2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/drivers/media/i2c/adv7842.c
Christophe JAILLET 4e383575a1 media: i2c: adv7842: make array cri static and const, makes object smaller
Don't populate the array 'cri' on the stack but instead make it
static and const. Makes the object code smaller by 165 bytes.

Turn the 2nd parameter of 'log_infoframe()' const accordingly.

Before:
   text	   data	    bss	    dec	    hex	filename
  98533	  20024	    256	 118813	  1d01d	drivers/media/i2c/adv7842.o

After:
   text	   data	    bss	    dec	    hex	filename
  98304	  20088	    256	 118648	  1cf78	drivers/media/i2c/adv7842.o

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-10-24 18:33:18 -03:00

3617 lines
102 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* adv7842 - Analog Devices ADV7842 video decoder driver
*
* Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
/*
* References (c = chapter, p = page):
* REF_01 - Analog devices, ADV7842,
* Register Settings Recommendations, Rev. 1.9, April 2011
* REF_02 - Analog devices, Software User Guide, UG-206,
* ADV7842 I2C Register Maps, Rev. 0, November 2010
* REF_03 - Analog devices, Hardware User Guide, UG-214,
* ADV7842 Fast Switching 2:1 HDMI 1.4 Receiver with 3D-Comb
* Decoder and Digitizer , Rev. 0, January 2011
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/hdmi.h>
#include <media/cec.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dv-timings.h>
#include <media/i2c/adv7842.h>
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
MODULE_DESCRIPTION("Analog Devices ADV7842 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
MODULE_LICENSE("GPL");
/* ADV7842 system clock frequency */
#define ADV7842_fsc (28636360)
#define ADV7842_RGB_OUT (1 << 1)
#define ADV7842_OP_FORMAT_SEL_8BIT (0 << 0)
#define ADV7842_OP_FORMAT_SEL_10BIT (1 << 0)
#define ADV7842_OP_FORMAT_SEL_12BIT (2 << 0)
#define ADV7842_OP_MODE_SEL_SDR_422 (0 << 5)
#define ADV7842_OP_MODE_SEL_DDR_422 (1 << 5)
#define ADV7842_OP_MODE_SEL_SDR_444 (2 << 5)
#define ADV7842_OP_MODE_SEL_DDR_444 (3 << 5)
#define ADV7842_OP_MODE_SEL_SDR_422_2X (4 << 5)
#define ADV7842_OP_MODE_SEL_ADI_CM (5 << 5)
#define ADV7842_OP_CH_SEL_GBR (0 << 5)
#define ADV7842_OP_CH_SEL_GRB (1 << 5)
#define ADV7842_OP_CH_SEL_BGR (2 << 5)
#define ADV7842_OP_CH_SEL_RGB (3 << 5)
#define ADV7842_OP_CH_SEL_BRG (4 << 5)
#define ADV7842_OP_CH_SEL_RBG (5 << 5)
#define ADV7842_OP_SWAP_CB_CR (1 << 0)
#define ADV7842_MAX_ADDRS (3)
/*
**********************************************************************
*
* Arrays with configuration parameters for the ADV7842
*
**********************************************************************
*/
struct adv7842_format_info {
u32 code;
u8 op_ch_sel;
bool rgb_out;
bool swap_cb_cr;
u8 op_format_sel;
};
struct adv7842_state {
struct adv7842_platform_data pdata;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler hdl;
enum adv7842_mode mode;
struct v4l2_dv_timings timings;
enum adv7842_vid_std_select vid_std_select;
const struct adv7842_format_info *format;
v4l2_std_id norm;
struct {
u8 edid[256];
u32 present;
} hdmi_edid;
struct {
u8 edid[256];
u32 present;
} vga_edid;
struct v4l2_fract aspect_ratio;
u32 rgb_quantization_range;
bool is_cea_format;
struct delayed_work delayed_work_enable_hotplug;
bool restart_stdi_once;
bool hdmi_port_a;
/* i2c clients */
struct i2c_client *i2c_sdp_io;
struct i2c_client *i2c_sdp;
struct i2c_client *i2c_cp;
struct i2c_client *i2c_vdp;
struct i2c_client *i2c_afe;
struct i2c_client *i2c_hdmi;
struct i2c_client *i2c_repeater;
struct i2c_client *i2c_edid;
struct i2c_client *i2c_infoframe;
struct i2c_client *i2c_cec;
struct i2c_client *i2c_avlink;
/* controls */
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *analog_sampling_phase_ctrl;
struct v4l2_ctrl *free_run_color_ctrl_manual;
struct v4l2_ctrl *free_run_color_ctrl;
struct v4l2_ctrl *rgb_quantization_range_ctrl;
struct cec_adapter *cec_adap;
u8 cec_addr[ADV7842_MAX_ADDRS];
u8 cec_valid_addrs;
bool cec_enabled_adap;
};
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv7842_timings_exceptions[] = {
V4L2_DV_BT_CEA_1280X720P30,
{ }
};
static bool adv7842_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
int i;
for (i = 0; adv7842_timings_exceptions[i].bt.width; i++)
if (v4l2_match_dv_timings(t, adv7842_timings_exceptions + i, 0, false))
return false;
return true;
}
struct adv7842_video_standards {
struct v4l2_dv_timings timings;
u8 vid_std;
u8 v_freq;
};
/* sorted by number of lines */
static const struct adv7842_video_standards adv7842_prim_mode_comp[] = {
/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
/* TODO add 1920x1080P60_RB (CVT timing) */
{ },
};
/* sorted by number of lines */
static const struct adv7842_video_standards adv7842_prim_mode_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
/* TODO add 1600X1200P60_RB (not a DMT timing) */
{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
{ },
};
/* sorted by number of lines */
static const struct adv7842_video_standards adv7842_prim_mode_hdmi_comp[] = {
{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
{ },
};
/* sorted by number of lines */
static const struct adv7842_video_standards adv7842_prim_mode_hdmi_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ },
};
static const struct v4l2_event adv7842_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
/* ----------------------------------------------------------------------- */
static inline struct adv7842_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct adv7842_state, sd);
}
static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct adv7842_state, hdl)->sd;
}
static inline unsigned hblanking(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_BLANKING_WIDTH(t);
}
static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_FRAME_WIDTH(t);
}
static inline unsigned vblanking(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_BLANKING_HEIGHT(t);
}
static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_FRAME_HEIGHT(t);
}
/* ----------------------------------------------------------------------- */
static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
u8 command, bool check)
{
union i2c_smbus_data data;
if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
I2C_SMBUS_READ, command,
I2C_SMBUS_BYTE_DATA, &data))
return data.byte;
if (check)
v4l_err(client, "error reading %02x, %02x\n",
client->addr, command);
return -EIO;
}
static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command)
{
int i;
for (i = 0; i < 3; i++) {
int ret = adv_smbus_read_byte_data_check(client, command, true);
if (ret >= 0) {
if (i)
v4l_err(client, "read ok after %d retries\n", i);
return ret;
}
}
v4l_err(client, "read failed\n");
return -EIO;
}
static s32 adv_smbus_write_byte_data(struct i2c_client *client,
u8 command, u8 value)
{
union i2c_smbus_data data;
int err;
int i;
data.byte = value;
for (i = 0; i < 3; i++) {
err = i2c_smbus_xfer(client->adapter, client->addr,
client->flags,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_BYTE_DATA, &data);
if (!err)
break;
}
if (err < 0)
v4l_err(client, "error writing %02x, %02x, %02x\n",
client->addr, command, value);
return err;
}
static void adv_smbus_write_byte_no_check(struct i2c_client *client,
u8 command, u8 value)
{
union i2c_smbus_data data;
data.byte = value;
i2c_smbus_xfer(client->adapter, client->addr,
client->flags,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_BYTE_DATA, &data);
}
static s32 adv_smbus_write_i2c_block_data(struct i2c_client *client,
u8 command, unsigned length, const u8 *values)
{
union i2c_smbus_data data;
if (length > I2C_SMBUS_BLOCK_MAX)
length = I2C_SMBUS_BLOCK_MAX;
data.block[0] = length;
memcpy(data.block + 1, values, length);
return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_I2C_BLOCK_DATA, &data);
}
/* ----------------------------------------------------------------------- */
static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return adv_smbus_read_byte_data(client, reg);
}
static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return adv_smbus_write_byte_data(client, reg, val);
}
static inline int io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return io_write(sd, reg, (io_read(sd, reg) & mask) | val);
}
static inline int io_write_clr_set(struct v4l2_subdev *sd,
u8 reg, u8 mask, u8 val)
{
return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
}
static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_avlink, reg);
}
static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_avlink, reg, val);
}
static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_cec, reg);
}
static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_cec, reg, val);
}
static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
}
static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_infoframe, reg);
}
static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_infoframe, reg, val);
}
static inline int sdp_io_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_sdp_io, reg);
}
static inline int sdp_io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_sdp_io, reg, val);
}
static inline int sdp_io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return sdp_io_write(sd, reg, (sdp_io_read(sd, reg) & mask) | val);
}
static inline int sdp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_sdp, reg);
}
static inline int sdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_sdp, reg, val);
}
static inline int sdp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return sdp_write(sd, reg, (sdp_read(sd, reg) & mask) | val);
}
static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_afe, reg);
}
static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_afe, reg, val);
}
static inline int afe_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return afe_write(sd, reg, (afe_read(sd, reg) & mask) | val);
}
static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_repeater, reg);
}
static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_repeater, reg, val);
}
static inline int rep_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return rep_write(sd, reg, (rep_read(sd, reg) & mask) | val);
}
static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_edid, reg);
}
static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_edid, reg, val);
}
static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_hdmi, reg);
}
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_hdmi, reg, val);
}
static inline int hdmi_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return hdmi_write(sd, reg, (hdmi_read(sd, reg) & mask) | val);
}
static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_cp, reg);
}
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_cp, reg, val);
}
static inline int cp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return cp_write(sd, reg, (cp_read(sd, reg) & mask) | val);
}
static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_vdp, reg);
}
static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7842_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_vdp, reg, val);
}
static void main_reset(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
adv_smbus_write_byte_no_check(client, 0xff, 0x80);
mdelay(5);
}
/* -----------------------------------------------------------------------------
* Format helpers
*/
static const struct adv7842_format_info adv7842_formats[] = {
{ MEDIA_BUS_FMT_RGB888_1X24, ADV7842_OP_CH_SEL_RGB, true, false,
ADV7842_OP_MODE_SEL_SDR_444 | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_2X8, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_2X8, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV10_2X10, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YVYU10_2X10, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YUYV12_2X12, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_2X12, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_UYVY8_1X16, ADV7842_OP_CH_SEL_RBG, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_VYUY8_1X16, ADV7842_OP_CH_SEL_RBG, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_1X16, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_1X16, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_UYVY10_1X20, ADV7842_OP_CH_SEL_RBG, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_VYUY10_1X20, ADV7842_OP_CH_SEL_RBG, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YUYV10_1X20, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YVYU10_1X20, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_UYVY12_1X24, ADV7842_OP_CH_SEL_RBG, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_VYUY12_1X24, ADV7842_OP_CH_SEL_RBG, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YUYV12_1X24, ADV7842_OP_CH_SEL_RGB, false, false,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_1X24, ADV7842_OP_CH_SEL_RGB, false, true,
ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT },
};
static const struct adv7842_format_info *
adv7842_format_info(struct adv7842_state *state, u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(adv7842_formats); ++i) {
if (adv7842_formats[i].code == code)
return &adv7842_formats[i];
}
return NULL;
}
/* ----------------------------------------------------------------------- */
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
return ((state->mode == ADV7842_MODE_RGB) ||
(state->mode == ADV7842_MODE_COMP));
}
static inline bool is_digital_input(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
return state->mode == ADV7842_MODE_HDMI;
}
static const struct v4l2_dv_timings_cap adv7842_timings_cap_analog = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
static const struct v4l2_dv_timings_cap adv7842_timings_cap_digital = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
static inline const struct v4l2_dv_timings_cap *
adv7842_get_dv_timings_cap(struct v4l2_subdev *sd)
{
return is_digital_input(sd) ? &adv7842_timings_cap_digital :
&adv7842_timings_cap_analog;
}
/* ----------------------------------------------------------------------- */
static u16 adv7842_read_cable_det(struct v4l2_subdev *sd)
{
u8 reg = io_read(sd, 0x6f);
u16 val = 0;
if (reg & 0x02)
val |= 1; /* port A */
if (reg & 0x01)
val |= 2; /* port B */
return val;
}
static void adv7842_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct adv7842_state *state = container_of(dwork,
struct adv7842_state, delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &state->sd;
int present = state->hdmi_edid.present;
u8 mask = 0;
v4l2_dbg(2, debug, sd, "%s: enable hotplug on ports: 0x%x\n",
__func__, present);
if (present & (0x04 << ADV7842_EDID_PORT_A))
mask |= 0x20;
if (present & (0x04 << ADV7842_EDID_PORT_B))
mask |= 0x10;
io_write_and_or(sd, 0x20, 0xcf, mask);
}
static int edid_write_vga_segment(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct adv7842_state *state = to_state(sd);
const u8 *val = state->vga_edid.edid;
int err = 0;
int i;
v4l2_dbg(2, debug, sd, "%s: write EDID on VGA port\n", __func__);
/* HPA disable on port A and B */
io_write_and_or(sd, 0x20, 0xcf, 0x00);
/* Disable I2C access to internal EDID ram from VGA DDC port */
rep_write_and_or(sd, 0x7f, 0x7f, 0x00);
/* edid segment pointer '1' for VGA port */
rep_write_and_or(sd, 0x77, 0xef, 0x10);
for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX)
err = adv_smbus_write_i2c_block_data(state->i2c_edid, i,
I2C_SMBUS_BLOCK_MAX, val + i);
if (err)
return err;
/* Calculates the checksums and enables I2C access
* to internal EDID ram from VGA DDC port.
