtable_rehash_one(ht, old_hash))
;
old_tbl->rehash++;
spin_unlock_bh(old_bucket_lock);
}
static int rhashtable_rehash_attach(struct rhashtable *ht,
struct bucket_table *old_tbl,
struct bucket_table *new_tbl)
{
/* Protect future_tbl using the first bucket lock. */
spin_lock_bh(old_tbl->locks);
/* Did somebody beat us to it? */
if (rcu_access_pointer(old_tbl->future_tbl)) {
spin_unlock_bh(old_tbl->locks);
return -EEXIST;
}
/* Make insertions go into the new, empty table right away. Deletions
* and lookups will be attempted in both tables until we synchronize.
*/
rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
spin_unlock_bh(old_tbl->locks);
return 0;
}
static int rhashtable_rehash_table(struct rhashtable *ht)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
struct bucket_table *new_tbl;
struct rhashtable_walker *walker;
unsigned int old_hash;
new_tbl = rht_dereference(old_tbl->future_tbl, ht);
if (!new_tbl)
return 0;
for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
rhashtable_rehash_chain(ht, old_hash);
/* Publish the new table pointer. */
rcu_assign_pointer(ht->tbl, new_tbl);
spin_lock(&ht->lock);
list_for_each_entry(walker, &old_tbl->walkers, list)
walker->tbl = NULL;
spin_unlock(&ht->lock);
/* Wait for readers. All new readers will see the new
* table, and thus no references to the old table will
* remain.
*/
call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
}
/**
* rhashtable_expand - Expand hash table while allowing concurrent lookups
* @ht: the hash table to expand
*
* A secondary bucket array is allocated and the hash entries are migrated.
*
* This function may only be called in a context where it is safe to call
* synchronize_rcu(), e.g. not within a rcu_read_lock() section.
*
* The caller must ensure that no concurrent resizing occurs by holding
* ht->mutex.
*
* It is valid to have concurrent insertions and deletions protected by per
* bucket locks or concurrent RCU protected lookups and traversals.
*/
static int rhashtable_expand(struct rhashtable *ht)
{
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
int err;
ASSERT_RHT_MUTEX(ht);
old_tbl = rhashtable_last_table(ht, old_tbl);
new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
if (new_tbl == NULL)
return -ENOMEM;
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
if (err)
bucket_table_free(new_tbl);
return err;
}
/**
* rhashtable_shrink - Shrink hash table while allowing concurrent lookups
* @ht: the hash table to shrink
*
* This function shrinks the hash table to fit, i.e., the smallest
* size would not cause it to expand right away automatically.
*
* The caller must ensure that no concurrent resizing occurs by holding
* ht->mutex.
*
* The caller must ensure that no concurrent table mutations take place.
* It is however valid to have concurrent lookups if they are RCU protected.
*
* It is valid to have concurrent insertions and deletions protected by per
* bucket locks or concurrent RCU protected lookups and traversals.
