mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 06:04:14 +08:00
ff61541cc6
Commit8062382c8d
("perf/x86/intel/bts: Add BTS PMU driver") brought in a warning with the BTS buffer initialization that is easily tripped with (assuming KPTI is disabled): instantly throwing: > ------------[ cut here ]------------ > WARNING: CPU: 2 PID: 326 at arch/x86/events/intel/bts.c:86 bts_buffer_setup_aux+0x117/0x3d0 > Modules linked in: > CPU: 2 PID: 326 Comm: perf Not tainted 5.4.0-rc8-00291-gceb9e77324fa #904 > RIP: 0010:bts_buffer_setup_aux+0x117/0x3d0 > Call Trace: > rb_alloc_aux+0x339/0x550 > perf_mmap+0x607/0xc70 > mmap_region+0x76b/0xbd0 ... It appears to assume (for lost raisins) that PagePrivate() is set, while later it actually tests for PagePrivate() before using page_private(). Make it consistent and always check PagePrivate() before using page_private(). Fixes:8062382c8d
("perf/x86/intel/bts: Add BTS PMU driver") Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lkml.kernel.org/r/20191205142853.28894-2-alexander.shishkin@linux.intel.com
620 lines
15 KiB
C
620 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* BTS PMU driver for perf
|
|
* Copyright (c) 2013-2014, Intel Corporation.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/coredump.h>
|
|
|
|
#include <linux/sizes.h>
|
|
#include <asm/perf_event.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
struct bts_ctx {
|
|
struct perf_output_handle handle;
|
|
struct debug_store ds_back;
|
|
int state;
|
|
};
|
|
|
|
/* BTS context states: */
|
|
enum {
|
|
/* no ongoing AUX transactions */
|
|
BTS_STATE_STOPPED = 0,
|
|
/* AUX transaction is on, BTS tracing is disabled */
|
|
BTS_STATE_INACTIVE,
|
|
/* AUX transaction is on, BTS tracing is running */
|
|
BTS_STATE_ACTIVE,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
|
|
|
|
#define BTS_RECORD_SIZE 24
|
|
#define BTS_SAFETY_MARGIN 4080
|
|
|
|
struct bts_phys {
|
|
struct page *page;
|
|
unsigned long size;
|
|
unsigned long offset;
|
|
unsigned long displacement;
|
|
};
|
|
|
|
struct bts_buffer {
|
|
size_t real_size; /* multiple of BTS_RECORD_SIZE */
|
|
unsigned int nr_pages;
|
|
unsigned int nr_bufs;
|
|
unsigned int cur_buf;
|
|
bool snapshot;
|
|
local_t data_size;
|
|
local_t head;
|
|
unsigned long end;
|
|
void **data_pages;
|
|
struct bts_phys buf[0];
|
|
};
|
|
|
|
static struct pmu bts_pmu;
|
|
|
|
static int buf_nr_pages(struct page *page)
|
|
{
|
|
if (!PagePrivate(page))
|
|
return 1;
|
|
|
|
return 1 << page_private(page);
|
|
}
|
|
|
|
static size_t buf_size(struct page *page)
|
|
{
|
|
return buf_nr_pages(page) * PAGE_SIZE;
|
|
}
|
|
|
|
static void *
|
|
bts_buffer_setup_aux(struct perf_event *event, void **pages,
|
|
int nr_pages, bool overwrite)
|
|
{
|
|
struct bts_buffer *buf;
|
|
struct page *page;
|
|
int cpu = event->cpu;
|
|
int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
|
|
unsigned long offset;
|
|
size_t size = nr_pages << PAGE_SHIFT;
|
|
int pg, nbuf, pad;
|
|
|
|
/* count all the high order buffers */
|
|
for (pg = 0, nbuf = 0; pg < nr_pages;) {
|
|
page = virt_to_page(pages[pg]);
|
|
pg += buf_nr_pages(page);
|
|
nbuf++;
|
|
}
|
|
|
|
/*
|
|
* to avoid interrupts in overwrite mode, only allow one physical
|
|
*/
|
|
if (overwrite && nbuf > 1)
|
|
return NULL;
|
|
|
|
buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
buf->nr_pages = nr_pages;
|
|
buf->nr_bufs = nbuf;
|
|
buf->snapshot = overwrite;
|
|
buf->data_pages = pages;
|
|
buf->real_size = size - size % BTS_RECORD_SIZE;
|
|
|
|
for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
|
|
unsigned int __nr_pages;
|
|
|
|
page = virt_to_page(pages[pg]);
|
|
__nr_pages = buf_nr_pages(page);
|
|
buf->buf[nbuf].page = page;
|
|
buf->buf[nbuf].offset = offset;
|
|
buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
|
|
buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
|
|
pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
|
|
buf->buf[nbuf].size -= pad;
|
|
|
|
pg += __nr_pages;
|
|
offset += __nr_pages << PAGE_SHIFT;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
static void bts_buffer_free_aux(void *data)
|
|
{
|
|
kfree(data);
|
|
}
|
|
|
|
static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
|
|
{
|
|
return buf->buf[idx].offset + buf->buf[idx].displacement;
|
|
}
|
|
|
|
static void
|
|
bts_config_buffer(struct bts_buffer *buf)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
struct bts_phys *phys = &buf->buf[buf->cur_buf];
|
|
unsigned long index, thresh = 0, end = phys->size;
|
|
struct page *page = phys->page;
|
|
|
|
index = local_read(&buf->head);
|
|
|
|
if (!buf->snapshot) {
|
|
if (buf->end < phys->offset + buf_size(page))
|
|
end = buf->end - phys->offset - phys->displacement;
|
|
|
|
index -= phys->offset + phys->displacement;
|
|
|
|
if (end - index > BTS_SAFETY_MARGIN)
|
|
thresh = end - BTS_SAFETY_MARGIN;
|
|
else if (end - index > BTS_RECORD_SIZE)
|
|
thresh = end - BTS_RECORD_SIZE;
|
|
else
|
|
thresh = end;
|
|
}
|
|
|
|
ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
|
|
ds->bts_index = ds->bts_buffer_base + index;
|
|
ds->bts_absolute_maximum = ds->bts_buffer_base + end;
|
|
ds->bts_interrupt_threshold = !buf->snapshot
|
|
? ds->bts_buffer_base + thresh
|
|
: ds->bts_absolute_maximum + BTS_RECORD_SIZE;
|
|
}
|
|
|
|
static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
|
|
{
|
|
unsigned long index = head - phys->offset;
|
|
|
|
memset(page_address(phys->page) + index, 0, phys->size - index);
|
|
}
|
|
|
|
static void bts_update(struct bts_ctx *bts)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
struct bts_buffer *buf = perf_get_aux(&bts->handle);
|
|
unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
|
|
|
|
if (!buf)
|
|
return;
|
|
|
|
head = index + bts_buffer_offset(buf, buf->cur_buf);
|
|
old = local_xchg(&buf->head, head);
|
|
|
|
if (!buf->snapshot) {
|
|
if (old == head)
|
|
return;
|
|
|
|
if (ds->bts_index >= ds->bts_absolute_maximum)
|
|
perf_aux_output_flag(&bts->handle,
|
|
PERF_AUX_FLAG_TRUNCATED);
|
|
|
|
/*
|
|
* old and head are always in the same physical buffer, so we
|
|
* can subtract them to get the data size.
|
|
*/
|
|
local_add(head - old, &buf->data_size);
|
|
} else {
|
|
local_set(&buf->data_size, head);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
|
|
|
|
/*
|
|
* Ordering PMU callbacks wrt themselves and the PMI is done by means
|
|
* of bts::state, which:
|
|
* - is set when bts::handle::event is valid, that is, between
|
|
* perf_aux_output_begin() and perf_aux_output_end();
|
|
* - is zero otherwise;
|
|
* - is ordered against bts::handle::event with a compiler barrier.
