2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 15:45:14 +08:00
linux-next/drivers/net/sonic.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

617 lines
16 KiB
C

/*
* sonic.c
*
* (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
*
* This driver is based on work from Andreas Busse, but most of
* the code is rewritten.
*
* (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
*
* Core code included by system sonic drivers
*/
/*
* Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
* National Semiconductors data sheet for the DP83932B Sonic Ethernet
* controller, and the files "8390.c" and "skeleton.c" in this directory.
*/
/*
* Open/initialize the SONIC controller.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int sonic_open(struct net_device *dev)
{
if (sonic_debug > 2)
printk("sonic_open: initializing sonic driver.\n");
/*
* We don't need to deal with auto-irq stuff since we
* hardwire the sonic interrupt.
*/
/*
* XXX Horrible work around: We install sonic_interrupt as fast interrupt.
* This means that during execution of the handler interrupt are disabled
* covering another bug otherwise corrupting data. This doesn't mean
* this glue works ok under all situations.
*/
// if (sonic_request_irq(dev->irq, &sonic_interrupt, 0, "sonic", dev)) {
if (sonic_request_irq(dev->irq, &sonic_interrupt, SA_INTERRUPT,
"sonic", dev)) {
printk("\n%s: unable to get IRQ %d .\n", dev->name, dev->irq);
return -EAGAIN;
}
/*
* Initialize the SONIC
*/
sonic_init(dev);
netif_start_queue(dev);
if (sonic_debug > 2)
printk("sonic_open: Initialization done.\n");
return 0;
}
/*
* Close the SONIC device
*/
static int sonic_close(struct net_device *dev)
{
unsigned int base_addr = dev->base_addr;
if (sonic_debug > 2)
printk("sonic_close\n");
netif_stop_queue(dev);
/*
* stop the SONIC, disable interrupts
*/
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
sonic_free_irq(dev->irq, dev); /* release the IRQ */
return 0;
}
static void sonic_tx_timeout(struct net_device *dev)
{
struct sonic_local *lp = (struct sonic_local *) dev->priv;
printk("%s: transmit timed out.\n", dev->name);
/* Try to restart the adaptor. */
sonic_init(dev);
lp->stats.tx_errors++;
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* transmit packet
*/
static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct sonic_local *lp = (struct sonic_local *) dev->priv;
unsigned int base_addr = dev->base_addr;
unsigned int laddr;
int entry, length;
netif_stop_queue(dev);
if (sonic_debug > 2)
printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
/*
* Map the packet data into the logical DMA address space
*/
if ((laddr = vdma_alloc(CPHYSADDR(skb->data), skb->len)) == ~0UL) {
printk("%s: no VDMA entry for transmit available.\n",
dev->name);
dev_kfree_skb(skb);
netif_start_queue(dev);
return 1;
}
entry = lp->cur_tx & SONIC_TDS_MASK;
lp->tx_laddr[entry] = laddr;
lp->tx_skb[entry] = skb;
length = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
flush_cache_all();
/*
* Setup the transmit descriptor and issue the transmit command.