*/
static int rhashtable_shrink(struct rhashtable *ht)
{
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
unsigned int nelems = atomic_read(&ht->nelems);
unsigned int size = 0;
int err;
ASSERT_RHT_MUTEX(ht);
if (nelems)
size = roundup_pow_of_two(nelems * 3 / 2);
if (size < ht->p.min_size)
size = ht->p.min_size;
if (old_tbl->size <= size)
return 0;
if (rht_dereference(old_tbl->future_tbl, ht))
return -EEXIST;
new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
if (new_tbl == NULL)
return -ENOMEM;
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
if (err)
bucket_table_free(new_tbl);
return err;
}
static void rht_deferred_worker(struct work_struct *work)
{
struct rhashtable *ht;
struct bucket_table *tbl;
int err = 0;
ht = container_of(work, struct rhashtable, run_work);
mutex_lock(&ht->mutex);
tbl = rht_dereference(ht->tbl, ht);
tbl = rhashtable_last_table(ht, tbl);
if (rht_grow_above_75(ht, tbl))
rhashtable_expand(ht);
else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
rhashtable_shrink(ht);
err = rhashtable_rehash_table(ht);
mutex_unlock(&ht->mutex);
if (err)
schedule_work(&ht->run_work);
}
static int rhashtable_insert_rehash(struct rhashtable *ht,
struct bucket_table *tbl)
{
struct bucket_table *old_tbl;
struct bucket_table *new_tbl;
unsigned int size;
int err;
old_tbl = rht_dereference_rcu(ht->tbl, ht);
size = tbl->size;
err = -EBUSY;
if (rht_grow_above_75(ht, tbl))
size *= 2;
/* Do not schedule more than one rehash */
else if (old_tbl != tbl)
goto fail;
err = -ENOMEM;
new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
if (new_tbl == NULL)
goto fail;
err = rhashtable_rehash_attach(ht, tbl, new_tbl);
if (err) {
bucket_table_free(new_tbl);
if (err == -EEXIST)
err = 0;
} else
schedule_work(&ht->run_work);
return err;
fail:
/* Do not fail the insert if someone else did a rehash. */
if (likely(rcu_dereference_raw(tbl->future_tbl)))
return 0;
/* Schedule async rehash to retry allocation in process context. */
if (err == -ENOMEM)
schedule_work(&ht->run_work);
return err;
}
static void *rhashtable_lookup_one(struct rhashtable *ht,
struct bucket_table *tbl, unsigned int hash,
const void *key, struct rhash_head *obj)
{
struct rhashtable_compare_arg arg = {
.ht = ht,
.key = key,
};
struct rhash_head __rcu **pprev;
struct rhash_head *head;
int elasticity;
elasticity = ht->elasticity;
pprev = &tbl->buckets[hash];
rht_for_each(head, tbl, hash) {
struct rhlist_head *list;
struct rhlist_head *plist;
elasticity--;
if (!key ||
(ht->p.obj_cmpfn ?
ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
rhashtable_compare(&arg, rht_obj(ht, head))))
continue;
if (!ht->rhlist)
return rht_obj(ht, head);
list = container_of(obj, struct rhlist_head, rhead);
plist = container_of(head, struct rhlist_head, rhead);
RCU_INIT_POINTER(list->next, plist);
head = rht_dereference_bucket(head->next, tbl, hash);
RCU_INIT_POINTER(list->rhead.next, head);
rcu_assign_pointer(*pprev, obj);
return NULL;
}
if (elasticity <= 0)
return ERR_PTR(-EAGAIN);
return ERR_PTR(-ENOENT);
}
static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
struct bucket_table *tbl,
unsigned int hash,
struct rhash_head *obj,
void *data)
{
struct bucket_table *new_tbl;
struct rhash_head *head;
if (!IS_ERR_OR_NULL(data))
return ERR_PTR(-EEXIST);
if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
return ERR_CAST(data);
new_tbl = rcu_dereference(tbl->future_tbl);
if (new_tbl)
return new_tbl;
if (PTR_ERR(data) != -ENOENT)
return ERR_CAST(data);
if (unlikely(rht_grow_above_max(ht, tbl)))
return ERR_PTR(-E2BIG);
if (unlikely(rht_grow_above_100(ht, tbl)))
return ERR_PTR(-EAGAIN);
head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
RCU_INIT_POINTER(obj->next, head);
if (ht->rhlist) {
struct rhlist_head *list;
list = container_of(obj, struct rhlist_head, rhead);
RCU_INIT_POINTER(list->next, NULL);
}
rcu_assign_pointer(tbl->buckets[hash], obj);
atomic_inc(&ht->nelems);
if (rht_grow_above_75(ht, tbl))
schedule_work(&ht->run_work);
return NULL;
}
static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
struct rhash_head *obj)
{
struct bucket_table *new_tbl;
struct bucket_table *tbl;
unsigned int hash;
spinlock_t *lock;
void *data;
tbl = rcu_dereference(ht->tbl);
/* All insertions must grab the oldest table containing
* the hashed bucket that is yet to be rehashed.