*/
rep_write_and_or(sd, 0x7f, 0x7f, 0x80);
for (i = 0; i < 1000; i++) {
if (rep_read(sd, 0x79) & 0x20)
break;
mdelay(1);
}
if (i == 1000) {
v4l_err(client, "error enabling edid on VGA port\n");
return -EIO;
}
/* enable hotplug after 200 ms */
schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 5);
return 0;
}
static int edid_write_hdmi_segment(struct v4l2_subdev *sd, u8 port)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct adv7842_state *state = to_state(sd);
const u8 *edid = state->hdmi_edid.edid;
int spa_loc;
u16 pa;
int err = 0;
int i;
v4l2_dbg(2, debug, sd, "%s: write EDID on port %c\n",
__func__, (port == ADV7842_EDID_PORT_A) ? 'A' : 'B');
/* HPA disable on port A and B */
io_write_and_or(sd, 0x20, 0xcf, 0x00);
/* Disable I2C access to internal EDID ram from HDMI DDC ports */
rep_write_and_or(sd, 0x77, 0xf3, 0x00);
if (!state->hdmi_edid.present) {
cec_phys_addr_invalidate(state->cec_adap);
return 0;
}
pa = v4l2_get_edid_phys_addr(edid, 256, &spa_loc);
err = v4l2_phys_addr_validate(pa, &pa, NULL);
if (err)
return err;
/*
* Return an error if no location of the source physical address
* was found.
*/
if (spa_loc == 0)
return -EINVAL;
/* edid segment pointer '0' for HDMI ports */
rep_write_and_or(sd, 0x77, 0xef, 0x00);
for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX)
err = adv_smbus_write_i2c_block_data(state->i2c_edid, i,
I2C_SMBUS_BLOCK_MAX, edid + i);
if (err)
return err;
if (port == ADV7842_EDID_PORT_A) {
rep_write(sd, 0x72, edid[spa_loc]);
rep_write(sd, 0x73, edid[spa_loc + 1]);
} else {
rep_write(sd, 0x74, edid[spa_loc]);
rep_write(sd, 0x75, edid[spa_loc + 1]);
}
rep_write(sd, 0x76, spa_loc & 0xff);
rep_write_and_or(sd, 0x77, 0xbf, (spa_loc >> 2) & 0x40);
/* Calculates the checksums and enables I2C access to internal
* EDID ram from HDMI DDC ports
*/
rep_write_and_or(sd, 0x77, 0xf3, state->hdmi_edid.present);
for (i = 0; i < 1000; i++) {
if (rep_read(sd, 0x7d) & state->hdmi_edid.present)
break;
mdelay(1);
}
if (i == 1000) {
v4l_err(client, "error enabling edid on port %c\n",
(port == ADV7842_EDID_PORT_A) ? 'A' : 'B');
return -EIO;
}
cec_s_phys_addr(state->cec_adap, pa, false);
/* enable hotplug after 200 ms */
schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 5);
return 0;
}
/* ----------------------------------------------------------------------- */
#ifdef CONFIG_VIDEO_ADV_DEBUG
static void adv7842_inv_register(struct v4l2_subdev *sd)
{
v4l2_info(sd, "0x000-0x0ff: IO Map\n");
v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
v4l2_info(sd, "0x400-0x4ff: SDP_IO Map\n");
v4l2_info(sd, "0x500-0x5ff: SDP Map\n");
v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
v4l2_info(sd, "0xa00-0xaff: CP Map\n");
v4l2_info(sd, "0xb00-0xbff: VDP Map\n");
}
static int adv7842_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
reg->size = 1;
switch (reg->reg >> 8) {
case 0:
reg->val = io_read(sd, reg->reg & 0xff);
break;
case 1:
reg->val = avlink_read(sd, reg->reg & 0xff);
break;
case 2:
reg->val = cec_read(sd, reg->reg & 0xff);
break;
case 3:
reg->val = infoframe_read(sd, reg->reg & 0xff);
break;
case 4:
reg->val = sdp_io_read(sd, reg->reg & 0xff);
break;
case 5:
reg->val = sdp_read(sd, reg->reg & 0xff);
break;
case 6:
reg->val = afe_read(sd, reg->reg & 0xff);
break;
case 7:
reg->val = rep_read(sd, reg->reg & 0xff);
break;
case 8:
reg->val = edid_read(sd, reg->reg & 0xff);
break;
case 9:
reg->val = hdmi_read(sd, reg->reg & 0xff);
break;
case 0xa:
reg->val = cp_read(sd, reg->reg & 0xff);
break;
case 0xb:
reg->val = vdp_read(sd, reg->reg & 0xff);
break;
default:
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv7842_inv_register(sd);
break;
}
return 0;
}
static int adv7842_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
u8 val = reg->val & 0xff;
switch (reg->reg >> 8) {
case 0:
io_write(sd, reg->reg & 0xff, val);
break;
case 1:
avlink_write(sd, reg->reg & 0xff, val);
break;
case 2:
cec_write(sd, reg->reg & 0xff, val);
break;
case 3:
infoframe_write(sd, reg->reg & 0xff, val);
break;
case 4:
sdp_io_write(sd, reg->reg & 0xff, val);
break;
case 5:
sdp_write(sd, reg->reg & 0xff, val);
break;
case 6:
afe_write(sd, reg->reg & 0xff, val);
break;
case 7:
rep_write(sd, reg->reg & 0xff, val);
break;
case 8:
edid_write(sd, reg->reg & 0xff, val);
break;
case 9:
hdmi_write(sd, reg->reg & 0xff, val);
break;
case 0xa:
cp_write(sd, reg->reg & 0xff, val);
break;
case 0xb:
vdp_write(sd, reg->reg & 0xff, val);
break;
default:
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv7842_inv_register(sd);
break;
}
return 0;
}
#endif
static int adv7842_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
u16 cable_det = adv7842_read_cable_det(sd);
v4l2_dbg(1, debug, sd, "%s: 0x%x\n", __func__, cable_det);
return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
}
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
u8 prim_mode,
const struct adv7842_video_standards *predef_vid_timings,
const struct v4l2_dv_timings *timings)
{
int i;
for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
is_digital_input(sd) ? 250000 : 1000000, false))
continue;
/* video std */
io_write(sd, 0x00, predef_vid_timings[i].vid_std);
/* v_freq and prim mode */
io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + prim_mode);
return 0;
}
return -1;
}
static int configure_predefined_video_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7842_state *state = to_state(sd);
int err;
v4l2_dbg(1, debug, sd, "%s\n", __func__);
/* reset to default values */
io_write(sd, 0x16, 0x43);
io_write(sd, 0x17, 0x5a);
/* disable embedded syncs for auto graphics mode */
cp_write_and_or(sd, 0x81, 0xef, 0x00);
cp_write(sd, 0x26, 0x00);
cp_write(sd, 0x27, 0x00);
cp_write(sd, 0x28, 0x00);
cp_write(sd, 0x29, 0x00);
cp_write(sd, 0x8f, 0x40);
cp_write(sd, 0x90, 0x00);
cp_write(sd, 0xa5, 0x00);
cp_write(sd, 0xa6, 0x00);
cp_write(sd, 0xa7, 0x00);
cp_write(sd, 0xab, 0x00);
cp_write(sd, 0xac, 0x00);
switch (state->mode) {
case ADV7842_MODE_COMP:
case ADV7842_MODE_RGB:
err = find_and_set_predefined_video_timings(sd,
0x01, adv7842_prim_mode_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x02, adv7842_prim_mode_gr, timings);
break;
case ADV7842_MODE_HDMI:
err = find_and_set_predefined_video_timings(sd,
0x05, adv7842_prim_mode_hdmi_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x06, adv7842_prim_mode_hdmi_gr, timings);
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
err = -1;
break;
}
return err;
}
static void configure_custom_video_timings(struct v4l2_subdev *sd,
const struct v4l2_bt_timings *bt)
{
struct adv7842_state *state = to_state(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
u32 width = htotal(bt);
u32 height = vtotal(bt);
u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
u16 cp_start_eav = width - bt->hfrontporch;
u16 cp_start_vbi = height - bt->vfrontporch + 1;
u16 cp_end_vbi = bt->vsync + bt->vbackporch + 1;
u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
((width * (ADV7842_fsc / 100)) / ((u32)bt->pixelclock / 100)) : 0;
const u8 pll[2] = {
0xc0 | ((width >> 8) & 0x1f),
width & 0xff
};
v4l2_dbg(2, debug, sd, "%s\n", __func__);
switch (state->mode) {
case ADV7842_MODE_COMP:
case ADV7842_MODE_RGB:
/* auto graphics */
io_write(sd, 0x00, 0x07); /* video std */
io_write(sd, 0x01, 0x02); /* prim mode */
/* enable embedded syncs for auto graphics mode */
cp_write_and_or(sd, 0x81, 0xef, 0x10);
/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
/* IO-map reg. 0x16 and 0x17 should be written in sequence */
if (adv_smbus_write_i2c_block_data(client, 0x16, 2, pll)) {
v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
break;
}
/* active video - horizontal timing */
cp_write(sd, 0x26, (cp_start_sav >> 8) & 0xf);
cp_write(sd, 0x27, (cp_start_sav & 0xff));
cp_write(sd, 0x28, (cp_start_eav >> 8) & 0xf);
cp_write(sd, 0x29, (cp_start_eav & 0xff));
/* active video - vertical timing */
cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
((cp_end_vbi >> 8) & 0xf));
cp_write(sd, 0xa7, cp_end_vbi & 0xff);
break;
case ADV7842_MODE_HDMI:
/* set default prim_mode/vid_std for HDMI
according to [REF_03, c. 4.2] */
io_write(sd, 0x00, 0x02); /* video std */
io_write(sd, 0x01, 0x06); /* prim mode */
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
cp_write(sd, 0x90, ch1_fr_ll & 0xff);
cp_write(sd, 0xab, (height >> 4) & 0xff);
cp_write(sd, 0xac, (height & 0x0f) << 4);
}
static void adv7842_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
{
struct adv7842_state *state = to_state(sd);
u8 offset_buf[4];
if (auto_offset) {
offset_a = 0x3ff;
offset_b = 0x3ff;
offset_c = 0x3ff;
}
v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
__func__, auto_offset ? "Auto" : "Manual",
offset_a, offset_b, offset_c);
offset_buf[0]= (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
offset_buf[3] = offset_c & 0x0ff;
/* Registers must be written in this order with no i2c access in between */
if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x77, 4, offset_buf))
v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}
static void adv7842_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
{
struct adv7842_state *state = to_state(sd);
u8 gain_buf[4];
u8 gain_man = 1;
u8 agc_mode_man = 1;
if (auto_gain) {
gain_man = 0;
agc_mode_man = 0;
gain_a = 0x100;
gain_b = 0x100;
gain_c = 0x100;
}
v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
__func__, auto_gain ? "Auto" : "Manual",
gain_a, gain_b, gain_c);
gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
gain_buf[3] = ((gain_c & 0x0ff));
/* Registers must be written in this order with no i2c access in between */
if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x73, 4, gain_buf))
v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
bool rgb_output = io_read(sd, 0x02) & 0x02;
bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
u8 y = HDMI_COLORSPACE_RGB;
if (hdmi_signal && (io_read(sd, 0x60) & 1))
y = infoframe_read(sd, 0x01) >> 5;
v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
__func__, state->rgb_quantization_range,
rgb_output, hdmi_signal);
adv7842_set_gain(sd, true, 0x0, 0x0, 0x0);
adv7842_set_offset(sd, true, 0x0, 0x0, 0x0);
io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
switch (state->rgb_quantization_range) {
case V4L2_DV_RGB_RANGE_AUTO:
if (state->mode == ADV7842_MODE_RGB) {
/* Receiving analog RGB signal
* Set RGB full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
break;
}
if (state->mode == ADV7842_MODE_COMP) {
/* Receiving analog YPbPr signal
* Set automode */
io_write_and_or(sd, 0x02, 0x0f, 0xf0);
break;
}
if (hdmi_signal) {
/* Receiving HDMI signal
* Set automode */
io_write_and_or(sd, 0x02, 0x0f, 0xf0);
break;
}
/* Receiving DVI-D signal
* ADV7842 selects RGB limited range regardless of
* input format (CE/IT) in automatic mode */
if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
/* RGB limited range (16-235) */
io_write_and_or(sd, 0x02, 0x0f, 0x00);
} else {
/* RGB full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
if (is_digital_input(sd) && rgb_output) {
adv7842_set_offset(sd, false, 0x40, 0x40, 0x40);
} else {
adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
adv7842_set_offset(sd, false, 0x70, 0x70, 0x70);
}
}
break;
case V4L2_DV_RGB_RANGE_LIMITED:
if (state->mode == ADV7842_MODE_COMP) {
/* YCrCb limited range (16-235) */
io_write_and_or(sd, 0x02, 0x0f, 0x20);
break;
}
if (y != HDMI_COLORSPACE_RGB)
break;
/* RGB limited range (16-235) */
io_write_and_or(sd, 0x02, 0x0f, 0x00);
break;
case V4L2_DV_RGB_RANGE_FULL:
if (state->mode == ADV7842_MODE_COMP) {
/* YCrCb full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x60);
break;
}
if (y != HDMI_COLORSPACE_RGB)
break;
/* RGB full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
if (is_analog_input(sd) || hdmi_signal)
break;
/* Adjust gain/offset for DVI-D signals only */
if (rgb_output) {
adv7842_set_offset(sd, false, 0x40, 0x40, 0x40);
} else {
adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
adv7842_set_offset(sd, false, 0x70, 0x70, 0x70);
}
break;
}
}
static int adv7842_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct adv7842_state *state = to_state(sd);
/* TODO SDP ctrls
contrast/brightness/hue/free run is acting a bit strange,
not sure if sdp csc is correct.