|
|
*/
|
|
|
|
static void __bts_event_start(struct perf_event *event)
|
|
{
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
struct bts_buffer *buf = perf_get_aux(&bts->handle);
|
|
u64 config = 0;
|
|
|
|
if (!buf->snapshot)
|
|
config |= ARCH_PERFMON_EVENTSEL_INT;
|
|
if (!event->attr.exclude_kernel)
|
|
config |= ARCH_PERFMON_EVENTSEL_OS;
|
|
if (!event->attr.exclude_user)
|
|
config |= ARCH_PERFMON_EVENTSEL_USR;
|
|
|
|
bts_config_buffer(buf);
|
|
|
|
/*
|
|
* local barrier to make sure that ds configuration made it
|
|
* before we enable BTS and bts::state goes ACTIVE
|
|
*/
|
|
wmb();
|
|
|
|
/* INACTIVE/STOPPED -> ACTIVE */
|
|
WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
|
|
|
|
intel_pmu_enable_bts(config);
|
|
|
|
}
|
|
|
|
static void bts_event_start(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
struct bts_buffer *buf;
|
|
|
|
buf = perf_aux_output_begin(&bts->handle, event);
|
|
if (!buf)
|
|
goto fail_stop;
|
|
|
|
if (bts_buffer_reset(buf, &bts->handle))
|
|
goto fail_end_stop;
|
|
|
|
bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
|
|
bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
|
|
bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
|
|
|
|
perf_event_itrace_started(event);
|
|
event->hw.state = 0;
|
|
|
|
__bts_event_start(event);
|
|
|
|
return;
|
|
|
|
fail_end_stop:
|
|
perf_aux_output_end(&bts->handle, 0);
|
|
|
|
fail_stop:
|
|
event->hw.state = PERF_HES_STOPPED;
|
|
}
|
|
|
|
static void __bts_event_stop(struct perf_event *event, int state)
|
|
{
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
|
|
/* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
|
|
WRITE_ONCE(bts->state, state);
|
|
|
|
/*
|
|
* No extra synchronization is mandated by the documentation to have
|
|
* BTS data stores globally visible.
|
|
*/
|
|
intel_pmu_disable_bts();
|
|
}
|
|
|
|
static void bts_event_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
struct bts_buffer *buf = NULL;
|
|
int state = READ_ONCE(bts->state);
|
|
|
|
if (state == BTS_STATE_ACTIVE)
|
|
__bts_event_stop(event, BTS_STATE_STOPPED);
|
|
|
|
if (state != BTS_STATE_STOPPED)
|
|
buf = perf_get_aux(&bts->handle);
|
|
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
|
|
if (flags & PERF_EF_UPDATE) {
|
|
bts_update(bts);
|
|
|
|
if (buf) {
|
|
if (buf->snapshot)
|
|
bts->handle.head =
|
|
local_xchg(&buf->data_size,
|
|
buf->nr_pages << PAGE_SHIFT);
|
|
perf_aux_output_end(&bts->handle,
|
|
local_xchg(&buf->data_size, 0));
|
|
}
|
|
|
|
cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
|
|
cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
|
|
cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
|
|
cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
|
|
}
|
|
}
|
|
|
|
void intel_bts_enable_local(void)
|
|
{
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
int state = READ_ONCE(bts->state);
|
|
|
|
/*
|
|
* Here we transition from INACTIVE to ACTIVE;
|
|
* if we instead are STOPPED from the interrupt handler,
|
|
* stay that way. Can't be ACTIVE here though.
