2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 16:13:54 +08:00
linux-next/fs/aio.c
Jens Axboe 01d7a35687 aio: prevent potential eventfd recursion on poll
If we have nested or circular eventfd wakeups, then we can deadlock if
we run them inline from our poll waitqueue wakeup handler. It's also
possible to have very long chains of notifications, to the extent where
we could risk blowing the stack.

Check the eventfd recursion count before calling eventfd_signal(). If
it's non-zero, then punt the signaling to async context. This is always
safe, as it takes us out-of-line in terms of stack and locking context.

Cc: stable@vger.kernel.org # 4.19+
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-03 17:27:47 -07:00

2272 lines
56 KiB
C

/*
* An async IO implementation for Linux
* Written by Benjamin LaHaise <bcrl@kvack.org>
*
* Implements an efficient asynchronous io interface.
*
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
* Copyright 2018 Christoph Hellwig.
*
* See ../COPYING for licensing terms.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/aio_abi.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/backing-dev.h>
#include <linux/refcount.h>
#include <linux/uio.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mmu_context.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/aio.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/eventfd.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/migrate.h>
#include <linux/ramfs.h>
#include <linux/percpu-refcount.h>
#include <linux/mount.h>
#include <linux/pseudo_fs.h>
#include <asm/kmap_types.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>
#include "internal.h"
#define KIOCB_KEY 0
#define AIO_RING_MAGIC 0xa10a10a1
#define AIO_RING_COMPAT_FEATURES 1
#define AIO_RING_INCOMPAT_FEATURES 0
struct aio_ring {
unsigned id; /* kernel internal index number */
unsigned nr; /* number of io_events */
unsigned head; /* Written to by userland or under ring_lock
* mutex by aio_read_events_ring(). */
unsigned tail;
unsigned magic;
unsigned compat_features;
unsigned incompat_features;
unsigned header_length; /* size of aio_ring */
struct io_event io_events[0];
}; /* 128 bytes + ring size */
/*
* Plugging is meant to work with larger batches of IOs. If we don't
* have more than the below, then don't bother setting up a plug.
*/
#define AIO_PLUG_THRESHOLD 2
#define AIO_RING_PAGES 8
struct kioctx_table {
struct rcu_head rcu;
unsigned nr;
struct kioctx __rcu *table[];
};
struct kioctx_cpu {
unsigned reqs_available;
};
struct ctx_rq_wait {
struct completion comp;
atomic_t count;
};
struct kioctx {
struct percpu_ref users;
atomic_t dead;
struct percpu_ref reqs;
unsigned long user_id;
struct __percpu kioctx_cpu *cpu;
/*
* For percpu reqs_available, number of slots we move to/from global
* counter at a time:
*/
unsigned req_batch;
/*
* This is what userspace passed to io_setup(), it's not used for
* anything but counting against the global max_reqs quota.
*
* The real limit is nr_events - 1, which will be larger (see
* aio_setup_ring())
*/
unsigned max_reqs;
/* Size of ringbuffer, in units of struct io_event */
unsigned nr_events;
unsigned long mmap_base;
unsigned long mmap_size;
struct page **ring_pages;
long nr_pages;
struct rcu_work free_rwork; /* see free_ioctx() */
/*
* signals when all in-flight requests are done
*/
struct ctx_rq_wait *rq_wait;
struct {
/*
* This counts the number of available slots in the ringbuffer,
* so we avoid overflowing it: it's decremented (if positive)
* when allocating a kiocb and incremented when the resulting
* io_event is pulled off the ringbuffer.
*
* We batch accesses to it with a percpu version.
*/
atomic_t reqs_available;
} ____cacheline_aligned_in_smp;
struct {
spinlock_t ctx_lock;
struct list_head active_reqs; /* used for cancellation */
} ____cacheline_aligned_in_smp;
struct {
struct mutex ring_lock;
wait_queue_head_t wait;
} ____cacheline_aligned_in_smp;
struct {
unsigned tail;
unsigned completed_events;
spinlock_t completion_lock;
} ____cacheline_aligned_in_smp;
struct page *internal_pages[AIO_RING_PAGES];
struct file *aio_ring_file;
unsigned id;
};
/*
* First field must be the file pointer in all the
* iocb unions! See also 'struct kiocb' in <linux/fs.h>
*/
struct fsync_iocb {
struct file *file;
struct work_struct work;
bool datasync;
};
struct poll_iocb {
struct file *file;
struct wait_queue_head *head;
__poll_t events;
bool done;
bool cancelled;
struct wait_queue_entry wait;
struct work_struct work;
};
/*
* NOTE! Each of the iocb union members has the file pointer
* as the first entry in their struct definition. So you can
* access the file pointer through any of the sub-structs,
* or directly as just 'ki_filp' in this struct.
*/
struct aio_kiocb {
union {
struct file *ki_filp;
struct kiocb rw;
struct fsync_iocb fsync;
struct poll_iocb poll;
};
struct kioctx *ki_ctx;
kiocb_cancel_fn *ki_cancel;
struct io_event ki_res;
struct list_head ki_list; /* the aio core uses this
* for cancellation */
refcount_t ki_refcnt;
/*
* If the aio_resfd field of the userspace iocb is not zero,
* this is the underlying eventfd context to deliver events to.
*/
struct eventfd_ctx *ki_eventfd;
};
/*------ sysctl variables----*/
static DEFINE_SPINLOCK(aio_nr_lock);
unsigned long aio_nr; /* current system wide number of aio requests */
unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
/*----end sysctl variables---*/
static struct kmem_cache *kiocb_cachep;
static struct kmem_cache *kioctx_cachep;
static struct vfsmount *aio_mnt;
static const struct file_operations aio_ring_fops;
static const struct address_space_operations aio_ctx_aops;
static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
{
struct file *file;
struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
if (IS_ERR(inode))
return ERR_CAST(inode);
inode->i_mapping->a_ops = &aio_ctx_aops;
inode->i_mapping->private_data = ctx;
inode->i_size = PAGE_SIZE * nr_pages;
file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
O_RDWR, &aio_ring_fops);
if (IS_ERR(file))
iput(inode);
return file;
}
static int aio_init_fs_context(struct fs_context *fc)
{
if (!init_pseudo(fc, AIO_RING_MAGIC))
return -ENOMEM;
fc->s_iflags |= SB_I_NOEXEC;
return 0;
}
/* aio_setup
* Creates the slab caches used by the aio routines, panic on
* failure as this is done early during the boot sequence.