*/
switch (ctrl->id) {
/* standard ctrls */
case V4L2_CID_BRIGHTNESS:
cp_write(sd, 0x3c, ctrl->val);
sdp_write(sd, 0x14, ctrl->val);
/* ignore lsb sdp 0x17[3:2] */
return 0;
case V4L2_CID_CONTRAST:
cp_write(sd, 0x3a, ctrl->val);
sdp_write(sd, 0x13, ctrl->val);
/* ignore lsb sdp 0x17[1:0] */
return 0;
case V4L2_CID_SATURATION:
cp_write(sd, 0x3b, ctrl->val);
sdp_write(sd, 0x15, ctrl->val);
/* ignore lsb sdp 0x17[5:4] */
return 0;
case V4L2_CID_HUE:
cp_write(sd, 0x3d, ctrl->val);
sdp_write(sd, 0x16, ctrl->val);
/* ignore lsb sdp 0x17[7:6] */
return 0;
/* custom ctrls */
case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
afe_write(sd, 0xc8, ctrl->val);
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
cp_write_and_or(sd, 0xbf, ~0x04, (ctrl->val << 2));
sdp_write_and_or(sd, 0xdd, ~0x04, (ctrl->val << 2));
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR: {
u8 R = (ctrl->val & 0xff0000) >> 16;
u8 G = (ctrl->val & 0x00ff00) >> 8;
u8 B = (ctrl->val & 0x0000ff);
/* RGB -> YUV, numerical approximation */
int Y = 66 * R + 129 * G + 25 * B;
int U = -38 * R - 74 * G + 112 * B;
int V = 112 * R - 94 * G - 18 * B;
/* Scale down to 8 bits with rounding */
Y = (Y + 128) >> 8;
U = (U + 128) >> 8;
V = (V + 128) >> 8;
/* make U,V positive */
Y += 16;
U += 128;
V += 128;
v4l2_dbg(1, debug, sd, "R %x, G %x, B %x\n", R, G, B);
v4l2_dbg(1, debug, sd, "Y %x, U %x, V %x\n", Y, U, V);
/* CP */
cp_write(sd, 0xc1, R);
cp_write(sd, 0xc0, G);
cp_write(sd, 0xc2, B);
/* SDP */
sdp_write(sd, 0xde, Y);
sdp_write(sd, 0xdf, (V & 0xf0) | ((U >> 4) & 0x0f));
return 0;
}
case V4L2_CID_DV_RX_RGB_RANGE:
state->rgb_quantization_range = ctrl->val;
set_rgb_quantization_range(sd);
return 0;
}
return -EINVAL;
}
static int adv7842_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
return 0;
}
return -EINVAL;
}
static inline bool no_power(struct v4l2_subdev *sd)
{
return io_read(sd, 0x0c) & 0x24;
}
static inline bool no_cp_signal(struct v4l2_subdev *sd)
{
return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0) || !(cp_read(sd, 0xb1) & 0x80);
}
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
return hdmi_read(sd, 0x05) & 0x80;
}
static int adv7842_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct adv7842_state *state = to_state(sd);
*status = 0;
if (io_read(sd, 0x0c) & 0x24)
*status |= V4L2_IN_ST_NO_POWER;
if (state->mode == ADV7842_MODE_SDP) {
/* status from SDP block */
if (!(sdp_read(sd, 0x5A) & 0x01))
*status |= V4L2_IN_ST_NO_SIGNAL;
v4l2_dbg(1, debug, sd, "%s: SDP status = 0x%x\n",
__func__, *status);
return 0;
}
/* status from CP block */
if ((cp_read(sd, 0xb5) & 0xd0) != 0xd0 ||
!(cp_read(sd, 0xb1) & 0x80))
/* TODO channel 2 */
*status |= V4L2_IN_ST_NO_SIGNAL;
if (is_digital_input(sd) && ((io_read(sd, 0x74) & 0x03) != 0x03))
*status |= V4L2_IN_ST_NO_SIGNAL;
v4l2_dbg(1, debug, sd, "%s: CP status = 0x%x\n",
__func__, *status);
return 0;
}
struct stdi_readback {
u16 bl, lcf, lcvs;
u8 hs_pol, vs_pol;
bool interlaced;
};
static int stdi2dv_timings(struct v4l2_subdev *sd,
struct stdi_readback *stdi,
struct v4l2_dv_timings *timings)
{
struct adv7842_state *state = to_state(sd);
u32 hfreq = (ADV7842_fsc * 8) / stdi->bl;
u32 pix_clk;
int i;
for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
adv7842_get_dv_timings_cap(sd),
adv7842_check_dv_timings, NULL))
continue;
if (vtotal(bt) != stdi->lcf + 1)
continue;
if (bt->vsync != stdi->lcvs)
continue;
pix_clk = hfreq * htotal(bt);
if ((pix_clk < bt->pixelclock + 1000000) &&
(pix_clk > bt->pixelclock - 1000000)) {
*timings = v4l2_dv_timings_presets[i];
return 0;
}
}
if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
false, timings))
return 0;
if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
false, state->aspect_ratio, timings))
return 0;
v4l2_dbg(2, debug, sd,
"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
__func__, stdi->lcvs, stdi->lcf, stdi->bl,
stdi->hs_pol, stdi->vs_pol);
return -1;
}
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
u32 status;
adv7842_g_input_status(sd, &status);
if (status & V4L2_IN_ST_NO_SIGNAL) {
v4l2_dbg(2, debug, sd, "%s: no signal\n", __func__);
return -ENOLINK;
}
stdi->bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2);
stdi->lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4);
stdi->lcvs = cp_read(sd, 0xb3) >> 3;
if ((cp_read(sd, 0xb5) & 0x80) && ((cp_read(sd, 0xb5) & 0x03) == 0x01)) {
stdi->hs_pol = ((cp_read(sd, 0xb5) & 0x10) ?
((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x');
stdi->vs_pol = ((cp_read(sd, 0xb5) & 0x40) ?
((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x');
} else {
stdi->hs_pol = 'x';
stdi->vs_pol = 'x';
}
stdi->interlaced = (cp_read(sd, 0xb1) & 0x40) ? true : false;
if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
return -ENOLINK;
}
v4l2_dbg(2, debug, sd,
"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
__func__, stdi->lcf, stdi->bl, stdi->lcvs,
stdi->hs_pol, stdi->vs_pol,
stdi->interlaced ? "interlaced" : "progressive");
return 0;
}
static int adv7842_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
if (timings->pad != 0)
return -EINVAL;
return v4l2_enum_dv_timings_cap(timings,
adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL);
}
static int adv7842_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
if (cap->pad != 0)
return -EINVAL;
*cap = *adv7842_get_dv_timings_cap(sd);
return 0;
}
/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
if the format is listed in adv7842_timings[] */
static void adv7842_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
v4l2_find_dv_timings_cap(timings, adv7842_get_dv_timings_cap(sd),
is_digital_input(sd) ? 250000 : 1000000,
adv7842_check_dv_timings, NULL);
timings->bt.flags |= V4L2_DV_FL_CAN_DETECT_REDUCED_FPS;
}
static int adv7842_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7842_state *state = to_state(sd);
struct v4l2_bt_timings *bt = &timings->bt;
struct stdi_readback stdi = { 0 };
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
memset(timings, 0, sizeof(struct v4l2_dv_timings));
/* SDP block */
if (state->mode == ADV7842_MODE_SDP)
return -ENODATA;
/* read STDI */
if (read_stdi(sd, &stdi)) {
state->restart_stdi_once = true;
v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
return -ENOLINK;
}
bt->interlaced = stdi.interlaced ?
V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
bt->standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
if (is_digital_input(sd)) {
u32 freq;
timings->type = V4L2_DV_BT_656_1120;
bt->width = (hdmi_read(sd, 0x07) & 0x0f) * 256 + hdmi_read(sd, 0x08);
bt->height = (hdmi_read(sd, 0x09) & 0x0f) * 256 + hdmi_read(sd, 0x0a);
freq = ((hdmi_read(sd, 0x51) << 1) + (hdmi_read(sd, 0x52) >> 7)) * 1000000;
freq += ((hdmi_read(sd, 0x52) & 0x7f) * 7813);
if (is_hdmi(sd)) {
/* adjust for deep color mode */
freq = freq * 8 / (((hdmi_read(sd, 0x0b) & 0xc0) >> 6) * 2 + 8);
}
bt->pixelclock = freq;
bt->hfrontporch = (hdmi_read(sd, 0x20) & 0x03) * 256 +
hdmi_read(sd, 0x21);
bt->hsync = (hdmi_read(sd, 0x22) & 0x03) * 256 +
hdmi_read(sd, 0x23);
bt->hbackporch = (hdmi_read(sd, 0x24) & 0x03) * 256 +
hdmi_read(sd, 0x25);
bt->vfrontporch = ((hdmi_read(sd, 0x2a) & 0x1f) * 256 +
hdmi_read(sd, 0x2b)) / 2;
bt->vsync = ((hdmi_read(sd, 0x2e) & 0x1f) * 256 +
hdmi_read(sd, 0x2f)) / 2;
bt->vbackporch = ((hdmi_read(sd, 0x32) & 0x1f) * 256 +
hdmi_read(sd, 0x33)) / 2;
bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
if (bt->interlaced == V4L2_DV_INTERLACED) {
bt->height += (hdmi_read(sd, 0x0b) & 0x0f) * 256 +
hdmi_read(sd, 0x0c);
bt->il_vfrontporch = ((hdmi_read(sd, 0x2c) & 0x1f) * 256 +
hdmi_read(sd, 0x2d)) / 2;
bt->il_vsync = ((hdmi_read(sd, 0x30) & 0x1f) * 256 +
hdmi_read(sd, 0x31)) / 2;
bt->il_vbackporch = ((hdmi_read(sd, 0x34) & 0x1f) * 256 +
hdmi_read(sd, 0x35)) / 2;
} else {
bt->il_vfrontporch = 0;
bt->il_vsync = 0;
bt->il_vbackporch = 0;
}
adv7842_fill_optional_dv_timings_fields(sd, timings);
if ((timings->bt.flags & V4L2_DV_FL_CAN_REDUCE_FPS) &&
freq < bt->pixelclock) {
u32 reduced_freq = ((u32)bt->pixelclock / 1001) * 1000;
u32 delta_freq = abs(freq - reduced_freq);
if (delta_freq < ((u32)bt->pixelclock - reduced_freq) / 2)
timings->bt.flags |= V4L2_DV_FL_REDUCED_FPS;
}
} else {
/* find format
* Since LCVS values are inaccurate [REF_03, p. 339-340],
* stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
*/
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs += 1;
v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs -= 2;
v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
if (stdi2dv_timings(sd, &stdi, timings)) {
/*
* The STDI block may measure wrong values, especially
* for lcvs and lcf. If the driver can not find any
* valid timing, the STDI block is restarted to measure
* the video timings again. The function will return an
* error, but the restart of STDI will generate a new
* STDI interrupt and the format detection process will
* restart.