|
|
*/
|
|
if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
|
|
return;
|
|
|
|
if (state == BTS_STATE_STOPPED)
|
|
return;
|
|
|
|
if (bts->handle.event)
|
|
__bts_event_start(bts->handle.event);
|
|
}
|
|
|
|
void intel_bts_disable_local(void)
|
|
{
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
|
|
/*
|
|
* Here we transition from ACTIVE to INACTIVE;
|
|
* do nothing for STOPPED or INACTIVE.
|
|
*/
|
|
if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
|
|
return;
|
|
|
|
if (bts->handle.event)
|
|
__bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
|
|
}
|
|
|
|
static int
|
|
bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
|
|
{
|
|
unsigned long head, space, next_space, pad, gap, skip, wakeup;
|
|
unsigned int next_buf;
|
|
struct bts_phys *phys, *next_phys;
|
|
int ret;
|
|
|
|
if (buf->snapshot)
|
|
return 0;
|
|
|
|
head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
|
|
|
|
phys = &buf->buf[buf->cur_buf];
|
|
space = phys->offset + phys->displacement + phys->size - head;
|
|
pad = space;
|
|
if (space > handle->size) {
|
|
space = handle->size;
|
|
space -= space % BTS_RECORD_SIZE;
|
|
}
|
|
if (space <= BTS_SAFETY_MARGIN) {
|
|
/* See if next phys buffer has more space */
|
|
next_buf = buf->cur_buf + 1;
|
|
if (next_buf >= buf->nr_bufs)
|
|
next_buf = 0;
|
|
next_phys = &buf->buf[next_buf];
|
|
gap = buf_size(phys->page) - phys->displacement - phys->size +
|
|
next_phys->displacement;
|
|
skip = pad + gap;
|
|
if (handle->size >= skip) {
|
|
next_space = next_phys->size;
|
|
if (next_space + skip > handle->size) {
|
|
next_space = handle->size - skip;
|
|
next_space -= next_space % BTS_RECORD_SIZE;
|
|
}
|
|
if (next_space > space || !space) {
|
|
if (pad)
|
|
bts_buffer_pad_out(phys, head);
|
|
ret = perf_aux_output_skip(handle, skip);
|
|
if (ret)
|
|
return ret;
|
|
/* Advance to next phys buffer */
|
|
phys = next_phys;
|
|
space = next_space;
|
|
head = phys->offset + phys->displacement;
|
|
/*
|
|
* After this, cur_buf and head won't match ds
|
|
* anymore, so we must not be racing with
|
|
* bts_update().
|
|
*/
|
|
buf->cur_buf = next_buf;
|
|
local_set(&buf->head, head);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Don't go far beyond wakeup watermark */
|
|
wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
|
|
handle->head;
|
|
if (space > wakeup) {
|
|
space = wakeup;
|
|
space -= space % BTS_RECORD_SIZE;
|
|
}
|
|
|
|
buf->end = head + space;
|
|
|
|
/*
|
|
* If we have no space, the lost notification would have been sent when
|
|
* we hit absolute_maximum - see bts_update()
|
|
*/
|
|
if (!space)
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_bts_interrupt(void)
|
|
{
|
|
struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
struct perf_event *event = bts->handle.event;
|
|
struct bts_buffer *buf;
|
|
s64 old_head;
|
|
int err = -ENOSPC, handled = 0;
|
|
|
|
/*
|
|
* The only surefire way of knowing if this NMI is ours is by checking
|
|
* the write ptr against the PMI threshold.
