2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/include/linux/workqueue.h
Tan Xiaojun 90d88bd754 workqueue: Remove deprecated __cancel_delayed_work()
__cancel_delayed_work() was deprecated by 136b5721d7 ("workqueue:
deprecate __cancel_delayed_work()") as cancel_delayed_work() was
updated so that it could be used from all contexts.  Enough time has
passed since the deprecation.  Let's remove it.

tj: description update

Signed-off-by: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-18 18:29:01 -05:00

643 lines
20 KiB
C

/*
* workqueue.h --- work queue handling for Linux.
*/
#ifndef _LINUX_WORKQUEUE_H
#define _LINUX_WORKQUEUE_H
#include <linux/timer.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/threads.h>
#include <linux/atomic.h>
#include <linux/cpumask.h>
struct workqueue_struct;
struct work_struct;
typedef void (*work_func_t)(struct work_struct *work);
void delayed_work_timer_fn(unsigned long __data);
/*
* The first word is the work queue pointer and the flags rolled into
* one
*/
#define work_data_bits(work) ((unsigned long *)(&(work)->data))
enum {
WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */
WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */
WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */
WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */
#ifdef CONFIG_DEBUG_OBJECTS_WORK
WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */
WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */
#else
WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */
#endif
WORK_STRUCT_COLOR_BITS = 4,
WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT,
WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT,
WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT,
WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT,
#ifdef CONFIG_DEBUG_OBJECTS_WORK
WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT,
#else
WORK_STRUCT_STATIC = 0,
#endif
/*
* The last color is no color used for works which don't
* participate in workqueue flushing.
*/
WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1,
WORK_NO_COLOR = WORK_NR_COLORS,
/* special cpu IDs */
WORK_CPU_UNBOUND = NR_CPUS,
WORK_CPU_END = NR_CPUS + 1,
/*
* Reserve 7 bits off of pwq pointer w/ debugobjects turned off.
* This makes pwqs aligned to 256 bytes and allows 15 workqueue
* flush colors.
*/
WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT +
WORK_STRUCT_COLOR_BITS,
/* data contains off-queue information when !WORK_STRUCT_PWQ */
WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT,
WORK_OFFQ_CANCELING = (1 << WORK_OFFQ_FLAG_BASE),
/*
* When a work item is off queue, its high bits point to the last
* pool it was on. Cap at 31 bits and use the highest number to
* indicate that no pool is associated.
*/
WORK_OFFQ_FLAG_BITS = 1,
WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1,
/* convenience constants */
WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1,
WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT,
/* bit mask for work_busy() return values */
WORK_BUSY_PENDING = 1 << 0,
WORK_BUSY_RUNNING = 1 << 1,
/* maximum string length for set_worker_desc() */
WORKER_DESC_LEN = 24,
};
struct work_struct {
atomic_long_t data;
struct list_head entry;
work_func_t func;
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
#define WORK_DATA_INIT() ATOMIC_LONG_INIT(WORK_STRUCT_NO_POOL)
#define WORK_DATA_STATIC_INIT() \
ATOMIC_LONG_INIT(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)
struct delayed_work {
struct work_struct work;
struct timer_list timer;
/* target workqueue and CPU ->timer uses to queue ->work */
struct workqueue_struct *wq;
int cpu;
};
/*
* A struct for workqueue attributes. This can be used to change
* attributes of an unbound workqueue.
*
* Unlike other fields, ->no_numa isn't a property of a worker_pool. It
* only modifies how apply_workqueue_attrs() select pools and thus doesn't
* participate in pool hash calculations or equality comparisons.
*/
struct workqueue_attrs {
int nice; /* nice level */
cpumask_var_t cpumask; /* allowed CPUs */
bool no_numa; /* disable NUMA affinity */
};
static inline struct delayed_work *to_delayed_work(struct work_struct *work)
{
return container_of(work, struct delayed_work, work);
}
struct execute_work {
struct work_struct work;
};
#ifdef CONFIG_LOCKDEP
/*
* NB: because we have to copy the lockdep_map, setting _key
* here is required, otherwise it could get initialised to the
* copy of the lockdep_map!