*/
if (state->restart_stdi_once) {
v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
/* TODO restart STDI for Sync Channel 2 */
/* enter one-shot mode */
cp_write_and_or(sd, 0x86, 0xf9, 0x00);
/* trigger STDI restart */
cp_write_and_or(sd, 0x86, 0xf9, 0x04);
/* reset to continuous mode */
cp_write_and_or(sd, 0x86, 0xf9, 0x02);
state->restart_stdi_once = false;
return -ENOLINK;
}
v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
return -ERANGE;
}
state->restart_stdi_once = true;
}
found:
if (debug > 1)
v4l2_print_dv_timings(sd->name, "adv7842_query_dv_timings:",
timings, true);
return 0;
}
static int adv7842_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7842_state *state = to_state(sd);
struct v4l2_bt_timings *bt;
int err;
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
if (state->mode == ADV7842_MODE_SDP)
return -ENODATA;
if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
return 0;
}
bt = &timings->bt;
if (!v4l2_valid_dv_timings(timings, adv7842_get_dv_timings_cap(sd),
adv7842_check_dv_timings, NULL))
return -ERANGE;
adv7842_fill_optional_dv_timings_fields(sd, timings);
state->timings = *timings;
cp_write(sd, 0x91, bt->interlaced ? 0x40 : 0x00);
/* Use prim_mode and vid_std when available */
err = configure_predefined_video_timings(sd, timings);
if (err) {
/* custom settings when the video format
does not have prim_mode/vid_std */
configure_custom_video_timings(sd, bt);
}
set_rgb_quantization_range(sd);
if (debug > 1)
v4l2_print_dv_timings(sd->name, "adv7842_s_dv_timings: ",
timings, true);
return 0;
}
static int adv7842_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7842_state *state = to_state(sd);
if (state->mode == ADV7842_MODE_SDP)
return -ENODATA;
*timings = state->timings;
return 0;
}
static void enable_input(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
set_rgb_quantization_range(sd);
switch (state->mode) {
case ADV7842_MODE_SDP:
case ADV7842_MODE_COMP:
case ADV7842_MODE_RGB:
io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
break;
case ADV7842_MODE_HDMI:
hdmi_write(sd, 0x01, 0x00); /* Enable HDMI clock terminators */
io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
hdmi_write_and_or(sd, 0x1a, 0xef, 0x00); /* Unmute audio */
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
}
static void disable_input(struct v4l2_subdev *sd)
{
hdmi_write_and_or(sd, 0x1a, 0xef, 0x10); /* Mute audio [REF_01, c. 2.2.2] */
msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 8.29] */
io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
hdmi_write(sd, 0x01, 0x78); /* Disable HDMI clock terminators */
}
static void sdp_csc_coeff(struct v4l2_subdev *sd,
const struct adv7842_sdp_csc_coeff *c)
{
/* csc auto/manual */
sdp_io_write_and_or(sd, 0xe0, 0xbf, c->manual ? 0x00 : 0x40);
if (!c->manual)
return;
/* csc scaling */
sdp_io_write_and_or(sd, 0xe0, 0x7f, c->scaling == 2 ? 0x80 : 0x00);
/* A coeff */
sdp_io_write_and_or(sd, 0xe0, 0xe0, c->A1 >> 8);
sdp_io_write(sd, 0xe1, c->A1);
sdp_io_write_and_or(sd, 0xe2, 0xe0, c->A2 >> 8);
sdp_io_write(sd, 0xe3, c->A2);
sdp_io_write_and_or(sd, 0xe4, 0xe0, c->A3 >> 8);
sdp_io_write(sd, 0xe5, c->A3);
/* A scale */
sdp_io_write_and_or(sd, 0xe6, 0x80, c->A4 >> 8);
sdp_io_write(sd, 0xe7, c->A4);
/* B coeff */
sdp_io_write_and_or(sd, 0xe8, 0xe0, c->B1 >> 8);
sdp_io_write(sd, 0xe9, c->B1);
sdp_io_write_and_or(sd, 0xea, 0xe0, c->B2 >> 8);
sdp_io_write(sd, 0xeb, c->B2);
sdp_io_write_and_or(sd, 0xec, 0xe0, c->B3 >> 8);
sdp_io_write(sd, 0xed, c->B3);
/* B scale */
sdp_io_write_and_or(sd, 0xee, 0x80, c->B4 >> 8);
sdp_io_write(sd, 0xef, c->B4);
/* C coeff */
sdp_io_write_and_or(sd, 0xf0, 0xe0, c->C1 >> 8);
sdp_io_write(sd, 0xf1, c->C1);
sdp_io_write_and_or(sd, 0xf2, 0xe0, c->C2 >> 8);
sdp_io_write(sd, 0xf3, c->C2);
sdp_io_write_and_or(sd, 0xf4, 0xe0, c->C3 >> 8);
sdp_io_write(sd, 0xf5, c->C3);
/* C scale */
sdp_io_write_and_or(sd, 0xf6, 0x80, c->C4 >> 8);
sdp_io_write(sd, 0xf7, c->C4);
}
static void select_input(struct v4l2_subdev *sd,
enum adv7842_vid_std_select vid_std_select)
{
struct adv7842_state *state = to_state(sd);
switch (state->mode) {
case ADV7842_MODE_SDP:
io_write(sd, 0x00, vid_std_select); /* video std: CVBS or YC mode */
io_write(sd, 0x01, 0); /* prim mode */
/* enable embedded syncs for auto graphics mode */
cp_write_and_or(sd, 0x81, 0xef, 0x10);
afe_write(sd, 0x00, 0x00); /* power up ADC */
afe_write(sd, 0xc8, 0x00); /* phase control */
io_write(sd, 0xdd, 0x90); /* Manual 2x output clock */
/* script says register 0xde, which don't exist in manual */
/* Manual analog input muxing mode, CVBS (6.4)*/
afe_write_and_or(sd, 0x02, 0x7f, 0x80);
if (vid_std_select == ADV7842_SDP_VID_STD_CVBS_SD_4x1) {
afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/
afe_write(sd, 0x04, 0x00); /* ADC2 N/C,ADC3 N/C*/
} else {
afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/
afe_write(sd, 0x04, 0xc0); /* ADC2 to AIN12, ADC3 N/C*/
}
afe_write(sd, 0x0c, 0x1f); /* ADI recommend write */
afe_write(sd, 0x12, 0x63); /* ADI recommend write */
sdp_io_write(sd, 0xb2, 0x60); /* Disable AV codes */
sdp_io_write(sd, 0xc8, 0xe3); /* Disable Ancillary data */
/* SDP recommended settings */
sdp_write(sd, 0x00, 0x3F); /* Autodetect PAL NTSC (not SECAM) */
sdp_write(sd, 0x01, 0x00); /* Pedestal Off */
sdp_write(sd, 0x03, 0xE4); /* Manual VCR Gain Luma 0x40B */
sdp_write(sd, 0x04, 0x0B); /* Manual Luma setting */
sdp_write(sd, 0x05, 0xC3); /* Manual Chroma setting 0x3FE */
sdp_write(sd, 0x06, 0xFE); /* Manual Chroma setting */
sdp_write(sd, 0x12, 0x0D); /* Frame TBC,I_P, 3D comb enabled */
sdp_write(sd, 0xA7, 0x00); /* ADI Recommended Write */
sdp_io_write(sd, 0xB0, 0x00); /* Disable H and v blanking */
/* deinterlacer enabled and 3D comb */
sdp_write_and_or(sd, 0x12, 0xf6, 0x09);
break;
case ADV7842_MODE_COMP:
case ADV7842_MODE_RGB:
/* Automatic analog input muxing mode */
afe_write_and_or(sd, 0x02, 0x7f, 0x00);
/* set mode and select free run resolution */
io_write(sd, 0x00, vid_std_select); /* video std */
io_write(sd, 0x01, 0x02); /* prim mode */
cp_write_and_or(sd, 0x81, 0xef, 0x10); /* enable embedded syncs
for auto graphics mode */
afe_write(sd, 0x00, 0x00); /* power up ADC */
afe_write(sd, 0xc8, 0x00); /* phase control */
if (state->mode == ADV7842_MODE_COMP) {
/* force to YCrCb */
io_write_and_or(sd, 0x02, 0x0f, 0x60);
} else {
/* force to RGB */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
}
/* set ADI recommended settings for digitizer */
/* "ADV7842 Register Settings Recommendations
* (rev. 1.8, November 2010)" p. 9. */
afe_write(sd, 0x0c, 0x1f); /* ADC Range improvement */
afe_write(sd, 0x12, 0x63); /* ADC Range improvement */
/* set to default gain for RGB */
cp_write(sd, 0x73, 0x10);
cp_write(sd, 0x74, 0x04);
cp_write(sd, 0x75, 0x01);
cp_write(sd, 0x76, 0x00);
cp_write(sd, 0x3e, 0x04); /* CP core pre-gain control */
cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
cp_write(sd, 0x40, 0x5c); /* CP core pre-gain control. Graphics mode */
break;
case ADV7842_MODE_HDMI:
/* Automatic analog input muxing mode */
afe_write_and_or(sd, 0x02, 0x7f, 0x00);
/* set mode and select free run resolution */
if (state->hdmi_port_a)
hdmi_write(sd, 0x00, 0x02); /* select port A */
else
hdmi_write(sd, 0x00, 0x03); /* select port B */
io_write(sd, 0x00, vid_std_select); /* video std */
io_write(sd, 0x01, 5); /* prim mode */
cp_write_and_or(sd, 0x81, 0xef, 0x00); /* disable embedded syncs
for auto graphics mode */
/* set ADI recommended settings for HDMI: */
/* "ADV7842 Register Settings Recommendations
* (rev. 1.8, November 2010)" p. 3. */
hdmi_write(sd, 0xc0, 0x00);
hdmi_write(sd, 0x0d, 0x34); /* ADI recommended write */
hdmi_write(sd, 0x3d, 0x10); /* ADI recommended write */
hdmi_write(sd, 0x44, 0x85); /* TMDS PLL optimization */
hdmi_write(sd, 0x46, 0x1f); /* ADI recommended write */
hdmi_write(sd, 0x57, 0xb6); /* TMDS PLL optimization */
hdmi_write(sd, 0x58, 0x03); /* TMDS PLL optimization */
hdmi_write(sd, 0x60, 0x88); /* TMDS PLL optimization */
hdmi_write(sd, 0x61, 0x88); /* TMDS PLL optimization */
hdmi_write(sd, 0x6c, 0x18); /* Disable ISRC clearing bit,
Improve robustness */
hdmi_write(sd, 0x75, 0x10); /* DDC drive strength */
hdmi_write(sd, 0x85, 0x1f); /* equaliser */
hdmi_write(sd, 0x87, 0x70); /* ADI recommended write */
hdmi_write(sd, 0x89, 0x04); /* equaliser */
hdmi_write(sd, 0x8a, 0x1e); /* equaliser */
hdmi_write(sd, 0x93, 0x04); /* equaliser */
hdmi_write(sd, 0x94, 0x1e); /* equaliser */
hdmi_write(sd, 0x99, 0xa1); /* ADI recommended write */
hdmi_write(sd, 0x9b, 0x09); /* ADI recommended write */
hdmi_write(sd, 0x9d, 0x02); /* equaliser */
afe_write(sd, 0x00, 0xff); /* power down ADC */
afe_write(sd, 0xc8, 0x40); /* phase control */
/* set to default gain for HDMI */
cp_write(sd, 0x73, 0x10);
cp_write(sd, 0x74, 0x04);
cp_write(sd, 0x75, 0x01);
cp_write(sd, 0x76, 0x00);
/* reset ADI recommended settings for digitizer */
/* "ADV7842 Register Settings Recommendations
* (rev. 2.5, June 2010)" p. 17. */
afe_write(sd, 0x12, 0xfb); /* ADC noise shaping filter controls */
afe_write(sd, 0x0c, 0x0d); /* CP core gain controls */
cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
/* CP coast control */
cp_write(sd, 0xc3, 0x33); /* Component mode */
/* color space conversion, autodetect color space */
io_write_and_or(sd, 0x02, 0x0f, 0xf0);
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
}
static int adv7842_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct adv7842_state *state = to_state(sd);
v4l2_dbg(2, debug, sd, "%s: input %d\n", __func__, input);
switch (input) {
case ADV7842_SELECT_HDMI_PORT_A:
state->mode = ADV7842_MODE_HDMI;
state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P;
state->hdmi_port_a = true;
break;
case ADV7842_SELECT_HDMI_PORT_B:
state->mode = ADV7842_MODE_HDMI;
state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P;
state->hdmi_port_a = false;
break;
case ADV7842_SELECT_VGA_COMP:
state->mode = ADV7842_MODE_COMP;
state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE;
break;
case ADV7842_SELECT_VGA_RGB:
state->mode = ADV7842_MODE_RGB;
state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE;
break;
case ADV7842_SELECT_SDP_CVBS:
state->mode = ADV7842_MODE_SDP;
state->vid_std_select = ADV7842_SDP_VID_STD_CVBS_SD_4x1;
break;
case ADV7842_SELECT_SDP_YC:
state->mode = ADV7842_MODE_SDP;
state->vid_std_select = ADV7842_SDP_VID_STD_YC_SD4_x1;
break;
default:
return -EINVAL;
}
disable_input(sd);
select_input(sd, state->vid_std_select);
enable_input(sd);
v4l2_subdev_notify_event(sd, &adv7842_ev_fmt);
return 0;
}
static int adv7842_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(adv7842_formats))
return -EINVAL;
code->code = adv7842_formats[code->index].code;
return 0;
}
static void adv7842_fill_format(struct adv7842_state *state,
struct v4l2_mbus_framefmt *format)
{
memset(format, 0, sizeof(*format));
format->width = state->timings.bt.width;
format->height = state->timings.bt.height;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_SRGB;
if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
format->colorspace = (state->timings.bt.height <= 576) ?