*/
static int __init aio_setup(void)
{
static struct file_system_type aio_fs = {
.name = "aio",
.init_fs_context = aio_init_fs_context,
.kill_sb = kill_anon_super,
};
aio_mnt = kern_mount(&aio_fs);
if (IS_ERR(aio_mnt))
panic("Failed to create aio fs mount.");
kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
return 0;
}
__initcall(aio_setup);
static void put_aio_ring_file(struct kioctx *ctx)
{
struct file *aio_ring_file = ctx->aio_ring_file;
struct address_space *i_mapping;
if (aio_ring_file) {
truncate_setsize(file_inode(aio_ring_file), 0);
/* Prevent further access to the kioctx from migratepages */
i_mapping = aio_ring_file->f_mapping;
spin_lock(&i_mapping->private_lock);
i_mapping->private_data = NULL;
ctx->aio_ring_file = NULL;
spin_unlock(&i_mapping->private_lock);
fput(aio_ring_file);
}
}
static void aio_free_ring(struct kioctx *ctx)
{
int i;
/* Disconnect the kiotx from the ring file. This prevents future
* accesses to the kioctx from page migration.
*/
put_aio_ring_file(ctx);
for (i = 0; i < ctx->nr_pages; i++) {
struct page *page;
pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
page_count(ctx->ring_pages[i]));
page = ctx->ring_pages[i];
if (!page)
continue;
ctx->ring_pages[i] = NULL;
put_page(page);
}
if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
kfree(ctx->ring_pages);
ctx->ring_pages = NULL;
}
}
static int aio_ring_mremap(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
struct kioctx_table *table;
int i, res = -EINVAL;
spin_lock(&mm->ioctx_lock);
rcu_read_lock();
table = rcu_dereference(mm->ioctx_table);
for (i = 0; i < table->nr; i++) {
struct kioctx *ctx;
ctx = rcu_dereference(table->table[i]);
if (ctx && ctx->aio_ring_file == file) {
if (!atomic_read(&ctx->dead)) {
ctx->user_id = ctx->mmap_base = vma->vm_start;
res = 0;
}
break;
}
}
rcu_read_unlock();
spin_unlock(&mm->ioctx_lock);
return res;
}
static const struct vm_operations_struct aio_ring_vm_ops = {
.mremap = aio_ring_mremap,
#if IS_ENABLED(CONFIG_MMU)
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = filemap_page_mkwrite,
#endif
};
static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_ops = &aio_ring_vm_ops;
return 0;
}
static const struct file_operations aio_ring_fops = {
.mmap = aio_ring_mmap,
};
#if IS_ENABLED(CONFIG_MIGRATION)
static int aio_migratepage(struct address_space *mapping, struct page *new,
struct page *old, enum migrate_mode mode)
{
struct kioctx *ctx;
unsigned long flags;
pgoff_t idx;
int rc;
/*
* We cannot support the _NO_COPY case here, because copy needs to
* happen under the ctx->completion_lock. That does not work with the
* migration workflow of MIGRATE_SYNC_NO_COPY.
*/
if (mode == MIGRATE_SYNC_NO_COPY)
return -EINVAL;
rc = 0;
/* mapping->private_lock here protects against the kioctx teardown. */
spin_lock(&mapping->private_lock);
ctx = mapping->private_data;
if (!ctx) {
rc = -EINVAL;
goto out;
}
/* The ring_lock mutex. The prevents aio_read_events() from writing
* to the ring's head, and prevents page migration from mucking in
* a partially initialized kiotx.
*/
if (!mutex_trylock(&ctx->ring_lock)) {
rc = -EAGAIN;
goto out;
}
idx = old->index;
if (idx < (pgoff_t)ctx->nr_pages) {
/* Make sure the old page hasn't already been changed */
if (ctx->ring_pages[idx] != old)
rc = -EAGAIN;
} else
rc = -EINVAL;
if (rc != 0)
goto out_unlock;
/* Writeback must be complete */
BUG_ON(PageWriteback(old));
get_page(new);
rc = migrate_page_move_mapping(mapping, new, old, 1);
if (rc != MIGRATEPAGE_SUCCESS) {
put_page(new);
goto out_unlock;
}
/* Take completion_lock to prevent other writes to the ring buffer
* while the old page is copied to the new. This prevents new
* events from being lost.
*/
spin_lock_irqsave(&ctx->completion_lock, flags);
migrate_page_copy(new, old);
BUG_ON(ctx->ring_pages[idx] != old);
ctx->ring_pages[idx] = new;
spin_unlock_irqrestore(&ctx->completion_lock, flags);
/* The old page is no longer accessible. */
put_page(old);
out_unlock:
mutex_unlock(&ctx->ring_lock);
out:
spin_unlock(&mapping->private_lock);
return rc;
}
#endif
static const struct address_space_operations aio_ctx_aops = {
.set_page_dirty = __set_page_dirty_no_writeback,
#if IS_ENABLED(CONFIG_MIGRATION)
.migratepage = aio_migratepage,
#endif
};
static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
{
struct aio_ring *ring;
struct mm_struct *mm = current->mm;
unsigned long size, unused;
int nr_pages;
int i;
struct file *file;
/* Compensate for the ring buffer's head/tail overlap entry */
nr_events += 2; /* 1 is required, 2 for good luck */
size = sizeof(struct aio_ring);
size += sizeof(struct io_event) * nr_events;
nr_pages = PFN_UP(size);
if (nr_pages < 0)
return -EINVAL;
file = aio_private_file(ctx, nr_pages);
if (IS_ERR(file)) {
ctx->aio_ring_file = NULL;
return -ENOMEM;
}
ctx->aio_ring_file = file;
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
/ sizeof(struct io_event);
ctx->ring_pages = ctx->internal_pages;
if (nr_pages > AIO_RING_PAGES) {
ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
GFP_KERNEL);
if (!ctx->ring_pages) {
put_aio_ring_file(ctx);
return -ENOMEM;
}
}
for (i = 0; i < nr_pages; i++) {
struct page *page;
page = find_or_create_page(file->f_mapping,
i, GFP_HIGHUSER | __GFP_ZERO);
if (!page)
break;
pr_debug("pid(%d) page[%d]->count=%d\n",
current->pid, i, page_count(page));
SetPageUptodate(page);
unlock_page(page);
ctx->ring_pages[i] = page;
}
ctx->nr_pages = i;
if (unlikely(i != nr_pages)) {
aio_free_ring(ctx);
return -ENOMEM;
}
ctx->mmap_size = nr_pages * PAGE_SIZE;
pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
if (down_write_killable(&mm->mmap_sem)) {
ctx->mmap_size = 0;
aio_free_ring(ctx);
return -EINTR;
}
ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
PROT_READ | PROT_WRITE,
MAP_SHARED, 0, &unused, NULL);
up_write(&mm->mmap_sem);
if (IS_ERR((void *)ctx->mmap_base)) {
ctx->mmap_size = 0;
aio_free_ring(ctx);
return -ENOMEM;
}
pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
ctx->user_id = ctx->mmap_base;
ctx->nr_events = nr_events; /* trusted copy */
ring = kmap_atomic(ctx->ring_pages[0]);
ring->nr = nr_events; /* user copy */
ring->id = ~0U;
ring->head = ring->tail = 0;
ring->magic = AIO_RING_MAGIC;
ring->compat_features = AIO_RING_COMPAT_FEATURES;
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
ring->header_length = sizeof(struct aio_ring);
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
return 0;
}
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
{
struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
struct kioctx *ctx = req->ki_ctx;
unsigned long flags;
if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
return;
spin_lock_irqsave(&ctx->ctx_lock, flags);
list_add_tail(&req->ki_list, &ctx->active_reqs);
req->ki_cancel = cancel;
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}
EXPORT_SYMBOL(kiocb_set_cancel_fn);
/*
* free_ioctx() should be RCU delayed to synchronize against the RCU
* protected lookup_ioctx() and also needs process context to call
* aio_free_ring(). Use rcu_work.