*/
#define __WORK_INIT_LOCKDEP_MAP(n, k) \
.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
#else
#define __WORK_INIT_LOCKDEP_MAP(n, k)
#endif
#define __WORK_INITIALIZER(n, f) { \
.data = WORK_DATA_STATIC_INIT(), \
.entry = { &(n).entry, &(n).entry }, \
.func = (f), \
__WORK_INIT_LOCKDEP_MAP(#n, &(n)) \
}
#define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \
.work = __WORK_INITIALIZER((n).work, (f)), \
.timer = __TIMER_INITIALIZER(delayed_work_timer_fn, \
0, (unsigned long)&(n), \
(tflags) | TIMER_IRQSAFE), \
}
#define DECLARE_WORK(n, f) \
struct work_struct n = __WORK_INITIALIZER(n, f)
#define DECLARE_DELAYED_WORK(n, f) \
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
#define DECLARE_DEFERRABLE_WORK(n, f) \
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
/*
* initialize a work item's function pointer
*/
#define PREPARE_WORK(_work, _func) \
do { \
(_work)->func = (_func); \
} while (0)
#define PREPARE_DELAYED_WORK(_work, _func) \
PREPARE_WORK(&(_work)->work, (_func))
#ifdef CONFIG_DEBUG_OBJECTS_WORK
extern void __init_work(struct work_struct *work, int onstack);
extern void destroy_work_on_stack(struct work_struct *work);
static inline unsigned int work_static(struct work_struct *work)
{
return *work_data_bits(work) & WORK_STRUCT_STATIC;
}
#else
static inline void __init_work(struct work_struct *work, int onstack) { }
static inline void destroy_work_on_stack(struct work_struct *work) { }
static inline unsigned int work_static(struct work_struct *work) { return 0; }
#endif
/*
* initialize all of a work item in one go
*
* NOTE! No point in using "atomic_long_set()": using a direct
* assignment of the work data initializer allows the compiler
* to generate better code.
*/
#ifdef CONFIG_LOCKDEP
#define __INIT_WORK(_work, _func, _onstack) \
do { \
static struct lock_class_key __key; \
\
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
lockdep_init_map(&(_work)->lockdep_map, #_work, &__key, 0); \
INIT_LIST_HEAD(&(_work)->entry); \
PREPARE_WORK((_work), (_func)); \
} while (0)
#else
#define __INIT_WORK(_work, _func, _onstack) \
do { \
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
INIT_LIST_HEAD(&(_work)->entry); \
PREPARE_WORK((_work), (_func)); \
} while (0)
#endif
#define INIT_WORK(_work, _func) \
do { \
__INIT_WORK((_work), (_func), 0); \
} while (0)
#define INIT_WORK_ONSTACK(_work, _func) \
do { \
__INIT_WORK((_work), (_func), 1); \
} while (0)
#define __INIT_DELAYED_WORK(_work, _func, _tflags) \
do { \
INIT_WORK(&(_work)->work, (_func)); \
__setup_timer(&(_work)->timer, delayed_work_timer_fn, \
(unsigned long)(_work), \
(_tflags) | TIMER_IRQSAFE); \
} while (0)
#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \
do { \
INIT_WORK_ONSTACK(&(_work)->work, (_func)); \
__setup_timer_on_stack(&(_work)->timer, \
delayed_work_timer_fn, \
(unsigned long)(_work), \
(_tflags) | TIMER_IRQSAFE); \
} while (0)
#define INIT_DELAYED_WORK(_work, _func) \
__INIT_DELAYED_WORK(_work, _func, 0)
#define INIT_DELAYED_WORK_ONSTACK(_work, _func) \
__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
#define INIT_DEFERRABLE_WORK(_work, _func) \
__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \
__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
/**
* work_pending - Find out whether a work item is currently pending
* @work: The work item in question
*/
#define work_pending(work) \
test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
/**
* delayed_work_pending - Find out whether a delayable work item is currently
* pending
* @work: The work item in question
*/
#define delayed_work_pending(w) \
work_pending(&(w)->work)
/**
* work_clear_pending - for internal use only, mark a work item as not pending
* @work: The work item in question
*/
#define work_clear_pending(work) \
clear_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
/*
* Workqueue flags and constants. For details, please refer to
* Documentation/workqueue.txt.
*/
enum {
/*
* All wqs are now non-reentrant making the following flag
* meaningless. Will be removed.
*/
WQ_NON_REENTRANT = 1 << 0, /* DEPRECATED */
WQ_UNBOUND = 1 << 1, /* not bound to any cpu */
WQ_FREEZABLE = 1 << 2, /* freeze during suspend */
WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */
WQ_HIGHPRI = 1 << 4, /* high priority */
WQ_CPU_INTENSIVE = 1 << 5, /* cpu instensive workqueue */
WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */
/*
* Per-cpu workqueues are generally preferred because they tend to
* show better performance thanks to cache locality. Per-cpu
* workqueues exclude the scheduler from choosing the CPU to
* execute the worker threads, which has an unfortunate side effect
* of increasing power consumption.