V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
}
/*
* Compute the op_ch_sel value required to obtain on the bus the component order
* corresponding to the selected format taking into account bus reordering
* applied by the board at the output of the device.
*
* The following table gives the op_ch_value from the format component order
* (expressed as op_ch_sel value in column) and the bus reordering (expressed as
* adv7842_bus_order value in row).
*
* | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
* ----------+-------------------------------------------------
* RGB (NOP) | GBR GRB BGR RGB BRG RBG
* GRB (1-2) | BGR RGB GBR GRB RBG BRG
* RBG (2-3) | GRB GBR BRG RBG BGR RGB
* BGR (1-3) | RBG BRG RGB BGR GRB GBR
* BRG (ROR) | BRG RBG GRB GBR RGB BGR
* GBR (ROL) | RGB BGR RBG BRG GBR GRB
*/
static unsigned int adv7842_op_ch_sel(struct adv7842_state *state)
{
#define _SEL(a, b, c, d, e, f) { \
ADV7842_OP_CH_SEL_##a, ADV7842_OP_CH_SEL_##b, ADV7842_OP_CH_SEL_##c, \
ADV7842_OP_CH_SEL_##d, ADV7842_OP_CH_SEL_##e, ADV7842_OP_CH_SEL_##f }
#define _BUS(x) [ADV7842_BUS_ORDER_##x]
static const unsigned int op_ch_sel[6][6] = {
_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
};
return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}
static void adv7842_setup_format(struct adv7842_state *state)
{
struct v4l2_subdev *sd = &state->sd;
io_write_clr_set(sd, 0x02, 0x02,
state->format->rgb_out ? ADV7842_RGB_OUT : 0);
io_write(sd, 0x03, state->format->op_format_sel |
state->pdata.op_format_mode_sel);
io_write_clr_set(sd, 0x04, 0xe0, adv7842_op_ch_sel(state));
io_write_clr_set(sd, 0x05, 0x01,
state->format->swap_cb_cr ? ADV7842_OP_SWAP_CB_CR : 0);
set_rgb_quantization_range(sd);
}
static int adv7842_get_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct adv7842_state *state = to_state(sd);
if (format->pad != ADV7842_PAD_SOURCE)
return -EINVAL;
if (state->mode == ADV7842_MODE_SDP) {
/* SPD block */
if (!(sdp_read(sd, 0x5a) & 0x01))
return -EINVAL;
format->format.code = MEDIA_BUS_FMT_YUYV8_2X8;
format->format.width = 720;
/* valid signal */
if (state->norm & V4L2_STD_525_60)
format->format.height = 480;
else
format->format.height = 576;
format->format.colorspace = V4L2_COLORSPACE_SMPTE170M;
return 0;
}
adv7842_fill_format(state, &format->format);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
format->format.code = fmt->code;
} else {
format->format.code = state->format->code;
}
return 0;
}
static int adv7842_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct adv7842_state *state = to_state(sd);
const struct adv7842_format_info *info;
if (format->pad != ADV7842_PAD_SOURCE)
return -EINVAL;
if (state->mode == ADV7842_MODE_SDP)
return adv7842_get_format(sd, cfg, format);
info = adv7842_format_info(state, format->format.code);
if (info == NULL)
info = adv7842_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
adv7842_fill_format(state, &format->format);
format->format.code = info->code;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
fmt->code = format->format.code;
} else {
state->format = info;
adv7842_setup_format(state);
}
return 0;
}
static void adv7842_irq_enable(struct v4l2_subdev *sd, bool enable)
{
if (enable) {
/* Enable SSPD, STDI and CP locked/unlocked interrupts */
io_write(sd, 0x46, 0x9c);
/* ESDP_50HZ_DET interrupt */
io_write(sd, 0x5a, 0x10);
/* Enable CABLE_DET_A/B_ST (+5v) interrupt */
io_write(sd, 0x73, 0x03);
/* Enable V_LOCKED and DE_REGEN_LCK interrupts */
io_write(sd, 0x78, 0x03);
/* Enable SDP Standard Detection Change and SDP Video Detected */
io_write(sd, 0xa0, 0x09);
/* Enable HDMI_MODE interrupt */
io_write(sd, 0x69, 0x08);
} else {
io_write(sd, 0x46, 0x0);
io_write(sd, 0x5a, 0x0);
io_write(sd, 0x73, 0x0);
io_write(sd, 0x78, 0x0);
io_write(sd, 0xa0, 0x0);
io_write(sd, 0x69, 0x0);
}
}
#if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC)
static void adv7842_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
{
struct adv7842_state *state = to_state(sd);
if ((cec_read(sd, 0x11) & 0x01) == 0) {
v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
return;
}
if (tx_raw_status & 0x02) {
v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
__func__);
cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1, 0, 0, 0);
return;
}
if (tx_raw_status & 0x04) {
u8 status;
u8 nack_cnt;
u8 low_drive_cnt;
v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
/*
* We set this status bit since this hardware performs
* retransmissions.
*/
status = CEC_TX_STATUS_MAX_RETRIES;
nack_cnt = cec_read(sd, 0x14) & 0xf;
if (nack_cnt)
status |= CEC_TX_STATUS_NACK;
low_drive_cnt = cec_read(sd, 0x14) >> 4;
if (low_drive_cnt)
status |= CEC_TX_STATUS_LOW_DRIVE;
cec_transmit_done(state->cec_adap, status,
0, nack_cnt, low_drive_cnt, 0);
return;
}
if (tx_raw_status & 0x01) {
v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
return;
}
}
static void adv7842_cec_isr(struct v4l2_subdev *sd, bool *handled)
{
u8 cec_irq;
/* cec controller */
cec_irq = io_read(sd, 0x93) & 0x0f;
if (!cec_irq)
return;
v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
adv7842_cec_tx_raw_status(sd, cec_irq);
if (cec_irq & 0x08) {
struct adv7842_state *state = to_state(sd);
struct cec_msg msg;
msg.len = cec_read(sd, 0x25) & 0x1f;
if (msg.len > 16)
msg.len = 16;
if (msg.len) {
u8 i;
for (i = 0; i < msg.len; i++)
msg.msg[i] = cec_read(sd, i + 0x15);
cec_write(sd, 0x26, 0x01); /* re-enable rx */
cec_received_msg(state->cec_adap, &msg);
}
}
io_write(sd, 0x94, cec_irq);
if (handled)
*handled = true;
}
static int adv7842_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct adv7842_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
if (!state->cec_enabled_adap && enable) {
cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
cec_write(sd, 0x2c, 0x01); /* cec soft reset */
cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
/* enabled irqs: */
/* tx: ready */
/* tx: arbitration lost */
/* tx: retry timeout */
/* rx: ready */
io_write_clr_set(sd, 0x96, 0x0f, 0x0f);
cec_write(sd, 0x26, 0x01); /* enable rx */
} else if (state->cec_enabled_adap && !enable) {
/* disable cec interrupts */
io_write_clr_set(sd, 0x96, 0x0f, 0x00);
/* disable address mask 1-3 */
cec_write_clr_set(sd, 0x27, 0x70, 0x00);
/* power down cec section */
cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
state->cec_valid_addrs = 0;
}
state->cec_enabled_adap = enable;
return 0;
}
static int adv7842_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
{
struct adv7842_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
unsigned int i, free_idx = ADV7842_MAX_ADDRS;
if (!state->cec_enabled_adap)
return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
if (addr == CEC_LOG_ADDR_INVALID) {
cec_write_clr_set(sd, 0x27, 0x70, 0);
state->cec_valid_addrs = 0;
return 0;
}
for (i = 0; i < ADV7842_MAX_ADDRS; i++) {
bool is_valid = state->cec_valid_addrs & (1 << i);
if (free_idx == ADV7842_MAX_ADDRS && !is_valid)
free_idx = i;
if (is_valid && state->cec_addr[i] == addr)
return 0;
}
if (i == ADV7842_MAX_ADDRS) {
i = free_idx;
if (i == ADV7842_MAX_ADDRS)
return -ENXIO;
}
state->cec_addr[i] = addr;
state->cec_valid_addrs |= 1 << i;
switch (i) {
case 0:
/* enable address mask 0 */
cec_write_clr_set(sd, 0x27, 0x10, 0x10);
/* set address for mask 0 */
cec_write_clr_set(sd, 0x28, 0x0f, addr);
break;
case 1:
/* enable address mask 1 */
cec_write_clr_set(sd, 0x27, 0x20, 0x20);
/* set address for mask 1 */
cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
break;
case 2:
/* enable address mask 2 */
cec_write_clr_set(sd, 0x27, 0x40, 0x40);
/* set address for mask 1 */
cec_write_clr_set(sd, 0x29, 0x0f, addr);
break;
}
return 0;
}
static int adv7842_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct adv7842_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
u8 len = msg->len;
unsigned int i;
/*
* The number of retries is the number of attempts - 1, but retry
* at least once. It's not clear if a value of 0 is allowed, so
* let's do at least one retry.