*/
static void free_ioctx(struct work_struct *work)
{
struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
free_rwork);
pr_debug("freeing %p\n", ctx);
aio_free_ring(ctx);
free_percpu(ctx->cpu);
percpu_ref_exit(&ctx->reqs);
percpu_ref_exit(&ctx->users);
kmem_cache_free(kioctx_cachep, ctx);
}
static void free_ioctx_reqs(struct percpu_ref *ref)
{
struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
/* At this point we know that there are no any in-flight requests */
if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
complete(&ctx->rq_wait->comp);
/* Synchronize against RCU protected table->table[] dereferences */
INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
queue_rcu_work(system_wq, &ctx->free_rwork);
}
/*
* When this function runs, the kioctx has been removed from the "hash table"
* and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
* now it's safe to cancel any that need to be.
*/
static void free_ioctx_users(struct percpu_ref *ref)
{
struct kioctx *ctx = container_of(ref, struct kioctx, users);
struct aio_kiocb *req;
spin_lock_irq(&ctx->ctx_lock);
while (!list_empty(&ctx->active_reqs)) {
req = list_first_entry(&ctx->active_reqs,
struct aio_kiocb, ki_list);
req->ki_cancel(&req->rw);
list_del_init(&req->ki_list);
}
spin_unlock_irq(&ctx->ctx_lock);
percpu_ref_kill(&ctx->reqs);
percpu_ref_put(&ctx->reqs);
}
static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
{
unsigned i, new_nr;
struct kioctx_table *table, *old;
struct aio_ring *ring;
spin_lock(&mm->ioctx_lock);
table = rcu_dereference_raw(mm->ioctx_table);
while (1) {
if (table)
for (i = 0; i < table->nr; i++)
if (!rcu_access_pointer(table->table[i])) {
ctx->id = i;
rcu_assign_pointer(table->table[i], ctx);
spin_unlock(&mm->ioctx_lock);
/* While kioctx setup is in progress,
* we are protected from page migration
* changes ring_pages by ->ring_lock.
*/
ring = kmap_atomic(ctx->ring_pages[0]);
ring->id = ctx->id;
kunmap_atomic(ring);
return 0;
}
new_nr = (table ? table->nr : 1) * 4;
spin_unlock(&mm->ioctx_lock);
table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
new_nr, GFP_KERNEL);
if (!table)
return -ENOMEM;
table->nr = new_nr;
spin_lock(&mm->ioctx_lock);
old = rcu_dereference_raw(mm->ioctx_table);
if (!old) {
rcu_assign_pointer(mm->ioctx_table, table);
} else if (table->nr > old->nr) {
memcpy(table->table, old->table,
old->nr * sizeof(struct kioctx *));
rcu_assign_pointer(mm->ioctx_table, table);
kfree_rcu(old, rcu);
} else {
kfree(table);
table = old;
}
}
}
static void aio_nr_sub(unsigned nr)
{
spin_lock(&aio_nr_lock);
if (WARN_ON(aio_nr - nr > aio_nr))
aio_nr = 0;
else
aio_nr -= nr;
spin_unlock(&aio_nr_lock);
}
/* ioctx_alloc
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
*/
static struct kioctx *ioctx_alloc(unsigned nr_events)
{
struct mm_struct *mm = current->mm;
struct kioctx *ctx;
int err = -ENOMEM;
/*
* Store the original nr_events -- what userspace passed to io_setup(),
* for counting against the global limit -- before it changes.
*/
unsigned int max_reqs = nr_events;
/*
* We keep track of the number of available ringbuffer slots, to prevent
* overflow (reqs_available), and we also use percpu counters for this.
*
* So since up to half the slots might be on other cpu's percpu counters
* and unavailable, double nr_events so userspace sees what they
* expected: additionally, we move req_batch slots to/from percpu
* counters at a time, so make sure that isn't 0:
*/
nr_events = max(nr_events, num_possible_cpus() * 4);
nr_events *= 2;
/* Prevent overflows */
if (nr_events > (0x10000000U / sizeof(struct io_event))) {
pr_debug("ENOMEM: nr_events too high\n");
return ERR_PTR(-EINVAL);
}
if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
return ERR_PTR(-EAGAIN);
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ctx->max_reqs = max_reqs;
spin_lock_init(&ctx->ctx_lock);
spin_lock_init(&ctx->completion_lock);
mutex_init(&ctx->ring_lock);
/* Protect against page migration throughout kiotx setup by keeping
* the ring_lock mutex held until setup is complete. */
mutex_lock(&ctx->ring_lock);
init_waitqueue_head(&ctx->wait);
INIT_LIST_HEAD(&ctx->active_reqs);
if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
goto err;
if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
goto err;
ctx->cpu = alloc_percpu(struct kioctx_cpu);
if (!ctx->cpu)
goto err;
err = aio_setup_ring(ctx, nr_events);
if (err < 0)
goto err;
atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
if (ctx->req_batch < 1)
ctx->req_batch = 1;
/* limit the number of system wide aios */
spin_lock(&aio_nr_lock);
if (aio_nr + ctx->max_reqs > aio_max_nr ||
aio_nr + ctx->max_reqs < aio_nr) {
spin_unlock(&aio_nr_lock);
err = -EAGAIN;
goto err_ctx;
}
aio_nr += ctx->max_reqs;
spin_unlock(&aio_nr_lock);
percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
err = ioctx_add_table(ctx, mm);
if (err)
goto err_cleanup;
/* Release the ring_lock mutex now that all setup is complete. */
mutex_unlock(&ctx->ring_lock);
pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
ctx, ctx->user_id, mm, ctx->nr_events);
return ctx;
err_cleanup:
aio_nr_sub(ctx->max_reqs);
err_ctx:
atomic_set(&ctx->dead, 1);
if (ctx->mmap_size)
vm_munmap(ctx->mmap_base, ctx->mmap_size);
aio_free_ring(ctx);
err:
mutex_unlock(&ctx->ring_lock);
free_percpu(ctx->cpu);
percpu_ref_exit(&ctx->reqs);
percpu_ref_exit(&ctx->users);
kmem_cache_free(kioctx_cachep, ctx);
pr_debug("error allocating ioctx %d\n", err);
return ERR_PTR(err);
}
/* kill_ioctx
* Cancels all outstanding aio requests on an aio context. Used
* when the processes owning a context have all exited to encourage
* the rapid destruction of the kioctx.