*/
lp->tda[entry].tx_status = 0; /* clear status */
lp->tda[entry].tx_frag_count = 1; /* single fragment */
lp->tda[entry].tx_pktsize = length; /* length of packet */
lp->tda[entry].tx_frag_ptr_l = laddr & 0xffff;
lp->tda[entry].tx_frag_ptr_h = laddr >> 16;
lp->tda[entry].tx_frag_size = length;
lp->cur_tx++;
lp->stats.tx_bytes += length;
if (sonic_debug > 2)
printk("sonic_send_packet: issueing Tx command\n");
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
dev->trans_start = jiffies;
if (lp->cur_tx < lp->dirty_tx + SONIC_NUM_TDS)
netif_start_queue(dev);
else
lp->tx_full = 1;
return 0;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t sonic_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
unsigned int base_addr = dev->base_addr;
struct sonic_local *lp;
int status;
if (dev == NULL) {
printk("sonic_interrupt: irq %d for unknown device.\n", irq);
return IRQ_NONE;
}
lp = (struct sonic_local *) dev->priv;
status = SONIC_READ(SONIC_ISR);
SONIC_WRITE(SONIC_ISR, 0x7fff); /* clear all bits */
if (sonic_debug > 2)
printk("sonic_interrupt: ISR=%x\n", status);
if (status & SONIC_INT_PKTRX) {
sonic_rx(dev); /* got packet(s) */
}
if (status & SONIC_INT_TXDN) {
int dirty_tx = lp->dirty_tx;
while (dirty_tx < lp->cur_tx) {
int entry = dirty_tx & SONIC_TDS_MASK;
int status = lp->tda[entry].tx_status;
if (sonic_debug > 3)
printk
("sonic_interrupt: status %d, cur_tx %d, dirty_tx %d\n",
status, lp->cur_tx, lp->dirty_tx);
if (status == 0) {
/* It still hasn't been Txed, kick the sonic again */
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
break;
}
/* put back EOL and free descriptor */
lp->tda[entry].tx_frag_count = 0;
lp->tda[entry].tx_status = 0;
if (status & 0x0001)
lp->stats.tx_packets++;
else {
lp->stats.tx_errors++;
if (status & 0x0642)
lp->stats.tx_aborted_errors++;
if (status & 0x0180)
lp->stats.tx_carrier_errors++;
if (status & 0x0020)
lp->stats.tx_window_errors++;
if (status & 0x0004)
lp->stats.tx_fifo_errors++;
}
/* We must free the original skb */
if (lp->tx_skb[entry]) {
dev_kfree_skb_irq(lp->tx_skb[entry]);
lp->tx_skb[entry] = 0;
}
/* and the VDMA address */
vdma_free(lp->tx_laddr[entry]);
dirty_tx++;
}
if (lp->tx_full
&& dirty_tx + SONIC_NUM_TDS > lp->cur_tx + 2) {
/* The ring is no longer full, clear tbusy. */
lp->tx_full = 0;
netif_wake_queue(dev);
}
lp->dirty_tx = dirty_tx;
}
/*
* check error conditions
*/
if (status & SONIC_INT_RFO) {
printk("%s: receive fifo underrun\n", dev->name);
lp->stats.rx_fifo_errors++;
}
if (status & SONIC_INT_RDE) {
printk("%s: receive descriptors exhausted\n", dev->name);
lp->stats.rx_dropped++;
}
if (status & SONIC_INT_RBE) {
printk("%s: receive buffer exhausted\n", dev->name);
lp->stats.rx_dropped++;
}
if (status & SONIC_INT_RBAE) {
printk("%s: receive buffer area exhausted\n", dev->name);
lp->stats.rx_dropped++;
}
/* counter overruns; all counters are 16bit wide */
if (status & SONIC_INT_FAE)
lp->stats.rx_frame_errors += 65536;
if (status & SONIC_INT_CRC)
lp->stats.rx_crc_errors += 65536;
if (status & SONIC_INT_MP)
lp->stats.rx_missed_errors += 65536;
/* transmit error */
if (status & SONIC_INT_TXER)
lp->stats.tx_errors++;
/*
* clear interrupt bits and return
*/
SONIC_WRITE(SONIC_ISR, status);
return IRQ_HANDLED;
}
/*
* We have a good packet(s), get it/them out of the buffers.