*/
for (;;) {
hash = rht_head_hashfn(ht, tbl, obj, ht->p);
lock = rht_bucket_lock(tbl, hash);
spin_lock_bh(lock);
if (tbl->rehash <= hash)
break;
spin_unlock_bh(lock);
tbl = rcu_dereference(tbl->future_tbl);
}
data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
if (PTR_ERR(new_tbl) != -EEXIST)
data = ERR_CAST(new_tbl);
while (!IS_ERR_OR_NULL(new_tbl)) {
tbl = new_tbl;
hash = rht_head_hashfn(ht, tbl, obj, ht->p);
spin_lock_nested(rht_bucket_lock(tbl, hash),
SINGLE_DEPTH_NESTING);
data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
if (PTR_ERR(new_tbl) != -EEXIST)
data = ERR_CAST(new_tbl);
spin_unlock(rht_bucket_lock(tbl, hash));
}
spin_unlock_bh(lock);
if (PTR_ERR(data) == -EAGAIN)
data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
-EAGAIN);
return data;
}
void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
struct rhash_head *obj)
{
void *data;
do {
rcu_read_lock();
data = rhashtable_try_insert(ht, key, obj);
rcu_read_unlock();
} while (PTR_ERR(data) == -EAGAIN);
return data;
}
EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
/**
* rhashtable_walk_enter - Initialise an iterator
* @ht: Table to walk over
* @iter: Hash table Iterator
*
* This function prepares a hash table walk.
*
* Note that if you restart a walk after rhashtable_walk_stop you
* may see the same object twice. Also, you may miss objects if
* there are removals in between rhashtable_walk_stop and the next
* call to rhashtable_walk_start.
*
* For a completely stable walk you should construct your own data
* structure outside the hash table.
*
* This function may sleep so you must not call it from interrupt
* context or with spin locks held.
*
* You must call rhashtable_walk_exit after this function returns.
*/
void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
{
iter->ht = ht;
iter->p = NULL;
iter->slot = 0;
iter->skip = 0;
spin_lock(&ht->lock);
iter->walker.tbl =
rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
list_add(&iter->walker.list, &iter->walker.tbl->walkers);
spin_unlock(&ht->lock);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
/**
* rhashtable_walk_exit - Free an iterator
* @iter: Hash table Iterator
*
* This function frees resources allocated by rhashtable_walk_init.
*/
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
spin_lock(&iter->ht->lock);
if (iter->walker.tbl)
list_del(&iter->walker.list);
spin_unlock(&iter->ht->lock);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
/**
* rhashtable_walk_start - Start a hash table walk
* @iter: Hash table iterator
*
* Start a hash table walk. Note that we take the RCU lock in all
* cases including when we return an error. So you must always call
* rhashtable_walk_stop to clean up.
*
* Returns zero if successful.
*
* Returns -EAGAIN if resize event occured. Note that the iterator
* will rewind back to the beginning and you may use it immediately
* by calling rhashtable_walk_next.
*/
int rhashtable_walk_start(struct rhashtable_iter *iter)
__acquires(RCU)
{
struct rhashtable *ht = iter->ht;
rcu_read_lock();
spin_lock(&ht->lock);
if (iter->walker.tbl)
list_del(&iter->walker.list);
spin_unlock(&ht->lock);
if (!iter->walker.tbl) {
iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
return -EAGAIN;
}
return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);
/**
* rhashtable_walk_next - Return the next object and advance the iterator
* @iter: Hash table iterator
*
* Note that you must call rhashtable_walk_stop when you are finished
* with the walk.
*
* Returns the next object or NULL when the end of the table is reached.