*/
static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
struct ctx_rq_wait *wait)
{
struct kioctx_table *table;
spin_lock(&mm->ioctx_lock);
if (atomic_xchg(&ctx->dead, 1)) {
spin_unlock(&mm->ioctx_lock);
return -EINVAL;
}
table = rcu_dereference_raw(mm->ioctx_table);
WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
RCU_INIT_POINTER(table->table[ctx->id], NULL);
spin_unlock(&mm->ioctx_lock);
/* free_ioctx_reqs() will do the necessary RCU synchronization */
wake_up_all(&ctx->wait);
/*
* It'd be more correct to do this in free_ioctx(), after all
* the outstanding kiocbs have finished - but by then io_destroy
* has already returned, so io_setup() could potentially return
* -EAGAIN with no ioctxs actually in use (as far as userspace
* could tell).
*/
aio_nr_sub(ctx->max_reqs);
if (ctx->mmap_size)
vm_munmap(ctx->mmap_base, ctx->mmap_size);
ctx->rq_wait = wait;
percpu_ref_kill(&ctx->users);
return 0;
}
/*
* exit_aio: called when the last user of mm goes away. At this point, there is
* no way for any new requests to be submited or any of the io_* syscalls to be
* called on the context.
*
* There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
* them.
*/
void exit_aio(struct mm_struct *mm)
{
struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
struct ctx_rq_wait wait;
int i, skipped;
if (!table)
return;
atomic_set(&wait.count, table->nr);
init_completion(&wait.comp);
skipped = 0;
for (i = 0; i < table->nr; ++i) {
struct kioctx *ctx =
rcu_dereference_protected(table->table[i], true);
if (!ctx) {
skipped++;
continue;
}
/*
* We don't need to bother with munmap() here - exit_mmap(mm)
* is coming and it'll unmap everything. And we simply can't,
* this is not necessarily our ->mm.
* Since kill_ioctx() uses non-zero ->mmap_size as indicator
* that it needs to unmap the area, just set it to 0.
*/
ctx->mmap_size = 0;
kill_ioctx(mm, ctx, &wait);
}
if (!atomic_sub_and_test(skipped, &wait.count)) {
/* Wait until all IO for the context are done. */
wait_for_completion(&wait.comp);
}
RCU_INIT_POINTER(mm->ioctx_table, NULL);
kfree(table);
}
static void put_reqs_available(struct kioctx *ctx, unsigned nr)
{
struct kioctx_cpu *kcpu;
unsigned long flags;
local_irq_save(flags);
kcpu = this_cpu_ptr(ctx->cpu);
kcpu->reqs_available += nr;
while (kcpu->reqs_available >= ctx->req_batch * 2) {
kcpu->reqs_available -= ctx->req_batch;
atomic_add(ctx->req_batch, &ctx->reqs_available);
}
local_irq_restore(flags);
}
static bool __get_reqs_available(struct kioctx *ctx)
{
struct kioctx_cpu *kcpu;
bool ret = false;
unsigned long flags;
local_irq_save(flags);
kcpu = this_cpu_ptr(ctx->cpu);
if (!kcpu->reqs_available) {
int old, avail = atomic_read(&ctx->reqs_available);
do {
if (avail < ctx->req_batch)
goto out;
old = avail;
avail = atomic_cmpxchg(&ctx->reqs_available,
avail, avail - ctx->req_batch);
} while (avail != old);
kcpu->reqs_available += ctx->req_batch;
}
ret = true;
kcpu->reqs_available--;
out:
local_irq_restore(flags);
return ret;
}
/* refill_reqs_available
* Updates the reqs_available reference counts used for tracking the
* number of free slots in the completion ring. This can be called
* from aio_complete() (to optimistically update reqs_available) or
* from aio_get_req() (the we're out of events case). It must be
* called holding ctx->completion_lock.
*/
static void refill_reqs_available(struct kioctx *ctx, unsigned head,
unsigned tail)
{
unsigned events_in_ring, completed;
/* Clamp head since userland can write to it. */
head %= ctx->nr_events;
if (head <= tail)
events_in_ring = tail - head;
else
events_in_ring = ctx->nr_events - (head - tail);
completed = ctx->completed_events;
if (events_in_ring < completed)
completed -= events_in_ring;
else
completed = 0;
if (!completed)
return;
ctx->completed_events -= completed;
put_reqs_available(ctx, completed);
}
/* user_refill_reqs_available
* Called to refill reqs_available when aio_get_req() encounters an
* out of space in the completion ring.
*/
static void user_refill_reqs_available(struct kioctx *ctx)
{
spin_lock_irq(&ctx->completion_lock);
if (ctx->completed_events) {
struct aio_ring *ring;
unsigned head;
/* Access of ring->head may race with aio_read_events_ring()
* here, but that's okay since whether we read the old version
* or the new version, and either will be valid. The important
* part is that head cannot pass tail since we prevent
* aio_complete() from updating tail by holding
* ctx->completion_lock. Even if head is invalid, the check
* against ctx->completed_events below will make sure we do the
* safe/right thing.
*/
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
kunmap_atomic(ring);
refill_reqs_available(ctx, head, ctx->tail);
}
spin_unlock_irq(&ctx->completion_lock);
}
static bool get_reqs_available(struct kioctx *ctx)
{
if (__get_reqs_available(ctx))
return true;
user_refill_reqs_available(ctx);
return __get_reqs_available(ctx);
}
/* aio_get_req
* Allocate a slot for an aio request.
* Returns NULL if no requests are free.
*
* The refcount is initialized to 2 - one for the async op completion,
* one for the synchronous code that does this.
*/
static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
{
struct aio_kiocb *req;
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
if (unlikely(!req))
return NULL;
if (unlikely(!get_reqs_available(ctx))) {
kmem_cache_free(kiocb_cachep, req);
return NULL;
}
percpu_ref_get(&ctx->reqs);
req->ki_ctx = ctx;
INIT_LIST_HEAD(&req->ki_list);
refcount_set(&req->ki_refcnt, 2);
req->ki_eventfd = NULL;
return req;
}
static struct kioctx *lookup_ioctx(unsigned long ctx_id)
{
struct aio_ring __user *ring = (void __user *)ctx_id;
struct mm_struct *mm = current->mm;
struct kioctx *ctx, *ret = NULL;
struct kioctx_table *table;
unsigned id;
if (get_user(id, &ring->id))
return NULL;
rcu_read_lock();
table = rcu_dereference(mm->ioctx_table);
if (!table || id >= table->nr)
goto out;
id = array_index_nospec(id, table->nr);
ctx = rcu_dereference(table->table[id]);
if (ctx && ctx->user_id == ctx_id) {
if (percpu_ref_tryget_live(&ctx->users))
ret = ctx;
}
out:
rcu_read_unlock();
return ret;
}
static inline void iocb_destroy(struct aio_kiocb *iocb)
{
if (iocb->ki_eventfd)
eventfd_ctx_put(iocb->ki_eventfd);
if (iocb->ki_filp)
fput(iocb->ki_filp);
percpu_ref_put(&iocb->ki_ctx->reqs);
kmem_cache_free(kiocb_cachep, iocb);
}
/* aio_complete
* Called when the io request on the given iocb is complete.