*/
static void sonic_rx(struct net_device *dev)
{
unsigned int base_addr = dev->base_addr;
struct sonic_local *lp = (struct sonic_local *) dev->priv;
sonic_rd_t *rd = &lp->rda[lp->cur_rx & SONIC_RDS_MASK];
int status;
while (rd->in_use == 0) {
struct sk_buff *skb;
int pkt_len;
unsigned char *pkt_ptr;
status = rd->rx_status;
if (sonic_debug > 3)
printk("status %x, cur_rx %d, cur_rra %x\n",
status, lp->cur_rx, lp->cur_rra);
if (status & SONIC_RCR_PRX) {
pkt_len = rd->rx_pktlen;
pkt_ptr =
(char *)
sonic_chiptomem((rd->rx_pktptr_h << 16) +
rd->rx_pktptr_l);
if (sonic_debug > 3)
printk
("pktptr %p (rba %p) h:%x l:%x, bsize h:%x l:%x\n",
pkt_ptr, lp->rba, rd->rx_pktptr_h,
rd->rx_pktptr_l,
SONIC_READ(SONIC_RBWC1),
SONIC_READ(SONIC_RBWC0));
/* Malloc up new buffer. */
skb = dev_alloc_skb(pkt_len + 2);
if (skb == NULL) {
printk
("%s: Memory squeeze, dropping packet.\n",
dev->name);
lp->stats.rx_dropped++;
break;
}
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte align */
skb_put(skb, pkt_len); /* Make room */
eth_copy_and_sum(skb, pkt_ptr, pkt_len, 0);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* pass the packet to upper layers */
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
} else {
/* This should only happen, if we enable accepting broken packets. */
lp->stats.rx_errors++;
if (status & SONIC_RCR_FAER)
lp->stats.rx_frame_errors++;
if (status & SONIC_RCR_CRCR)
lp->stats.rx_crc_errors++;
}
rd->in_use = 1;
rd = &lp->rda[(++lp->cur_rx) & SONIC_RDS_MASK];
/* now give back the buffer to the receive buffer area */
if (status & SONIC_RCR_LPKT) {
/*
* this was the last packet out of the current receice buffer
* give the buffer back to the SONIC
*/
lp->cur_rra += sizeof(sonic_rr_t);
if (lp->cur_rra >
(lp->rra_laddr +
(SONIC_NUM_RRS -
1) * sizeof(sonic_rr_t))) lp->cur_rra =
lp->rra_laddr;
SONIC_WRITE(SONIC_RWP, lp->cur_rra & 0xffff);
} else
printk
("%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
dev->name);
}
/*
* If any worth-while packets have been received, dev_rint()
* has done a mark_bh(NET_BH) for us and will work on them
* when we get to the bottom-half routine.
*/
}
/*
* Get the current statistics.
* This may be called with the device open or closed.
*/
static struct net_device_stats *sonic_get_stats(struct net_device *dev)
{
struct sonic_local *lp = (struct sonic_local *) dev->priv;
unsigned int base_addr = dev->base_addr;
/* read the tally counter from the SONIC and reset them */
lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
SONIC_WRITE(SONIC_CRCT, 0xffff);
lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
SONIC_WRITE(SONIC_FAET, 0xffff);
lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
SONIC_WRITE(SONIC_MPT, 0xffff);
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void sonic_multicast_list(struct net_device *dev)
{
struct sonic_local *lp = (struct sonic_local *) dev->priv;
unsigned int base_addr = dev->base_addr;
unsigned int rcr;
struct dev_mc_list *dmi = dev->mc_list;
unsigned char *addr;
int i;
rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
rcr |= SONIC_RCR_PRO;
} else {
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
rcr |= SONIC_RCR_AMC;
} else {
if (sonic_debug > 2)
printk
("sonic_multicast_list: mc_count %d\n",
dev->mc_count);
lp->cda.cam_enable = 1; /* always enable our own address */
for (i = 1; i <= dev->mc_count; i++) {
addr = dmi->dmi_addr;
dmi = dmi->next;
lp->cda.cam_desc[i].cam_cap0 =
addr[1] << 8 | addr[0];
lp->cda.cam_desc[i].cam_cap1 =
addr[3] << 8 | addr[2];
lp->cda.cam_desc[i].cam_cap2 =
addr[5] << 8 | addr[4];
lp->cda.cam_enable |= (1 << i);
}
SONIC_WRITE(SONIC_CDC, 16);
/* issue Load CAM command */
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
}
}
if (sonic_debug > 2)
printk("sonic_multicast_list: setting RCR=%x\n", rcr);
SONIC_WRITE(SONIC_RCR, rcr);
}
/*
* Initialize the SONIC ethernet controller.