*
* The scheduler considers a CPU idle if it doesn't have any task
* to execute and tries to keep idle cores idle to conserve power;
* however, for example, a per-cpu work item scheduled from an
* interrupt handler on an idle CPU will force the scheduler to
* excute the work item on that CPU breaking the idleness, which in
* turn may lead to more scheduling choices which are sub-optimal
* in terms of power consumption.
*
* Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
* but become unbound if workqueue.power_efficient kernel param is
* specified. Per-cpu workqueues which are identified to
* contribute significantly to power-consumption are identified and
* marked with this flag and enabling the power_efficient mode
* leads to noticeable power saving at the cost of small
* performance disadvantage.
*
* http://thread.gmane.org/gmane.linux.kernel/1480396
*/
WQ_POWER_EFFICIENT = 1 << 7,
__WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */
__WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */
WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */
WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */
WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2,
};
/* unbound wq's aren't per-cpu, scale max_active according to #cpus */
#define WQ_UNBOUND_MAX_ACTIVE \
max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
/*
* System-wide workqueues which are always present.
*
* system_wq is the one used by schedule[_delayed]_work[_on]().
* Multi-CPU multi-threaded. There are users which expect relatively
* short queue flush time. Don't queue works which can run for too
* long.
*
* system_long_wq is similar to system_wq but may host long running
* works. Queue flushing might take relatively long.
*
* system_unbound_wq is unbound workqueue. Workers are not bound to
* any specific CPU, not concurrency managed, and all queued works are
* executed immediately as long as max_active limit is not reached and
* resources are available.
*
* system_freezable_wq is equivalent to system_wq except that it's
* freezable.
*
* *_power_efficient_wq are inclined towards saving power and converted
* into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
* they are same as their non-power-efficient counterparts - e.g.
* system_power_efficient_wq is identical to system_wq if
* 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info.
*/
extern struct workqueue_struct *system_wq;
extern struct workqueue_struct *system_long_wq;
extern struct workqueue_struct *system_unbound_wq;
extern struct workqueue_struct *system_freezable_wq;
extern struct workqueue_struct *system_power_efficient_wq;
extern struct workqueue_struct *system_freezable_power_efficient_wq;
static inline struct workqueue_struct * __deprecated __system_nrt_wq(void)
{
return system_wq;
}
static inline struct workqueue_struct * __deprecated __system_nrt_freezable_wq(void)
{
return system_freezable_wq;
}
/* equivlalent to system_wq and system_freezable_wq, deprecated */
#define system_nrt_wq __system_nrt_wq()
#define system_nrt_freezable_wq __system_nrt_freezable_wq()
extern struct workqueue_struct *
__alloc_workqueue_key(const char *fmt, unsigned int flags, int max_active,
struct lock_class_key *key, const char *lock_name, ...) __printf(1, 6);
/**
* alloc_workqueue - allocate a workqueue
* @fmt: printf format for the name of the workqueue
* @flags: WQ_* flags
* @max_active: max in-flight work items, 0 for default
* @args: args for @fmt
*
* Allocate a workqueue with the specified parameters. For detailed
* information on WQ_* flags, please refer to Documentation/workqueue.txt.
*
* The __lock_name macro dance is to guarantee that single lock_class_key
* doesn't end up with different namesm, which isn't allowed by lockdep.
*
* RETURNS:
* Pointer to the allocated workqueue on success, %NULL on failure.
*/
#ifdef CONFIG_LOCKDEP
#define alloc_workqueue(fmt, flags, max_active, args...) \
({ \
static struct lock_class_key __key; \
const char *__lock_name; \
\
if (__builtin_constant_p(fmt)) \
__lock_name = (fmt); \
else \
__lock_name = #fmt; \
\
__alloc_workqueue_key((fmt), (flags), (max_active), \
&__key, __lock_name, ##args); \
})
#else
#define alloc_workqueue(fmt, flags, max_active, args...) \
__alloc_workqueue_key((fmt), (flags), (max_active), \
NULL, NULL, ##args)
#endif
/**
* alloc_ordered_workqueue - allocate an ordered workqueue
* @fmt: printf format for the name of the workqueue
* @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
* @args: args for @fmt
*
* Allocate an ordered workqueue. An ordered workqueue executes at
* most one work item at any given time in the queued order. They are
* implemented as unbound workqueues with @max_active of one.
*
* RETURNS:
* Pointer to the allocated workqueue on success, %NULL on failure.