*/
static void aio_complete(struct aio_kiocb *iocb)
{
struct kioctx *ctx = iocb->ki_ctx;
struct aio_ring *ring;
struct io_event *ev_page, *event;
unsigned tail, pos, head;
unsigned long flags;
/*
* Add a completion event to the ring buffer. Must be done holding
* ctx->completion_lock to prevent other code from messing with the tail
* pointer since we might be called from irq context.
*/
spin_lock_irqsave(&ctx->completion_lock, flags);
tail = ctx->tail;
pos = tail + AIO_EVENTS_OFFSET;
if (++tail >= ctx->nr_events)
tail = 0;
ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
event = ev_page + pos % AIO_EVENTS_PER_PAGE;
*event = iocb->ki_res;
kunmap_atomic(ev_page);
flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
(void __user *)(unsigned long)iocb->ki_res.obj,
iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
/* after flagging the request as done, we
* must never even look at it again
*/
smp_wmb(); /* make event visible before updating tail */
ctx->tail = tail;
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
ring->tail = tail;
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
ctx->completed_events++;
if (ctx->completed_events > 1)
refill_reqs_available(ctx, head, tail);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
pr_debug("added to ring %p at [%u]\n", iocb, tail);
/*
* Check if the user asked us to deliver the result through an
* eventfd. The eventfd_signal() function is safe to be called
* from IRQ context.
*/
if (iocb->ki_eventfd)
eventfd_signal(iocb->ki_eventfd, 1);
/*
* We have to order our ring_info tail store above and test
* of the wait list below outside the wait lock. This is
* like in wake_up_bit() where clearing a bit has to be
* ordered with the unlocked test.
*/
smp_mb();
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
}
static inline void iocb_put(struct aio_kiocb *iocb)
{
if (refcount_dec_and_test(&iocb->ki_refcnt)) {
aio_complete(iocb);
iocb_destroy(iocb);
}
}
/* aio_read_events_ring
* Pull an event off of the ioctx's event ring. Returns the number of
* events fetched
*/
static long aio_read_events_ring(struct kioctx *ctx,
struct io_event __user *event, long nr)
{
struct aio_ring *ring;
unsigned head, tail, pos;
long ret = 0;
int copy_ret;
/*
* The mutex can block and wake us up and that will cause
* wait_event_interruptible_hrtimeout() to schedule without sleeping
* and repeat. This should be rare enough that it doesn't cause
* peformance issues. See the comment in read_events() for more detail.
*/
sched_annotate_sleep();
mutex_lock(&ctx->ring_lock);
/* Access to ->ring_pages here is protected by ctx->ring_lock. */
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
tail = ring->tail;
kunmap_atomic(ring);
/*
* Ensure that once we've read the current tail pointer, that
* we also see the events that were stored up to the tail.
*/
smp_rmb();
pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
if (head == tail)
goto out;
head %= ctx->nr_events;
tail %= ctx->nr_events;
while (ret < nr) {
long avail;
struct io_event *ev;
struct page *page;
avail = (head <= tail ? tail : ctx->nr_events) - head;
if (head == tail)
break;
pos = head + AIO_EVENTS_OFFSET;
page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
pos %= AIO_EVENTS_PER_PAGE;
avail = min(avail, nr - ret);
avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
ev = kmap(page);
copy_ret = copy_to_user(event + ret, ev + pos,
sizeof(*ev) * avail);
kunmap(page);
if (unlikely(copy_ret)) {
ret = -EFAULT;
goto out;
}
ret += avail;
head += avail;
head %= ctx->nr_events;
}
ring = kmap_atomic(ctx->ring_pages[0]);
ring->head = head;
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
pr_debug("%li h%u t%u\n", ret, head, tail);
out:
mutex_unlock(&ctx->ring_lock);
return ret;
}
static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
struct io_event __user *event, long *i)
{
long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
if (ret > 0)
*i += ret;
if (unlikely(atomic_read(&ctx->dead)))
ret = -EINVAL;
if (!*i)
*i = ret;
return ret < 0 || *i >= min_nr;
}
static long read_events(struct kioctx *ctx, long min_nr, long nr,
struct io_event __user *event,
ktime_t until)
{
long ret = 0;
/*
* Note that aio_read_events() is being called as the conditional - i.e.
* we're calling it after prepare_to_wait() has set task state to
* TASK_INTERRUPTIBLE.
*
* But aio_read_events() can block, and if it blocks it's going to flip
* the task state back to TASK_RUNNING.
*
* This should be ok, provided it doesn't flip the state back to
* TASK_RUNNING and return 0 too much - that causes us to spin. That
* will only happen if the mutex_lock() call blocks, and we then find
* the ringbuffer empty. So in practice we should be ok, but it's
* something to be aware of when touching this code.
*/
if (until == 0)
aio_read_events(ctx, min_nr, nr, event, &ret);
else
wait_event_interruptible_hrtimeout(ctx->wait,
aio_read_events(ctx, min_nr, nr, event, &ret),
until);
return ret;
}
/* sys_io_setup:
* Create an aio_context capable of receiving at least nr_events.
* ctxp must not point to an aio_context that already exists, and
* must be initialized to 0 prior to the call. On successful
* creation of the aio_context, *ctxp is filled in with the resulting
* handle. May fail with -EINVAL if *ctxp is not initialized,
* if the specified nr_events exceeds internal limits. May fail
* with -EAGAIN if the specified nr_events exceeds the user's limit
* of available events. May fail with -ENOMEM if insufficient kernel
* resources are available. May fail with -EFAULT if an invalid
* pointer is passed for ctxp. Will fail with -ENOSYS if not
* implemented.