*/
cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
if (len > 16) {
v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
return -EINVAL;
}
/* write data */
for (i = 0; i < len; i++)
cec_write(sd, i, msg->msg[i]);
/* set length (data + header) */
cec_write(sd, 0x10, len);
/* start transmit, enable tx */
cec_write(sd, 0x11, 0x01);
return 0;
}
static const struct cec_adap_ops adv7842_cec_adap_ops = {
.adap_enable = adv7842_cec_adap_enable,
.adap_log_addr = adv7842_cec_adap_log_addr,
.adap_transmit = adv7842_cec_adap_transmit,
};
#endif
static int adv7842_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
struct adv7842_state *state = to_state(sd);
u8 fmt_change_cp, fmt_change_digital, fmt_change_sdp;
u8 irq_status[6];
adv7842_irq_enable(sd, false);
/* read status */
irq_status[0] = io_read(sd, 0x43);
irq_status[1] = io_read(sd, 0x57);
irq_status[2] = io_read(sd, 0x70);
irq_status[3] = io_read(sd, 0x75);
irq_status[4] = io_read(sd, 0x9d);
irq_status[5] = io_read(sd, 0x66);
/* and clear */
if (irq_status[0])
io_write(sd, 0x44, irq_status[0]);
if (irq_status[1])
io_write(sd, 0x58, irq_status[1]);
if (irq_status[2])
io_write(sd, 0x71, irq_status[2]);
if (irq_status[3])
io_write(sd, 0x76, irq_status[3]);
if (irq_status[4])
io_write(sd, 0x9e, irq_status[4]);
if (irq_status[5])
io_write(sd, 0x67, irq_status[5]);
adv7842_irq_enable(sd, true);
v4l2_dbg(1, debug, sd, "%s: irq %x, %x, %x, %x, %x, %x\n", __func__,
irq_status[0], irq_status[1], irq_status[2],
irq_status[3], irq_status[4], irq_status[5]);
/* format change CP */
fmt_change_cp = irq_status[0] & 0x9c;
/* format change SDP */
if (state->mode == ADV7842_MODE_SDP)
fmt_change_sdp = (irq_status[1] & 0x30) | (irq_status[4] & 0x09);
else
fmt_change_sdp = 0;
/* digital format CP */
if (is_digital_input(sd))
fmt_change_digital = irq_status[3] & 0x03;
else
fmt_change_digital = 0;
/* format change */
if (fmt_change_cp || fmt_change_digital || fmt_change_sdp) {
v4l2_dbg(1, debug, sd,
"%s: fmt_change_cp = 0x%x, fmt_change_digital = 0x%x, fmt_change_sdp = 0x%x\n",
__func__, fmt_change_cp, fmt_change_digital,
fmt_change_sdp);
v4l2_subdev_notify_event(sd, &adv7842_ev_fmt);
if (handled)
*handled = true;
}
/* HDMI/DVI mode */
if (irq_status[5] & 0x08) {
v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
(io_read(sd, 0x65) & 0x08) ? "HDMI" : "DVI");
set_rgb_quantization_range(sd);
if (handled)
*handled = true;
}
#if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC)
/* cec */
adv7842_cec_isr(sd, handled);
#endif
/* tx 5v detect */
if (irq_status[2] & 0x3) {
v4l2_dbg(1, debug, sd, "%s: irq tx_5v\n", __func__);
adv7842_s_detect_tx_5v_ctrl(sd);
if (handled)
*handled = true;
}
return 0;
}
static int adv7842_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
{
struct adv7842_state *state = to_state(sd);
u8 *data = NULL;
memset(edid->reserved, 0, sizeof(edid->reserved));
switch (edid->pad) {
case ADV7842_EDID_PORT_A:
case ADV7842_EDID_PORT_B:
if (state->hdmi_edid.present & (0x04 << edid->pad))
data = state->hdmi_edid.edid;
break;
case ADV7842_EDID_PORT_VGA:
if (state->vga_edid.present)
data = state->vga_edid.edid;
break;
default:
return -EINVAL;
}
if (edid->start_block == 0 && edid->blocks == 0) {
edid->blocks = data ? 2 : 0;
return 0;
}
if (!data)
return -ENODATA;
if (edid->start_block >= 2)
return -EINVAL;
if (edid->start_block + edid->blocks > 2)
edid->blocks = 2 - edid->start_block;
memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
return 0;
}
static int adv7842_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *e)
{
struct adv7842_state *state = to_state(sd);
int err = 0;
memset(e->reserved, 0, sizeof(e->reserved));
if (e->pad > ADV7842_EDID_PORT_VGA)
return -EINVAL;
if (e->start_block != 0)
return -EINVAL;
if (e->blocks > 2) {
e->blocks = 2;
return -E2BIG;
}
/* todo, per edid */
state->aspect_ratio = v4l2_calc_aspect_ratio(e->edid[0x15],
e->edid[0x16]);
switch (e->pad) {
case ADV7842_EDID_PORT_VGA:
memset(&state->vga_edid.edid, 0, 256);
state->vga_edid.present = e->blocks ? 0x1 : 0x0;
memcpy(&state->vga_edid.edid, e->edid, 128 * e->blocks);
err = edid_write_vga_segment(sd);
break;
case ADV7842_EDID_PORT_A:
case ADV7842_EDID_PORT_B:
memset(&state->hdmi_edid.edid, 0, 256);
if (e->blocks) {
state->hdmi_edid.present |= 0x04 << e->pad;
} else {
state->hdmi_edid.present &= ~(0x04 << e->pad);
adv7842_s_detect_tx_5v_ctrl(sd);
}
memcpy(&state->hdmi_edid.edid, e->edid, 128 * e->blocks);
err = edid_write_hdmi_segment(sd, e->pad);
break;
default:
return -EINVAL;
}
if (err < 0)
v4l2_err(sd, "error %d writing edid on port %d\n", err, e->pad);
return err;
}
struct adv7842_cfg_read_infoframe {
const char *desc;
u8 present_mask;
u8 head_addr;
u8 payload_addr;
};
static void log_infoframe(struct v4l2_subdev *sd, const struct adv7842_cfg_read_infoframe *cri)
{
int i;
u8 buffer[32];
union hdmi_infoframe frame;
u8 len;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct device *dev = &client->dev;
if (!(io_read(sd, 0x60) & cri->present_mask)) {
v4l2_info(sd, "%s infoframe not received\n", cri->desc);
return;
}
for (i = 0; i < 3; i++)
buffer[i] = infoframe_read(sd, cri->head_addr + i);
len = buffer[2] + 1;
if (len + 3 > sizeof(buffer)) {
v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, cri->desc, len);
return;
}
for (i = 0; i < len; i++)
buffer[i + 3] = infoframe_read(sd, cri->payload_addr + i);
if (hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer)) < 0) {
v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, cri->desc);
return;
}
hdmi_infoframe_log(KERN_INFO, dev, &frame);
}
static void adv7842_log_infoframes(struct v4l2_subdev *sd)
{
int i;
static const struct adv7842_cfg_read_infoframe cri[] = {
{ "AVI", 0x01, 0xe0, 0x00 },
{ "Audio", 0x02, 0xe3, 0x1c },
{ "SDP", 0x04, 0xe6, 0x2a },
{ "Vendor", 0x10, 0xec, 0x54 }
};
if (!(hdmi_read(sd, 0x05) & 0x80)) {
v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
return;
}
for (i = 0; i < ARRAY_SIZE(cri); i++)
log_infoframe(sd, &cri[i]);
}
#if 0
/* Let's keep it here for now, as it could be useful for debug */
static const char * const prim_mode_txt[] = {
"SDP",
"Component",
"Graphics",
"Reserved",
"CVBS & HDMI AUDIO",
"HDMI-Comp",
"HDMI-GR",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
};
#endif
static int adv7842_sdp_log_status(struct v4l2_subdev *sd)
{
/* SDP (Standard definition processor) block */
u8 sdp_signal_detected = sdp_read(sd, 0x5A) & 0x01;
v4l2_info(sd, "Chip powered %s\n", no_power(sd) ? "off" : "on");
v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x\n",
io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f);
v4l2_info(sd, "SDP: free run: %s\n",
(sdp_read(sd, 0x56) & 0x01) ? "on" : "off");
v4l2_info(sd, "SDP: %s\n", sdp_signal_detected ?
"valid SD/PR signal detected" : "invalid/no signal");
if (sdp_signal_detected) {
static const char * const sdp_std_txt[] = {
"NTSC-M/J",
"1?",
"NTSC-443",
"60HzSECAM",
"PAL-M",
"5?",
"PAL-60",
"7?", "8?", "9?", "a?", "b?",
"PAL-CombN",
"d?",
"PAL-BGHID",
"SECAM"
};
v4l2_info(sd, "SDP: standard %s\n",
sdp_std_txt[sdp_read(sd, 0x52) & 0x0f]);
v4l2_info(sd, "SDP: %s\n",
(sdp_read(sd, 0x59) & 0x08) ? "50Hz" : "60Hz");
v4l2_info(sd, "SDP: %s\n",
(sdp_read(sd, 0x57) & 0x08) ? "Interlaced" : "Progressive");
v4l2_info(sd, "SDP: deinterlacer %s\n",
(sdp_read(sd, 0x12) & 0x08) ? "enabled" : "disabled");
v4l2_info(sd, "SDP: csc %s mode\n",
(sdp_io_read(sd, 0xe0) & 0x40) ? "auto" : "manual");
}
return 0;
}
static int adv7842_cp_log_status(struct v4l2_subdev *sd)
{
/* CP block */
struct adv7842_state *state = to_state(sd);
struct v4l2_dv_timings timings;
u8 reg_io_0x02 = io_read(sd, 0x02);
u8 reg_io_0x21 = io_read(sd, 0x21);
u8 reg_rep_0x77 = rep_read(sd, 0x77);
u8 reg_rep_0x7d = rep_read(sd, 0x7d);
bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
bool audio_mute = io_read(sd, 0x65) & 0x40;
static const char * const csc_coeff_sel_rb[16] = {
"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
"reserved", "reserved", "reserved", "reserved", "manual"
};
static const char * const input_color_space_txt[16] = {
"RGB limited range (16-235)", "RGB full range (0-255)",
"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
"xvYCC Bt.601", "xvYCC Bt.709",
"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
"invalid", "invalid", "invalid", "invalid", "invalid",
"invalid", "invalid", "automatic"
};
static const char * const rgb_quantization_range_txt[] = {
"Automatic",
"RGB limited range (16-235)",
"RGB full range (0-255)",
};
static const char * const deep_color_mode_txt[4] = {
"8-bits per channel",
"10-bits per channel",
"12-bits per channel",
"16-bits per channel (not supported)"
};
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
v4l2_info(sd, "HDMI/DVI-D port selected: %s\n",
state->hdmi_port_a ? "A" : "B");
v4l2_info(sd, "EDID A %s, B %s\n",
((reg_rep_0x7d & 0x04) && (reg_rep_0x77 & 0x04)) ?
"enabled" : "disabled",
((reg_rep_0x7d & 0x08) && (reg_rep_0x77 & 0x08)) ?
"enabled" : "disabled");
v4l2_info(sd, "HPD A %s, B %s\n",
reg_io_0x21 & 0x02 ? "enabled" : "disabled",
reg_io_0x21 & 0x01 ? "enabled" : "disabled");
v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
"enabled" : "disabled");
if (state->cec_enabled_adap) {
int i;
for (i = 0; i < ADV7842_MAX_ADDRS; i++) {
bool is_valid = state->cec_valid_addrs & (1 << i);
if (is_valid)
v4l2_info(sd, "CEC Logical Address: 0x%x\n",
state->cec_addr[i]);
}
}
v4l2_info(sd, "-----Signal status-----\n");
if (state->hdmi_port_a) {
v4l2_info(sd, "Cable detected (+5V power): %s\n",
io_read(sd, 0x6f) & 0x02 ? "true" : "false");
v4l2_info(sd, "TMDS signal detected: %s\n",
(io_read(sd, 0x6a) & 0x02) ? "true" : "false");
v4l2_info(sd, "TMDS signal locked: %s\n",
(io_read(sd, 0x6a) & 0x20) ? "true" : "false");
} else {
v4l2_info(sd, "Cable detected (+5V power):%s\n",
io_read(sd, 0x6f) & 0x01 ? "true" : "false");
v4l2_info(sd, "TMDS signal detected: %s\n",
(io_read(sd, 0x6a) & 0x01) ? "true" : "false");
v4l2_info(sd, "TMDS signal locked: %s\n",
(io_read(sd, 0x6a) & 0x10) ? "true" : "false");
}
v4l2_info(sd, "CP free run: %s\n",
(!!(cp_read(sd, 0xff) & 0x10) ? "on" : "off"));
v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
(io_read(sd, 0x01) & 0x70) >> 4);
v4l2_info(sd, "-----Video Timings-----\n");
if (no_cp_signal(sd)) {
v4l2_info(sd, "STDI: not locked\n");
} else {
u32 bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2);
u32 lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4);
u32 lcvs = cp_read(sd, 0xb3) >> 3;
u32 fcl = ((cp_read(sd, 0xb8) & 0x1f) << 8) | cp_read(sd, 0xb9);
char hs_pol = ((cp_read(sd, 0xb5) & 0x10) ?
((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x');
char vs_pol = ((cp_read(sd, 0xb5) & 0x40) ?
((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x');
v4l2_info(sd,
"STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, fcl = %d, %s, %chsync, %cvsync\n",
lcf, bl, lcvs, fcl,
(cp_read(sd, 0xb1) & 0x40) ?