*/
static int sonic_init(struct net_device *dev)
{
unsigned int base_addr = dev->base_addr;
unsigned int cmd;
struct sonic_local *lp = (struct sonic_local *) dev->priv;
unsigned int rra_start;
unsigned int rra_end;
int i;
/*
* put the Sonic into software-reset mode and
* disable all interrupts
*/
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/*
* clear software reset flag, disable receiver, clear and
* enable interrupts, then completely initialize the SONIC
*/
SONIC_WRITE(SONIC_CMD, 0);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
/*
* initialize the receive resource area
*/
if (sonic_debug > 2)
printk("sonic_init: initialize receive resource area\n");
rra_start = lp->rra_laddr & 0xffff;
rra_end =
(rra_start + (SONIC_NUM_RRS * sizeof(sonic_rr_t))) & 0xffff;
for (i = 0; i < SONIC_NUM_RRS; i++) {
lp->rra[i].rx_bufadr_l =
(lp->rba_laddr + i * SONIC_RBSIZE) & 0xffff;
lp->rra[i].rx_bufadr_h =
(lp->rba_laddr + i * SONIC_RBSIZE) >> 16;
lp->rra[i].rx_bufsize_l = SONIC_RBSIZE >> 1;
lp->rra[i].rx_bufsize_h = 0;
}
/* initialize all RRA registers */
SONIC_WRITE(SONIC_RSA, rra_start);
SONIC_WRITE(SONIC_REA, rra_end);
SONIC_WRITE(SONIC_RRP, rra_start);
SONIC_WRITE(SONIC_RWP, rra_end);
SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE - 2) >> 1);
lp->cur_rra =
lp->rra_laddr + (SONIC_NUM_RRS - 1) * sizeof(sonic_rr_t);
/* load the resource pointers */
if (sonic_debug > 3)
printk("sonic_init: issueing RRRA command\n");
SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
i = 0;
while (i++ < 100) {
if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
break;
}
if (sonic_debug > 2)
printk("sonic_init: status=%x\n", SONIC_READ(SONIC_CMD));
/*
* Initialize the receive descriptors so that they
* become a circular linked list, ie. let the last
* descriptor point to the first again.
*/
if (sonic_debug > 2)
printk("sonic_init: initialize receive descriptors\n");
for (i = 0; i < SONIC_NUM_RDS; i++) {
lp->rda[i].rx_status = 0;
lp->rda[i].rx_pktlen = 0;
lp->rda[i].rx_pktptr_l = 0;
lp->rda[i].rx_pktptr_h = 0;
lp->rda[i].rx_seqno = 0;
lp->rda[i].in_use = 1;
lp->rda[i].link =
lp->rda_laddr + (i + 1) * sizeof(sonic_rd_t);
}
/* fix last descriptor */
lp->rda[SONIC_NUM_RDS - 1].link = lp->rda_laddr;
lp->cur_rx = 0;
SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
/*
* initialize transmit descriptors
*/
if (sonic_debug > 2)
printk("sonic_init: initialize transmit descriptors\n");
for (i = 0; i < SONIC_NUM_TDS; i++) {
lp->tda[i].tx_status = 0;
lp->tda[i].tx_config = 0;
lp->tda[i].tx_pktsize = 0;
lp->tda[i].tx_frag_count = 0;
lp->tda[i].link =
(lp->tda_laddr +
(i + 1) * sizeof(sonic_td_t)) | SONIC_END_OF_LINKS;
}
lp->tda[SONIC_NUM_TDS - 1].link =
(lp->tda_laddr & 0xffff) | SONIC_END_OF_LINKS;
SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
lp->cur_tx = lp->dirty_tx = 0;
/*
* put our own address to CAM desc[0]
*/
lp->cda.cam_desc[0].cam_cap0 =
dev->dev_addr[1] << 8 | dev->dev_addr[0];
lp->cda.cam_desc[0].cam_cap1 =
dev->dev_addr[3] << 8 | dev->dev_addr[2];
lp->cda.cam_desc[0].cam_cap2 =
dev->dev_addr[5] << 8 | dev->dev_addr[4];
lp->cda.cam_enable = 1;
for (i = 0; i < 16; i++)
lp->cda.cam_desc[i].cam_entry_pointer = i;
/*
* initialize CAM registers
*/
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
SONIC_WRITE(SONIC_CDC, 16);
/*
* load the CAM
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
i = 0;
while (i++ < 100) {
if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
break;
}
if (sonic_debug > 2) {
printk("sonic_init: CMD=%x, ISR=%x\n",
SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR));
}
/*
* enable receiver, disable loopback
* and enable all interrupts
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
cmd = SONIC_READ(SONIC_CMD);
if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
printk("sonic_init: failed, status=%x\n", cmd);
if (sonic_debug > 2)
printk("sonic_init: new status=%x\n",
SONIC_READ(SONIC_CMD));
return 0;
}
MODULE_LICENSE("GPL");