*/
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
{
struct kioctx *ioctx = NULL;
unsigned long ctx;
long ret;
ret = get_user(ctx, ctxp);
if (unlikely(ret))
goto out;
ret = -EINVAL;
if (unlikely(ctx || nr_events == 0)) {
pr_debug("EINVAL: ctx %lu nr_events %u\n",
ctx, nr_events);
goto out;
}
ioctx = ioctx_alloc(nr_events);
ret = PTR_ERR(ioctx);
if (!IS_ERR(ioctx)) {
ret = put_user(ioctx->user_id, ctxp);
if (ret)
kill_ioctx(current->mm, ioctx, NULL);
percpu_ref_put(&ioctx->users);
}
out:
return ret;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
{
struct kioctx *ioctx = NULL;
unsigned long ctx;
long ret;
ret = get_user(ctx, ctx32p);
if (unlikely(ret))
goto out;
ret = -EINVAL;
if (unlikely(ctx || nr_events == 0)) {
pr_debug("EINVAL: ctx %lu nr_events %u\n",
ctx, nr_events);
goto out;
}
ioctx = ioctx_alloc(nr_events);
ret = PTR_ERR(ioctx);
if (!IS_ERR(ioctx)) {
/* truncating is ok because it's a user address */
ret = put_user((u32)ioctx->user_id, ctx32p);
if (ret)
kill_ioctx(current->mm, ioctx, NULL);
percpu_ref_put(&ioctx->users);
}
out:
return ret;
}
#endif
/* sys_io_destroy:
* Destroy the aio_context specified. May cancel any outstanding
* AIOs and block on completion. Will fail with -ENOSYS if not
* implemented. May fail with -EINVAL if the context pointed to
* is invalid.
*/
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
{
struct kioctx *ioctx = lookup_ioctx(ctx);
if (likely(NULL != ioctx)) {
struct ctx_rq_wait wait;
int ret;
init_completion(&wait.comp);
atomic_set(&wait.count, 1);
/* Pass requests_done to kill_ioctx() where it can be set
* in a thread-safe way. If we try to set it here then we have
* a race condition if two io_destroy() called simultaneously.
*/
ret = kill_ioctx(current->mm, ioctx, &wait);
percpu_ref_put(&ioctx->users);
/* Wait until all IO for the context are done. Otherwise kernel
* keep using user-space buffers even if user thinks the context
* is destroyed.
*/
if (!ret)
wait_for_completion(&wait.comp);
return ret;
}
pr_debug("EINVAL: invalid context id\n");
return -EINVAL;
}
static void aio_remove_iocb(struct aio_kiocb *iocb)
{
struct kioctx *ctx = iocb->ki_ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->ctx_lock, flags);
list_del(&iocb->ki_list);
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}
static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
{
struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
if (!list_empty_careful(&iocb->ki_list))
aio_remove_iocb(iocb);
if (kiocb->ki_flags & IOCB_WRITE) {
struct inode *inode = file_inode(kiocb->ki_filp);
/*
* Tell lockdep we inherited freeze protection from submission
* thread.
*/
if (S_ISREG(inode->i_mode))
__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
file_end_write(kiocb->ki_filp);
}
iocb->ki_res.res = res;
iocb->ki_res.res2 = res2;
iocb_put(iocb);
}
static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
{
int ret;
req->ki_complete = aio_complete_rw;
req->private = NULL;
req->ki_pos = iocb->aio_offset;
req->ki_flags = iocb_flags(req->ki_filp);
if (iocb->aio_flags & IOCB_FLAG_RESFD)
req->ki_flags |= IOCB_EVENTFD;
req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
/*
* If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
* aio_reqprio is interpreted as an I/O scheduling
* class and priority.
*/
ret = ioprio_check_cap(iocb->aio_reqprio);
if (ret) {
pr_debug("aio ioprio check cap error: %d\n", ret);
return ret;
}
req->ki_ioprio = iocb->aio_reqprio;
} else
req->ki_ioprio = get_current_ioprio();
ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
if (unlikely(ret))
return ret;
req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
return 0;
}
static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
struct iovec **iovec, bool vectored, bool compat,
struct iov_iter *iter)
{
void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
size_t len = iocb->aio_nbytes;
if (!vectored) {
ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
*iovec = NULL;
return ret;
}
#ifdef CONFIG_COMPAT
if (compat)
return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
iter);
#endif
return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
}
static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
{
switch (ret) {
case -EIOCBQUEUED:
break;
case -ERESTARTSYS:
case -ERESTARTNOINTR:
case -ERESTARTNOHAND:
case -ERESTART_RESTARTBLOCK:
/*
* There's no easy way to restart the syscall since other AIO's
* may be already running. Just fail this IO with EINTR.
*/
ret = -EINTR;
/*FALLTHRU*/
default:
req->ki_complete(req, ret, 0);
}
}
static int aio_read(struct kiocb *req, const struct iocb *iocb,
bool vectored, bool compat)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct iov_iter iter;
struct file *file;
int ret;
ret = aio_prep_rw(req, iocb);
if (ret)
return ret;
file = req->ki_filp;
if (unlikely(!(file->f_mode & FMODE_READ)))
return -EBADF;
ret = -EINVAL;
if (unlikely(!file->f_op->read_iter))
return -EINVAL;
ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
if (ret < 0)
return ret;
ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
if (!ret)
aio_rw_done(req, call_read_iter(file, req, &iter));
kfree(iovec);
return ret;
}
static int aio_write(struct kiocb *req, const struct iocb *iocb,
bool vectored, bool compat)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct iov_iter iter;
struct file *file;
int ret;
ret = aio_prep_rw(req, iocb);
if (ret)
return ret;
file = req->ki_filp;
if (unlikely(!(file->f_mode & FMODE_WRITE)))
return -EBADF;
if (unlikely(!file->f_op->write_iter))
return -EINVAL;
ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
if (ret < 0)
return ret;
ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
if (!ret) {
/*
* Open-code file_start_write here to grab freeze protection,
* which will be released by another thread in
* aio_complete_rw(). Fool lockdep by telling it the lock got
* released so that it doesn't complain about the held lock when
* we return to userspace.
*/
if (S_ISREG(file_inode(file)->i_mode)) {
__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
}
req->ki_flags |= IOCB_WRITE;
aio_rw_done(req, call_write_iter(file, req, &iter));
}
kfree(iovec);
return ret;
}
static void aio_fsync_work(struct work_struct *work)
{
struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
iocb_put(iocb);
}
static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
bool datasync)
{
if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
iocb->aio_rw_flags))
return -EINVAL;
if (unlikely(!req->file->f_op->fsync))
return -EINVAL;
req->datasync = datasync;
INIT_WORK(&req->work, aio_fsync_work);
schedule_work(&req->work);
return 0;
}
static void aio_poll_put_work(struct work_struct *work)
{
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
iocb_put(iocb);
}
static void aio_poll_complete_work(struct work_struct *work)
{
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
struct poll_table_struct pt = { ._key = req->events };
struct kioctx *ctx = iocb->ki_ctx;
__poll_t mask = 0;
if (!READ_ONCE(req->cancelled))
mask = vfs_poll(req->file, &pt) & req->events;
/*
* Note that ->ki_cancel callers also delete iocb from active_reqs after
* calling ->ki_cancel. We need the ctx_lock roundtrip here to
* synchronize with them. In the cancellation case the list_del_init
* itself is not actually needed, but harmless so we keep it in to
* avoid further branches in the fast path.