|
|
*/
|
|
if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
|
|
handled = 1;
|
|
|
|
/*
|
|
* this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
|
|
* so we can only be INACTIVE or STOPPED
|
|
*/
|
|
if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
|
|
return handled;
|
|
|
|
buf = perf_get_aux(&bts->handle);
|
|
if (!buf)
|
|
return handled;
|
|
|
|
/*
|
|
* Skip snapshot counters: they don't use the interrupt, but
|
|
* there's no other way of telling, because the pointer will
|
|
* keep moving
|
|
*/
|
|
if (buf->snapshot)
|
|
return 0;
|
|
|
|
old_head = local_read(&buf->head);
|
|
bts_update(bts);
|
|
|
|
/* no new data */
|
|
if (old_head == local_read(&buf->head))
|
|
return handled;
|
|
|
|
perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
|
|
|
|
buf = perf_aux_output_begin(&bts->handle, event);
|
|
if (buf)
|
|
err = bts_buffer_reset(buf, &bts->handle);
|
|
|
|
if (err) {
|
|
WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
|
|
|
|
if (buf) {
|
|
/*
|
|
* BTS_STATE_STOPPED should be visible before
|
|
* cleared handle::event
|
|
*/
|
|
barrier();
|
|
perf_aux_output_end(&bts->handle, 0);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void bts_event_del(struct perf_event *event, int mode)
|
|
{
|
|
bts_event_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
static int bts_event_add(struct perf_event *event, int mode)
|
|
{
|
|
struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
event->hw.state = PERF_HES_STOPPED;
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
|
|
return -EBUSY;
|
|
|
|
if (bts->handle.event)
|
|
return -EBUSY;
|
|
|
|
if (mode & PERF_EF_START) {
|
|
bts_event_start(event, 0);
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bts_event_destroy(struct perf_event *event)
|
|
{
|
|
x86_release_hardware();
|
|
x86_del_exclusive(x86_lbr_exclusive_bts);
|
|
}
|
|
|
|
static int bts_event_init(struct perf_event *event)
|
|
{
|
|
int ret;
|
|
|
|
if (event->attr.type != bts_pmu.type)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* BTS leaks kernel addresses even when CPL0 tracing is
|
|
* disabled, so disallow intel_bts driver for unprivileged
|
|
* users on paranoid systems since it provides trace data
|
|
* to the user in a zero-copy fashion.
|
|
*
|
|
* Note that the default paranoia setting permits unprivileged
|
|
* users to profile the kernel.
|
|
*/
|
|
if (event->attr.exclude_kernel) {
|
|
ret = perf_allow_kernel(&event->attr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (x86_add_exclusive(x86_lbr_exclusive_bts))
|
|
return -EBUSY;
|
|
|
|
ret = x86_reserve_hardware();
|
|
if (ret) {
|
|
x86_del_exclusive(x86_lbr_exclusive_bts);
|
|
return ret;
|
|
}
|
|
|
|
event->destroy = bts_event_destroy;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bts_event_read(struct perf_event *event)
|
|
{
|
|
}
|
|
|
|
static __init int bts_init(void)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
|
|
return -ENODEV;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PTI)) {
|
|
/*
|
|
* BTS hardware writes through a virtual memory map we must
|
|
* either use the kernel physical map, or the user mapping of
|
|
* the AUX buffer.
|
|
*
|
|
* However, since this driver supports per-CPU and per-task inherit
|
|
* we cannot use the user mapping since it will not be available
|
|
* if we're not running the owning process.
|
|
*
|
|
* With PTI we can't use the kernal map either, because its not
|
|
* there when we run userspace.
|
|
*
|
|
* For now, disable this driver when using PTI.
|
|
*/
|
|
return -ENODEV;
|
|
}
|
|
|
|
bts_pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
|
|
PERF_PMU_CAP_EXCLUSIVE;
|
|
bts_pmu.task_ctx_nr = perf_sw_context;
|
|
bts_pmu.event_init = bts_event_init;
|
|
bts_pmu.add = bts_event_add;
|
|
bts_pmu.del = bts_event_del;
|
|
bts_pmu.start = bts_event_start;
|
|
bts_pmu.stop = bts_event_stop;
|
|
bts_pmu.read = bts_event_read;
|
|
bts_pmu.setup_aux = bts_buffer_setup_aux;
|
|
bts_pmu.free_aux = bts_buffer_free_aux;
|
|
|
|
return perf_pmu_register(&bts_pmu, "intel_bts", -1);
|
|
}
|
|
arch_initcall(bts_init);
|