*/
#define alloc_ordered_workqueue(fmt, flags, args...) \
alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)
#define create_workqueue(name) \
alloc_workqueue("%s", WQ_MEM_RECLAIM, 1, (name))
#define create_freezable_workqueue(name) \
alloc_workqueue("%s", WQ_FREEZABLE | WQ_UNBOUND | WQ_MEM_RECLAIM, \
1, (name))
#define create_singlethread_workqueue(name) \
alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, (name))
extern void destroy_workqueue(struct workqueue_struct *wq);
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask);
void free_workqueue_attrs(struct workqueue_attrs *attrs);
int apply_workqueue_attrs(struct workqueue_struct *wq,
const struct workqueue_attrs *attrs);
extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
struct work_struct *work);
extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *work, unsigned long delay);
extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay);
extern void flush_workqueue(struct workqueue_struct *wq);
extern void drain_workqueue(struct workqueue_struct *wq);
extern void flush_scheduled_work(void);
extern int schedule_on_each_cpu(work_func_t func);
int execute_in_process_context(work_func_t fn, struct execute_work *);
extern bool flush_work(struct work_struct *work);
extern bool cancel_work_sync(struct work_struct *work);
extern bool flush_delayed_work(struct delayed_work *dwork);
extern bool cancel_delayed_work(struct delayed_work *dwork);
extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
extern void workqueue_set_max_active(struct workqueue_struct *wq,
int max_active);
extern bool current_is_workqueue_rescuer(void);
extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
extern unsigned int work_busy(struct work_struct *work);
extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
extern void print_worker_info(const char *log_lvl, struct task_struct *task);
/**
* queue_work - queue work on a workqueue
* @wq: workqueue to use
* @work: work to queue
*
* Returns %false if @work was already on a queue, %true otherwise.
*
* We queue the work to the CPU on which it was submitted, but if the CPU dies
* it can be processed by another CPU.
*/
static inline bool queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
return queue_work_on(WORK_CPU_UNBOUND, wq, work);
}
/**
* queue_delayed_work - queue work on a workqueue after delay
* @wq: workqueue to use
* @dwork: delayable work to queue
* @delay: number of jiffies to wait before queueing
*
* Equivalent to queue_delayed_work_on() but tries to use the local CPU.
*/
static inline bool queue_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork,
unsigned long delay)
{
return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
/**
* mod_delayed_work - modify delay of or queue a delayed work
* @wq: workqueue to use
* @dwork: work to queue
* @delay: number of jiffies to wait before queueing
*
* mod_delayed_work_on() on local CPU.
*/
static inline bool mod_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork,
unsigned long delay)
{
return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
/**
* schedule_work_on - put work task on a specific cpu
* @cpu: cpu to put the work task on
* @work: job to be done
*
* This puts a job on a specific cpu
*/
static inline bool schedule_work_on(int cpu, struct work_struct *work)
{
return queue_work_on(cpu, system_wq, work);
}
/**
* schedule_work - put work task in global workqueue
* @work: job to be done
*
* Returns %false if @work was already on the kernel-global workqueue and
* %true otherwise.
*
* This puts a job in the kernel-global workqueue if it was not already
* queued and leaves it in the same position on the kernel-global
* workqueue otherwise.
*/
static inline bool schedule_work(struct work_struct *work)
{
return queue_work(system_wq, work);
}
/**
* schedule_delayed_work_on - queue work in global workqueue on CPU after delay
* @cpu: cpu to use
* @dwork: job to be done
* @delay: number of jiffies to wait
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue on the specified CPU.
*/
static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
unsigned long delay)
{
return queue_delayed_work_on(cpu, system_wq, dwork, delay);
}
/**
* schedule_delayed_work - put work task in global workqueue after delay
* @dwork: job to be done
* @delay: number of jiffies to wait or 0 for immediate execution
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue.
*/
static inline bool schedule_delayed_work(struct delayed_work *dwork,
unsigned long delay)
{
return queue_delayed_work(system_wq, dwork, delay);
}
/**
* keventd_up - is workqueue initialized yet?
*/
static inline bool keventd_up(void)
{
return system_wq != NULL;
}
/* used to be different but now identical to flush_work(), deprecated */
static inline bool __deprecated flush_work_sync(struct work_struct *work)
{
return flush_work(work);
}
/* used to be different but now identical to flush_delayed_work(), deprecated */
static inline bool __deprecated flush_delayed_work_sync(struct delayed_work *dwork)
{
return flush_delayed_work(dwork);
}
#ifndef CONFIG_SMP
static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
return fn(arg);
}
#else
long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
#endif /* CONFIG_SMP */
#ifdef CONFIG_FREEZER
extern void freeze_workqueues_begin(void);
extern bool freeze_workqueues_busy(void);
extern void thaw_workqueues(void);
#endif /* CONFIG_FREEZER */
#ifdef CONFIG_SYSFS
int workqueue_sysfs_register(struct workqueue_struct *wq);
#else /* CONFIG_SYSFS */
static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
{ return 0; }
#endif /* CONFIG_SYSFS */
#endif