*/
spin_lock_irq(&ctx->ctx_lock);
if (!mask && !READ_ONCE(req->cancelled)) {
add_wait_queue(req->head, &req->wait);
spin_unlock_irq(&ctx->ctx_lock);
return;
}
list_del_init(&iocb->ki_list);
iocb->ki_res.res = mangle_poll(mask);
req->done = true;
spin_unlock_irq(&ctx->ctx_lock);
iocb_put(iocb);
}
/* assumes we are called with irqs disabled */
static int aio_poll_cancel(struct kiocb *iocb)
{
struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
struct poll_iocb *req = &aiocb->poll;
spin_lock(&req->head->lock);
WRITE_ONCE(req->cancelled, true);
if (!list_empty(&req->wait.entry)) {
list_del_init(&req->wait.entry);
schedule_work(&aiocb->poll.work);
}
spin_unlock(&req->head->lock);
return 0;
}
static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
void *key)
{
struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
__poll_t mask = key_to_poll(key);
unsigned long flags;
/* for instances that support it check for an event match first: */
if (mask && !(mask & req->events))
return 0;
list_del_init(&req->wait.entry);
if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
struct kioctx *ctx = iocb->ki_ctx;
/*
* Try to complete the iocb inline if we can. Use
* irqsave/irqrestore because not all filesystems (e.g. fuse)
* call this function with IRQs disabled and because IRQs
* have to be disabled before ctx_lock is obtained.
*/
list_del(&iocb->ki_list);
iocb->ki_res.res = mangle_poll(mask);
req->done = true;
if (iocb->ki_eventfd && eventfd_signal_count()) {
iocb = NULL;
INIT_WORK(&req->work, aio_poll_put_work);
schedule_work(&req->work);
}
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
if (iocb)
iocb_put(iocb);
} else {
schedule_work(&req->work);
}
return 1;
}
struct aio_poll_table {
struct poll_table_struct pt;
struct aio_kiocb *iocb;
int error;
};
static void
aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
struct poll_table_struct *p)
{
struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
/* multiple wait queues per file are not supported */
if (unlikely(pt->iocb->poll.head)) {
pt->error = -EINVAL;
return;
}
pt->error = 0;
pt->iocb->poll.head = head;
add_wait_queue(head, &pt->iocb->poll.wait);
}
static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
{
struct kioctx *ctx = aiocb->ki_ctx;
struct poll_iocb *req = &aiocb->poll;
struct aio_poll_table apt;
bool cancel = false;
__poll_t mask;
/* reject any unknown events outside the normal event mask. */
if ((u16)iocb->aio_buf != iocb->aio_buf)
return -EINVAL;
/* reject fields that are not defined for poll */
if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
return -EINVAL;
INIT_WORK(&req->work, aio_poll_complete_work);
req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
req->head = NULL;
req->done = false;
req->cancelled = false;
apt.pt._qproc = aio_poll_queue_proc;
apt.pt._key = req->events;
apt.iocb = aiocb;
apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
/* initialized the list so that we can do list_empty checks */
INIT_LIST_HEAD(&req->wait.entry);
init_waitqueue_func_entry(&req->wait, aio_poll_wake);
mask = vfs_poll(req->file, &apt.pt) & req->events;
spin_lock_irq(&ctx->ctx_lock);
if (likely(req->head)) {
spin_lock(&req->head->lock);
if (unlikely(list_empty(&req->wait.entry))) {
if (apt.error)
cancel = true;
apt.error = 0;
mask = 0;
}
if (mask || apt.error) {
list_del_init(&req->wait.entry);
} else if (cancel) {
WRITE_ONCE(req->cancelled, true);
} else if (!req->done) { /* actually waiting for an event */
list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
aiocb->ki_cancel = aio_poll_cancel;
}
spin_unlock(&req->head->lock);
}
if (mask) { /* no async, we'd stolen it */
aiocb->ki_res.res = mangle_poll(mask);
apt.error = 0;
}
spin_unlock_irq(&ctx->ctx_lock);
if (mask)
iocb_put(aiocb);
return apt.error;
}
static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
struct iocb __user *user_iocb, struct aio_kiocb *req,
bool compat)
{
req->ki_filp = fget(iocb->aio_fildes);
if (unlikely(!req->ki_filp))
return -EBADF;
if (iocb->aio_flags & IOCB_FLAG_RESFD) {
struct eventfd_ctx *eventfd;
/*
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
* instance of the file* now. The file descriptor must be
* an eventfd() fd, and will be signaled for each completed
* event using the eventfd_signal() function.
*/
eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
if (IS_ERR(eventfd))
return PTR_ERR(eventfd);
req->ki_eventfd = eventfd;
}
if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
pr_debug("EFAULT: aio_key\n");
return -EFAULT;
}
req->ki_res.obj = (u64)(unsigned long)user_iocb;
req->ki_res.data = iocb->aio_data;
req->ki_res.res = 0;
req->ki_res.res2 = 0;
switch (iocb->aio_lio_opcode) {
case IOCB_CMD_PREAD:
return aio_read(&req->rw, iocb, false, compat);
case IOCB_CMD_PWRITE:
return aio_write(&req->rw, iocb, false, compat);
case IOCB_CMD_PREADV:
return aio_read(&req->rw, iocb, true, compat);
case IOCB_CMD_PWRITEV:
return aio_write(&req->rw, iocb, true, compat);
case IOCB_CMD_FSYNC:
return aio_fsync(&req->fsync, iocb, false);
case IOCB_CMD_FDSYNC:
return aio_fsync(&req->fsync, iocb, true);
case IOCB_CMD_POLL:
return aio_poll(req, iocb);
default:
pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
return -EINVAL;
}
}
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
bool compat)
{
struct aio_kiocb *req;
struct iocb iocb;
int err;
if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
return -EFAULT;
/* enforce forwards compatibility on users */
if (unlikely(iocb.aio_reserved2)) {
pr_debug("EINVAL: reserve field set\n");
return -EINVAL;
}
/* prevent overflows */
if (unlikely(
(iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
(iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
((ssize_t)iocb.aio_nbytes < 0)
)) {
pr_debug("EINVAL: overflow check\n");
return -EINVAL;
}
req = aio_get_req(ctx);
if (unlikely(!req))
return -EAGAIN;
err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
/* Done with the synchronous reference */
iocb_put(req);
/*
* If err is 0, we'd either done aio_complete() ourselves or have
* arranged for that to be done asynchronously. Anything non-zero
* means that we need to destroy req ourselves.