"interlaced" : "progressive",
hs_pol, vs_pol);
}
if (adv7842_query_dv_timings(sd, &timings))
v4l2_info(sd, "No video detected\n");
else
v4l2_print_dv_timings(sd->name, "Detected format: ",
&timings, true);
v4l2_print_dv_timings(sd->name, "Configured format: ",
&state->timings, true);
if (no_cp_signal(sd))
return 0;
v4l2_info(sd, "-----Color space-----\n");
v4l2_info(sd, "RGB quantization range ctrl: %s\n",
rgb_quantization_range_txt[state->rgb_quantization_range]);
v4l2_info(sd, "Input color space: %s\n",
input_color_space_txt[reg_io_0x02 >> 4]);
v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
"(16-235)" : "(0-255)",
(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
v4l2_info(sd, "Color space conversion: %s\n",
csc_coeff_sel_rb[cp_read(sd, 0xf4) >> 4]);
if (!is_digital_input(sd))
return 0;
v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
v4l2_info(sd, "HDCP encrypted content: %s\n",
(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
v4l2_info(sd, "HDCP keys read: %s%s\n",
(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
if (!is_hdmi(sd))
return 0;
v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
audio_pll_locked ? "locked" : "not locked",
audio_sample_packet_detect ? "detected" : "not detected",
audio_mute ? "muted" : "enabled");
if (audio_pll_locked && audio_sample_packet_detect) {
v4l2_info(sd, "Audio format: %s\n",
(hdmi_read(sd, 0x07) & 0x40) ? "multi-channel" : "stereo");
}
v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
(hdmi_read(sd, 0x5c) << 8) +
(hdmi_read(sd, 0x5d) & 0xf0));
v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
(hdmi_read(sd, 0x5e) << 8) +
hdmi_read(sd, 0x5f));
v4l2_info(sd, "AV Mute: %s\n",
(hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
v4l2_info(sd, "Deep color mode: %s\n",
deep_color_mode_txt[hdmi_read(sd, 0x0b) >> 6]);
adv7842_log_infoframes(sd);
return 0;
}
static int adv7842_log_status(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
if (state->mode == ADV7842_MODE_SDP)
return adv7842_sdp_log_status(sd);
return adv7842_cp_log_status(sd);
}
static int adv7842_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
struct adv7842_state *state = to_state(sd);
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
if (state->mode != ADV7842_MODE_SDP)
return -ENODATA;
if (!(sdp_read(sd, 0x5A) & 0x01)) {
*std = 0;
v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
return 0;
}
switch (sdp_read(sd, 0x52) & 0x0f) {
case 0:
/* NTSC-M/J */
*std &= V4L2_STD_NTSC;
break;
case 2:
/* NTSC-443 */
*std &= V4L2_STD_NTSC_443;
break;
case 3:
/* 60HzSECAM */
*std &= V4L2_STD_SECAM;
break;
case 4:
/* PAL-M */
*std &= V4L2_STD_PAL_M;
break;
case 6:
/* PAL-60 */
*std &= V4L2_STD_PAL_60;
break;
case 0xc:
/* PAL-CombN */
*std &= V4L2_STD_PAL_Nc;
break;
case 0xe:
/* PAL-BGHID */
*std &= V4L2_STD_PAL;
break;
case 0xf:
/* SECAM */
*std &= V4L2_STD_SECAM;
break;
default:
*std &= V4L2_STD_ALL;
break;
}
return 0;
}
static void adv7842_s_sdp_io(struct v4l2_subdev *sd, struct adv7842_sdp_io_sync_adjustment *s)
{
if (s && s->adjust) {
sdp_io_write(sd, 0x94, (s->hs_beg >> 8) & 0xf);
sdp_io_write(sd, 0x95, s->hs_beg & 0xff);
sdp_io_write(sd, 0x96, (s->hs_width >> 8) & 0xf);
sdp_io_write(sd, 0x97, s->hs_width & 0xff);
sdp_io_write(sd, 0x98, (s->de_beg >> 8) & 0xf);
sdp_io_write(sd, 0x99, s->de_beg & 0xff);
sdp_io_write(sd, 0x9a, (s->de_end >> 8) & 0xf);
sdp_io_write(sd, 0x9b, s->de_end & 0xff);
sdp_io_write(sd, 0xa8, s->vs_beg_o);
sdp_io_write(sd, 0xa9, s->vs_beg_e);
sdp_io_write(sd, 0xaa, s->vs_end_o);
sdp_io_write(sd, 0xab, s->vs_end_e);
sdp_io_write(sd, 0xac, s->de_v_beg_o);
sdp_io_write(sd, 0xad, s->de_v_beg_e);
sdp_io_write(sd, 0xae, s->de_v_end_o);
sdp_io_write(sd, 0xaf, s->de_v_end_e);
} else {
/* set to default */
sdp_io_write(sd, 0x94, 0x00);
sdp_io_write(sd, 0x95, 0x00);
sdp_io_write(sd, 0x96, 0x00);
sdp_io_write(sd, 0x97, 0x20);
sdp_io_write(sd, 0x98, 0x00);
sdp_io_write(sd, 0x99, 0x00);
sdp_io_write(sd, 0x9a, 0x00);
sdp_io_write(sd, 0x9b, 0x00);
sdp_io_write(sd, 0xa8, 0x04);
sdp_io_write(sd, 0xa9, 0x04);
sdp_io_write(sd, 0xaa, 0x04);
sdp_io_write(sd, 0xab, 0x04);
sdp_io_write(sd, 0xac, 0x04);
sdp_io_write(sd, 0xad, 0x04);
sdp_io_write(sd, 0xae, 0x04);
sdp_io_write(sd, 0xaf, 0x04);
}
}
static int adv7842_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
{
struct adv7842_state *state = to_state(sd);
struct adv7842_platform_data *pdata = &state->pdata;
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
if (state->mode != ADV7842_MODE_SDP)
return -ENODATA;
if (norm & V4L2_STD_625_50)
adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_625);
else if (norm & V4L2_STD_525_60)
adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_525);
else
adv7842_s_sdp_io(sd, NULL);
if (norm & V4L2_STD_ALL) {
state->norm = norm;
return 0;
}
return -EINVAL;
}
static int adv7842_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm)
{
struct adv7842_state *state = to_state(sd);
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
if (state->mode != ADV7842_MODE_SDP)
return -ENODATA;
*norm = state->norm;
return 0;
}
/* ----------------------------------------------------------------------- */
static int adv7842_core_init(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
struct adv7842_platform_data *pdata = &state->pdata;
hdmi_write(sd, 0x48,
(pdata->disable_pwrdnb ? 0x80 : 0) |
(pdata->disable_cable_det_rst ? 0x40 : 0));
disable_input(sd);
/*
* Disable I2C access to internal EDID ram from HDMI DDC ports
* Disable auto edid enable when leaving powerdown mode
*/
rep_write_and_or(sd, 0x77, 0xd3, 0x20);
/* power */
io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
io_write(sd, 0x15, 0x80); /* Power up pads */
/* video format */
io_write(sd, 0x02, 0xf0 | pdata->alt_gamma << 3);
io_write_and_or(sd, 0x05, 0xf0, pdata->blank_data << 3 |
pdata->insert_av_codes << 2 |
pdata->replicate_av_codes << 1);
adv7842_setup_format(state);
/* HDMI audio */
hdmi_write_and_or(sd, 0x1a, 0xf1, 0x08); /* Wait 1 s before unmute */
/* Drive strength */
io_write_and_or(sd, 0x14, 0xc0,
pdata->dr_str_data << 4 |
pdata->dr_str_clk << 2 |
pdata->dr_str_sync);
/* HDMI free run */
cp_write_and_or(sd, 0xba, 0xfc, pdata->hdmi_free_run_enable |
(pdata->hdmi_free_run_mode << 1));
/* SPD free run */
sdp_write_and_or(sd, 0xdd, 0xf0, pdata->sdp_free_run_force |
(pdata->sdp_free_run_cbar_en << 1) |
(pdata->sdp_free_run_man_col_en << 2) |
(pdata->sdp_free_run_auto << 3));
/* TODO from platform data */
cp_write(sd, 0x69, 0x14); /* Enable CP CSC */
io_write(sd, 0x06, 0xa6); /* positive VS and HS and DE */
cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
io_write_and_or(sd, 0x30, ~(1 << 4), pdata->output_bus_lsb_to_msb << 4);
sdp_csc_coeff(sd, &pdata->sdp_csc_coeff);
/* todo, improve settings for sdram */
if (pdata->sd_ram_size >= 128) {
sdp_write(sd, 0x12, 0x0d); /* Frame TBC,3D comb enabled */
if (pdata->sd_ram_ddr) {
/* SDP setup for the AD eval board */
sdp_io_write(sd, 0x6f, 0x00); /* DDR mode */
sdp_io_write(sd, 0x75, 0x0a); /* 128 MB memory size */
sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */
sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */
sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */
} else {
sdp_io_write(sd, 0x75, 0x0a); /* 64 MB memory size ?*/
sdp_io_write(sd, 0x74, 0x00); /* must be zero for sdr sdram */
sdp_io_write(sd, 0x79, 0x33); /* CAS latency to 3,
depends on memory */
sdp_io_write(sd, 0x6f, 0x01); /* SDR mode */
sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */
sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */
sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */
}
} else {
/*
* Manual UG-214, rev 0 is bit confusing on this bit
* but a '1' disables any signal if the Ram is active.
*/
sdp_io_write(sd, 0x29, 0x10); /* Tristate memory interface */
}
select_input(sd, pdata->vid_std_select);
enable_input(sd);
if (pdata->hpa_auto) {
/* HPA auto, HPA 0.5s after Edid set and Cable detect */
hdmi_write(sd, 0x69, 0x5c);
} else {
/* HPA manual */
hdmi_write(sd, 0x69, 0xa3);
/* HPA disable on port A and B */
io_write_and_or(sd, 0x20, 0xcf, 0x00);
}
/* LLC */
io_write(sd, 0x19, 0x80 | pdata->llc_dll_phase);
io_write(sd, 0x33, 0x40);
/* interrupts */
io_write(sd, 0x40, 0xf2); /* Configure INT1 */
adv7842_irq_enable(sd, true);
return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}
/* ----------------------------------------------------------------------- */
static int adv7842_ddr_ram_test(struct v4l2_subdev *sd)
{
/*
* From ADV784x external Memory test.pdf
*
* Reset must just been performed before running test.
* Recommended to reset after test.