*
* Returns -EAGAIN if resize event occured. Note that the iterator
* will rewind back to the beginning and you may continue to use it.
*/
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
struct bucket_table *tbl = iter->walker.tbl;
struct rhlist_head *list = iter->list;
struct rhashtable *ht = iter->ht;
struct rhash_head *p = iter->p;
bool rhlist = ht->rhlist;
if (p) {
if (!rhlist || !(list = rcu_dereference(list->next))) {
p = rcu_dereference(p->next);
list = container_of(p, struct rhlist_head, rhead);
}
goto next;
}
for (; iter->slot < tbl->size; iter->slot++) {
int skip = iter->skip;
rht_for_each_rcu(p, tbl, iter->slot) {
if (rhlist) {
list = container_of(p, struct rhlist_head,
rhead);
do {
if (!skip)
goto next;
skip--;
list = rcu_dereference(list->next);
} while (list);
continue;
}
if (!skip)
break;
skip--;
}
next:
if (!rht_is_a_nulls(p)) {
iter->skip++;
iter->p = p;
iter->list = list;
return rht_obj(ht, rhlist ? &list->rhead : p);
}
iter->skip = 0;
}
iter->p = NULL;
/* Ensure we see any new tables. */
smp_rmb();
iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
if (iter->walker.tbl) {
iter->slot = 0;
iter->skip = 0;
return ERR_PTR(-EAGAIN);
}
return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);
/**
* rhashtable_walk_stop - Finish a hash table walk
* @iter: Hash table iterator
*
* Finish a hash table walk.
*/
void rhashtable_walk_stop(struct rhashtable_iter *iter)
__releases(RCU)
{
struct rhashtable *ht;
struct bucket_table *tbl = iter->walker.tbl;
if (!tbl)
goto out;
ht = iter->ht;
spin_lock(&ht->lock);
if (tbl->rehash < tbl->size)
list_add(&iter->walker.list, &tbl->walkers);
else
iter->walker.tbl = NULL;
spin_unlock(&ht->lock);
iter->p = NULL;
out:
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
static size_t rounded_hashtable_size(const struct rhashtable_params *params)
{
return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
(unsigned long)params->min_size);
}
static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
{
return jhash2(key, length, seed);
}
/**
* rhashtable_init - initialize a new hash table
* @ht: hash table to be initialized
* @params: configuration parameters
*
* Initializes a new hash table based on the provided configuration
* parameters. A table can be configured either with a variable or
* fixed length key:
*
* Configuration Example 1: Fixed length keys
* struct test_obj {
* int key;
* void * my_member;
* struct rhash_head node;
* };
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .key_offset = offsetof(struct test_obj, key),
* .key_len = sizeof(int),
* .hashfn = jhash,
* .nulls_base = (1U << RHT_BASE_SHIFT),
* };
*
* Configuration Example 2: Variable length keys
* struct test_obj {
* [...]
* struct rhash_head node;
* };
*
* u32 my_hash_fn(const void *data, u32 len, u32 seed)
* {
* struct test_obj *obj = data;
*
* return [... hash ...];
* }
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .hashfn = jhash,
* .obj_hashfn = my_hash_fn,
* };
*/
int rhashtable_init(struct rhashtable *ht,
const struct rhashtable_params *params)
{
struct bucket_table *tbl;
size_t size;
size = HASH_DEFAULT_SIZE;
if ((!params->key_len && !params->obj_hashfn) ||
(params->obj_hashfn && !params->obj_cmpfn))
return -EINVAL;
if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
return -EINVAL;
memset(ht, 0, sizeof(*ht));
mutex_init(&ht->mutex);
spin_lock_init(&ht->lock);
memcpy(&ht->p, params, sizeof(*params));
if (params->min_size)
ht->p.min_size = roundup_pow_of_two(params->min_size);
if (params->max_size)
ht->p.max_size = rounddown_pow_of_two(params->max_size);
if (params->insecure_max_entries)
ht->p.insecure_max_entries =
rounddown_pow_of_two(params->insecure_max_entries);
else
ht->p.insecure_max_entries = ht->p.max_size * 2;
ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
if (params->nelem_hint)
size = rounded_hashtable_size(&ht->p);
/* The maximum (not average) chain length grows with the
* size of the hash table, at a rate of (log N)/(log log N).
* The value of 16 is selected so that even if the hash
* table grew to 2^32 you would not expect the maximum
* chain length to exceed it unless we are under attack
* (or extremely unlucky).
*
* As this limit is only to detect attacks, we don't need
* to set it to a lower value as you'd need the chain
* length to vastly exceed 16 to have any real effect
* on the system.
*/
if (!params->insecure_elasticity)
ht->elasticity = 16;
if (params->locks_mul)
ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
else
ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
ht->key_len = ht->p.key_len;
if (!params->hashfn) {
ht->p.hashfn = jhash;
if (!(ht->key_len & (sizeof(u32) - 1))) {
ht->key_len /= sizeof(u32);
ht->p.hashfn = rhashtable_jhash2;
}
}
tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
if (tbl == NULL)
return -ENOMEM;
atomic_set(&ht->nelems, 0);
RCU_INIT_POINTER(ht->tbl, tbl);
INIT_WORK(&ht->run_work, rht_deferred_worker);
return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);
/**
* rhltable_init - initialize a new hash list table
* @hlt: hash list table to be initialized
* @params: configuration parameters
*
* Initializes a new hash list table.
*
* See documentation for rhashtable_init.
*/
int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
{
int err;
/* No rhlist NULLs marking for now. */
if (params->nulls_base)
return -EINVAL;
err = rhashtable_init(&hlt->ht, params);
hlt->ht.rhlist = true;
return err;
}
EXPORT_SYMBOL_GPL(rhltable_init);
static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
void (*free_fn)(void *ptr, void *arg),
void *arg)
{
struct rhlist_head *list;
if (!ht->rhlist) {
free_fn(rht_obj(ht, obj), arg);
return;
}
list = container_of(obj, struct rhlist_head, rhead);
do {
obj = &list->rhead;
list = rht_dereference(list->next, ht);
free_fn(rht_obj(ht, obj), arg);
} while (list);
}
/**
* rhashtable_free_and_destroy - free elements and destroy hash table
* @ht: the hash table to destroy
* @free_fn: callback to release resources of element
* @arg: pointer passed to free_fn
*
* Stops an eventual async resize. If defined, invokes free_fn for each
* element to releasal resources. Please note that RCU protected
* readers may still be accessing the elements. Releasing of resources
* must occur in a compatible manner. Then frees the bucket array.
*
* This function will eventually sleep to wait for an async resize
* to complete. The caller is responsible that no further write operations
* occurs in parallel.
*/
void rhashtable_free_and_destroy(struct rhashtable *ht,
void (*free_fn)(void *ptr, void *arg),
void *arg)
{
const struct bucket_table *tbl;
unsigned int i;
cancel_work_sync(&ht->run_work);
mutex_lock(&ht->mutex);
tbl = rht_dereference(ht->tbl, ht);
if (free_fn) {
for (i = 0; i < tbl->size; i++) {
struct rhash_head *pos, *next;
for (pos = rht_dereference(tbl->buckets[i], ht),
next = !rht_is_a_nulls(pos) ?
rht_dereference(pos->next, ht) : NULL;
!rht_is_a_nulls(pos);
pos = next,
next = !rht_is_a_nulls(pos) ?
rht_dereference(pos->next, ht) : NULL)
rhashtable_free_one(ht, pos, free_fn, arg);
}
}
bucket_table_free(tbl);
mutex_unlock(&ht->mutex);
}
EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
void rhashtable_destroy(struct rhashtable *ht)
{
return rhashtable_free_and_destroy(ht, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);