*/
int i;
int pass = 0;
int fail = 0;
int complete = 0;
io_write(sd, 0x00, 0x01); /* Program SDP 4x1 */
io_write(sd, 0x01, 0x00); /* Program SDP mode */
afe_write(sd, 0x80, 0x92); /* SDP Recommended Write */
afe_write(sd, 0x9B, 0x01); /* SDP Recommended Write ADV7844ES1 */
afe_write(sd, 0x9C, 0x60); /* SDP Recommended Write ADV7844ES1 */
afe_write(sd, 0x9E, 0x02); /* SDP Recommended Write ADV7844ES1 */
afe_write(sd, 0xA0, 0x0B); /* SDP Recommended Write ADV7844ES1 */
afe_write(sd, 0xC3, 0x02); /* Memory BIST Initialisation */
io_write(sd, 0x0C, 0x40); /* Power up ADV7844 */
io_write(sd, 0x15, 0xBA); /* Enable outputs */
sdp_write(sd, 0x12, 0x00); /* Disable 3D comb, Frame TBC & 3DNR */
io_write(sd, 0xFF, 0x04); /* Reset memory controller */
usleep_range(5000, 6000);
sdp_write(sd, 0x12, 0x00); /* Disable 3D Comb, Frame TBC & 3DNR */
sdp_io_write(sd, 0x2A, 0x01); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x7c, 0x19); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x80, 0x87); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x81, 0x4a); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x82, 0x2c); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x83, 0x0e); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x84, 0x94); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x85, 0x62); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x7d, 0x00); /* Memory BIST Initialisation */
sdp_io_write(sd, 0x7e, 0x1a); /* Memory BIST Initialisation */
usleep_range(5000, 6000);
sdp_io_write(sd, 0xd9, 0xd5); /* Enable BIST Test */
sdp_write(sd, 0x12, 0x05); /* Enable FRAME TBC & 3D COMB */
msleep(20);
for (i = 0; i < 10; i++) {
u8 result = sdp_io_read(sd, 0xdb);
if (result & 0x10) {
complete++;
if (result & 0x20)
fail++;
else
pass++;
}
msleep(20);
}
v4l2_dbg(1, debug, sd,
"Ram Test: completed %d of %d: pass %d, fail %d\n",
complete, i, pass, fail);
if (!complete || fail)
return -EIO;
return 0;
}
static void adv7842_rewrite_i2c_addresses(struct v4l2_subdev *sd,
struct adv7842_platform_data *pdata)
{
io_write(sd, 0xf1, pdata->i2c_sdp << 1);
io_write(sd, 0xf2, pdata->i2c_sdp_io << 1);
io_write(sd, 0xf3, pdata->i2c_avlink << 1);
io_write(sd, 0xf4, pdata->i2c_cec << 1);
io_write(sd, 0xf5, pdata->i2c_infoframe << 1);
io_write(sd, 0xf8, pdata->i2c_afe << 1);
io_write(sd, 0xf9, pdata->i2c_repeater << 1);
io_write(sd, 0xfa, pdata->i2c_edid << 1);
io_write(sd, 0xfb, pdata->i2c_hdmi << 1);
io_write(sd, 0xfd, pdata->i2c_cp << 1);
io_write(sd, 0xfe, pdata->i2c_vdp << 1);
}
static int adv7842_command_ram_test(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct adv7842_state *state = to_state(sd);
struct adv7842_platform_data *pdata = client->dev.platform_data;
struct v4l2_dv_timings timings;
int ret = 0;
if (!pdata)
return -ENODEV;
if (!pdata->sd_ram_size || !pdata->sd_ram_ddr) {
v4l2_info(sd, "no sdram or no ddr sdram\n");
return -EINVAL;
}
main_reset(sd);
adv7842_rewrite_i2c_addresses(sd, pdata);
/* run ram test */
ret = adv7842_ddr_ram_test(sd);
main_reset(sd);
adv7842_rewrite_i2c_addresses(sd, pdata);
/* and re-init chip and state */
adv7842_core_init(sd);
disable_input(sd);
select_input(sd, state->vid_std_select);
enable_input(sd);
edid_write_vga_segment(sd);
edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_A);
edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_B);
timings = state->timings;
memset(&state->timings, 0, sizeof(struct v4l2_dv_timings));
adv7842_s_dv_timings(sd, &timings);
return ret;
}
static long adv7842_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
switch (cmd) {
case ADV7842_CMD_RAM_TEST:
return adv7842_command_ram_test(sd);
}
return -ENOTTY;
}
static int adv7842_subscribe_event(struct v4l2_subdev *sd,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
static int adv7842_registered(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int err;
err = cec_register_adapter(state->cec_adap, &client->dev);
if (err)
cec_delete_adapter(state->cec_adap);
return err;
}
static void adv7842_unregistered(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
cec_unregister_adapter(state->cec_adap);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_ctrl_ops adv7842_ctrl_ops = {
.s_ctrl = adv7842_s_ctrl,
.g_volatile_ctrl = adv7842_g_volatile_ctrl,
};
static const struct v4l2_subdev_core_ops adv7842_core_ops = {
.log_status = adv7842_log_status,
.ioctl = adv7842_ioctl,
.interrupt_service_routine = adv7842_isr,
.subscribe_event = adv7842_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = adv7842_g_register,
.s_register = adv7842_s_register,
#endif
};
static const struct v4l2_subdev_video_ops adv7842_video_ops = {
.g_std = adv7842_g_std,
.s_std = adv7842_s_std,
.s_routing = adv7842_s_routing,
.querystd = adv7842_querystd,
.g_input_status = adv7842_g_input_status,
.s_dv_timings = adv7842_s_dv_timings,
.g_dv_timings = adv7842_g_dv_timings,
.query_dv_timings = adv7842_query_dv_timings,
};
static const struct v4l2_subdev_pad_ops adv7842_pad_ops = {
.enum_mbus_code = adv7842_enum_mbus_code,
.get_fmt = adv7842_get_format,
.set_fmt = adv7842_set_format,
.get_edid = adv7842_get_edid,
.set_edid = adv7842_set_edid,
.enum_dv_timings = adv7842_enum_dv_timings,
.dv_timings_cap = adv7842_dv_timings_cap,
};
static const struct v4l2_subdev_ops adv7842_ops = {
.core = &adv7842_core_ops,
.video = &adv7842_video_ops,
.pad = &adv7842_pad_ops,
};
static const struct v4l2_subdev_internal_ops adv7842_int_ops = {
.registered = adv7842_registered,
.unregistered = adv7842_unregistered,
};
/* -------------------------- custom ctrls ---------------------------------- */
static const struct v4l2_ctrl_config adv7842_ctrl_analog_sampling_phase = {
.ops = &adv7842_ctrl_ops,
.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
.name = "Analog Sampling Phase",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0x1f,
.step = 1,
.def = 0,
};
static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color_manual = {
.ops = &adv7842_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
.name = "Free Running Color, Manual",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.max = 1,
.step = 1,
.def = 1,
};
static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color = {
.ops = &adv7842_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
.name = "Free Running Color",
.type = V4L2_CTRL_TYPE_INTEGER,
.max = 0xffffff,
.step = 0x1,
};
static void adv7842_unregister_clients(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
i2c_unregister_device(state->i2c_avlink);
i2c_unregister_device(state->i2c_cec);
i2c_unregister_device(state->i2c_infoframe);
i2c_unregister_device(state->i2c_sdp_io);
i2c_unregister_device(state->i2c_sdp);
i2c_unregister_device(state->i2c_afe);
i2c_unregister_device(state->i2c_repeater);
i2c_unregister_device(state->i2c_edid);
i2c_unregister_device(state->i2c_hdmi);
i2c_unregister_device(state->i2c_cp);
i2c_unregister_device(state->i2c_vdp);
state->i2c_avlink = NULL;
state->i2c_cec = NULL;
state->i2c_infoframe = NULL;
state->i2c_sdp_io = NULL;
state->i2c_sdp = NULL;
state->i2c_afe = NULL;
state->i2c_repeater = NULL;
state->i2c_edid = NULL;
state->i2c_hdmi = NULL;
state->i2c_cp = NULL;
state->i2c_vdp = NULL;
}
static struct i2c_client *adv7842_dummy_client(struct v4l2_subdev *sd, const char *desc,
u8 addr, u8 io_reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct i2c_client *cp;
io_write(sd, io_reg, addr << 1);
if (addr == 0) {
v4l2_err(sd, "no %s i2c addr configured\n", desc);
return NULL;
}
cp = i2c_new_dummy_device(client->adapter, io_read(sd, io_reg) >> 1);
if (IS_ERR(cp)) {
v4l2_err(sd, "register %s on i2c addr 0x%x failed with %ld\n",
desc, addr, PTR_ERR(cp));
cp = NULL;
}
return cp;
}
static int adv7842_register_clients(struct v4l2_subdev *sd)
{
struct adv7842_state *state = to_state(sd);
struct adv7842_platform_data *pdata = &state->pdata;
state->i2c_avlink = adv7842_dummy_client(sd, "avlink", pdata->i2c_avlink, 0xf3);
state->i2c_cec = adv7842_dummy_client(sd, "cec", pdata->i2c_cec, 0xf4);
state->i2c_infoframe = adv7842_dummy_client(sd, "infoframe", pdata->i2c_infoframe, 0xf5);
state->i2c_sdp_io = adv7842_dummy_client(sd, "sdp_io", pdata->i2c_sdp_io, 0xf2);
state->i2c_sdp = adv7842_dummy_client(sd, "sdp", pdata->i2c_sdp, 0xf1);
state->i2c_afe = adv7842_dummy_client(sd, "afe", pdata->i2c_afe, 0xf8);
state->i2c_repeater = adv7842_dummy_client(sd, "repeater", pdata->i2c_repeater, 0xf9);
state->i2c_edid = adv7842_dummy_client(sd, "edid", pdata->i2c_edid, 0xfa);
state->i2c_hdmi = adv7842_dummy_client(sd, "hdmi", pdata->i2c_hdmi, 0xfb);
state->i2c_cp = adv7842_dummy_client(sd, "cp", pdata->i2c_cp, 0xfd);
state->i2c_vdp = adv7842_dummy_client(sd, "vdp", pdata->i2c_vdp, 0xfe);
if (!state->i2c_avlink ||
!state->i2c_cec ||
!state->i2c_infoframe ||
!state->i2c_sdp_io ||
!state->i2c_sdp ||
!state->i2c_afe ||
!state->i2c_repeater ||
!state->i2c_edid ||
!state->i2c_hdmi ||
!state->i2c_cp ||
!state->i2c_vdp)
return -1;
return 0;
}
static int adv7842_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adv7842_state *state;
static const struct v4l2_dv_timings cea640x480 =
V4L2_DV_BT_CEA_640X480P59_94;
struct adv7842_platform_data *pdata = client->dev.platform_data;
struct v4l2_ctrl_handler *hdl;
struct v4l2_ctrl *ctrl;
struct v4l2_subdev *sd;
u16 rev;
int err;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
v4l_dbg(1, debug, client, "detecting adv7842 client on address 0x%x\n",
client->addr << 1);
if (!pdata) {
v4l_err(client, "No platform data!\n");
return -ENODEV;
}
state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
/* platform data */
state->pdata = *pdata;
state->timings = cea640x480;
state->format = adv7842_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &adv7842_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
sd->internal_ops = &adv7842_int_ops;
state->mode = pdata->mode;
state->hdmi_port_a = pdata->input == ADV7842_SELECT_HDMI_PORT_A;
state->restart_stdi_once = true;
/* i2c access to adv7842? */
rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 |
adv_smbus_read_byte_data_check(client, 0xeb, false);
if (rev != 0x2012) {
v4l2_info(sd, "got rev=0x%04x on first read attempt\n", rev);
rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 |
adv_smbus_read_byte_data_check(client, 0xeb, false);
}
if (rev != 0x2012) {
v4l2_info(sd, "not an adv7842 on address 0x%x (rev=0x%04x)\n",
client->addr << 1, rev);
return -ENODEV;
}
if (pdata->chip_reset)
main_reset(sd);
/* control handlers */
hdl = &state->hdl;
v4l2_ctrl_handler_init(hdl, 6);
/* add in ascending ID order */
v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
V4L2_CID_CONTRAST, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
V4L2_CID_SATURATION, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
V4L2_CID_HUE, 0, 128, 1, 0);
ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops,
V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
/* custom controls */
state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
V4L2_CID_DV_RX_POWER_PRESENT, 0, 3, 0, 0);
state->analog_sampling_phase_ctrl = v4l2_ctrl_new_custom(hdl,
&adv7842_ctrl_analog_sampling_phase, NULL);
state->free_run_color_ctrl_manual = v4l2_ctrl_new_custom(hdl,
&adv7842_ctrl_free_run_color_manual, NULL);
state->free_run_color_ctrl = v4l2_ctrl_new_custom(hdl,
&adv7842_ctrl_free_run_color, NULL);
state->rgb_quantization_range_ctrl =
v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops,
V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
0, V4L2_DV_RGB_RANGE_AUTO);
sd->ctrl_handler = hdl;
if (hdl->error) {
err = hdl->error;
goto err_hdl;
}
if (adv7842_s_detect_tx_5v_ctrl(sd)) {
err = -ENODEV;
goto err_hdl;
}
if (adv7842_register_clients(sd) < 0) {
err = -ENOMEM;
v4l2_err(sd, "failed to create all i2c clients\n");
goto err_i2c;
}
INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
adv7842_delayed_work_enable_hotplug);
sd->entity.function = MEDIA_ENT_F_DV_DECODER;
state->pad.flags = MEDIA_PAD_FL_SOURCE;
err = media_entity_pads_init(&sd->entity, 1, &state->pad);
if (err)
goto err_work_queues;
err = adv7842_core_init(sd);
if (err)
goto err_entity;
#if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC)
state->cec_adap = cec_allocate_adapter(&adv7842_cec_adap_ops,
state, dev_name(&client->dev),
CEC_CAP_DEFAULTS, ADV7842_MAX_ADDRS);
err = PTR_ERR_OR_ZERO(state->cec_adap);
if (err)
goto err_entity;
#endif
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
client->addr << 1, client->adapter->name);
return 0;
err_entity:
media_entity_cleanup(&sd->entity);
err_work_queues:
cancel_delayed_work(&state->delayed_work_enable_hotplug);
err_i2c:
adv7842_unregister_clients(sd);
err_hdl:
v4l2_ctrl_handler_free(hdl);
return err;
}
/* ----------------------------------------------------------------------- */
static int adv7842_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct adv7842_state *state = to_state(sd);
adv7842_irq_enable(sd, false);
cancel_delayed_work(&state->delayed_work_enable_hotplug);
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
adv7842_unregister_clients(sd);
v4l2_ctrl_handler_free(sd->ctrl_handler);
return 0;
}
/* ----------------------------------------------------------------------- */
static const struct i2c_device_id adv7842_id[] = {
{ "adv7842", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adv7842_id);
/* ----------------------------------------------------------------------- */
static struct i2c_driver adv7842_driver = {
.driver = {
.name = "adv7842",
},
.probe = adv7842_probe,
.remove = adv7842_remove,
.id_table = adv7842_id,
};
module_i2c_driver(adv7842_driver);