*/
if (unlikely(err)) {
iocb_destroy(req);
put_reqs_available(ctx, 1);
}
return err;
}
/* sys_io_submit:
* Queue the nr iocbs pointed to by iocbpp for processing. Returns
* the number of iocbs queued. May return -EINVAL if the aio_context
* specified by ctx_id is invalid, if nr is < 0, if the iocb at
* *iocbpp[0] is not properly initialized, if the operation specified
* is invalid for the file descriptor in the iocb. May fail with
* -EFAULT if any of the data structures point to invalid data. May
* fail with -EBADF if the file descriptor specified in the first
* iocb is invalid. May fail with -EAGAIN if insufficient resources
* are available to queue any iocbs. Will return 0 if nr is 0. Will
* fail with -ENOSYS if not implemented.
*/
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
struct iocb __user * __user *, iocbpp)
{
struct kioctx *ctx;
long ret = 0;
int i = 0;
struct blk_plug plug;
if (unlikely(nr < 0))
return -EINVAL;
ctx = lookup_ioctx(ctx_id);
if (unlikely(!ctx)) {
pr_debug("EINVAL: invalid context id\n");
return -EINVAL;
}
if (nr > ctx->nr_events)
nr = ctx->nr_events;
if (nr > AIO_PLUG_THRESHOLD)
blk_start_plug(&plug);
for (i = 0; i < nr; i++) {
struct iocb __user *user_iocb;
if (unlikely(get_user(user_iocb, iocbpp + i))) {
ret = -EFAULT;
break;
}
ret = io_submit_one(ctx, user_iocb, false);
if (ret)
break;
}
if (nr > AIO_PLUG_THRESHOLD)
blk_finish_plug(&plug);
percpu_ref_put(&ctx->users);
return i ? i : ret;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
int, nr, compat_uptr_t __user *, iocbpp)
{
struct kioctx *ctx;
long ret = 0;
int i = 0;
struct blk_plug plug;
if (unlikely(nr < 0))
return -EINVAL;
ctx = lookup_ioctx(ctx_id);
if (unlikely(!ctx)) {
pr_debug("EINVAL: invalid context id\n");
return -EINVAL;
}
if (nr > ctx->nr_events)
nr = ctx->nr_events;
if (nr > AIO_PLUG_THRESHOLD)
blk_start_plug(&plug);
for (i = 0; i < nr; i++) {
compat_uptr_t user_iocb;
if (unlikely(get_user(user_iocb, iocbpp + i))) {
ret = -EFAULT;
break;
}
ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
if (ret)
break;
}
if (nr > AIO_PLUG_THRESHOLD)
blk_finish_plug(&plug);
percpu_ref_put(&ctx->users);
return i ? i : ret;
}
#endif
/* sys_io_cancel:
* Attempts to cancel an iocb previously passed to io_submit. If
* the operation is successfully cancelled, the resulting event is
* copied into the memory pointed to by result without being placed
* into the completion queue and 0 is returned. May fail with
* -EFAULT if any of the data structures pointed to are invalid.
* May fail with -EINVAL if aio_context specified by ctx_id is
* invalid. May fail with -EAGAIN if the iocb specified was not
* cancelled. Will fail with -ENOSYS if not implemented.
*/
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
struct io_event __user *, result)
{
struct kioctx *ctx;
struct aio_kiocb *kiocb;
int ret = -EINVAL;
u32 key;
u64 obj = (u64)(unsigned long)iocb;
if (unlikely(get_user(key, &iocb->aio_key)))
return -EFAULT;
if (unlikely(key != KIOCB_KEY))
return -EINVAL;
ctx = lookup_ioctx(ctx_id);
if (unlikely(!ctx))
return -EINVAL;
spin_lock_irq(&ctx->ctx_lock);
/* TODO: use a hash or array, this sucks. */
list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
if (kiocb->ki_res.obj == obj) {
ret = kiocb->ki_cancel(&kiocb->rw);
list_del_init(&kiocb->ki_list);
break;
}
}
spin_unlock_irq(&ctx->ctx_lock);
if (!ret) {
/*
* The result argument is no longer used - the io_event is
* always delivered via the ring buffer. -EINPROGRESS indicates
* cancellation is progress:
*/
ret = -EINPROGRESS;
}
percpu_ref_put(&ctx->users);
return ret;
}
static long do_io_getevents(aio_context_t ctx_id,
long min_nr,
long nr,
struct io_event __user *events,
struct timespec64 *ts)
{
ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
struct kioctx *ioctx = lookup_ioctx(ctx_id);
long ret = -EINVAL;
if (likely(ioctx)) {
if (likely(min_nr <= nr && min_nr >= 0))
ret = read_events(ioctx, min_nr, nr, events, until);
percpu_ref_put(&ioctx->users);
}
return ret;
}
/* io_getevents:
* Attempts to read at least min_nr events and up to nr events from
* the completion queue for the aio_context specified by ctx_id. If
* it succeeds, the number of read events is returned. May fail with
* -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
* out of range, if timeout is out of range. May fail with -EFAULT
* if any of the memory specified is invalid. May return 0 or
* < min_nr if the timeout specified by timeout has elapsed
* before sufficient events are available, where timeout == NULL
* specifies an infinite timeout. Note that the timeout pointed to by
* timeout is relative. Will fail with -ENOSYS if not implemented.
*/
#ifdef CONFIG_64BIT
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
long, min_nr,
long, nr,
struct io_event __user *, events,
struct __kernel_timespec __user *, timeout)
{
struct timespec64 ts;
int ret;
if (timeout && unlikely(get_timespec64(&ts, timeout)))
return -EFAULT;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
if (!ret && signal_pending(current))
ret = -EINTR;
return ret;
}
#endif
struct __aio_sigset {
const sigset_t __user *sigmask;
size_t sigsetsize;
};
SYSCALL_DEFINE6(io_pgetevents,
aio_context_t, ctx_id,
long, min_nr,
long, nr,
struct io_event __user *, events,
struct __kernel_timespec __user *, timeout,
const struct __aio_sigset __user *, usig)
{
struct __aio_sigset ksig = { NULL, };
struct timespec64 ts;
bool interrupted;
int ret;
if (timeout && unlikely(get_timespec64(&ts, timeout)))
return -EFAULT;
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
return -EFAULT;
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
if (ret)
return ret;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
interrupted = signal_pending(current);
restore_saved_sigmask_unless(interrupted);
if (interrupted && !ret)
ret = -ERESTARTNOHAND;
return ret;
}
#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
SYSCALL_DEFINE6(io_pgetevents_time32,
aio_context_t, ctx_id,
long, min_nr,
long, nr,
struct io_event __user *, events,
struct old_timespec32 __user *, timeout,
const struct __aio_sigset __user *, usig)
{
struct __aio_sigset ksig = { NULL, };
struct timespec64 ts;
bool interrupted;
int ret;
if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
return -EFAULT;
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
return -EFAULT;
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
if (ret)
return ret;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
interrupted = signal_pending(current);
restore_saved_sigmask_unless(interrupted);
if (interrupted && !ret)
ret = -ERESTARTNOHAND;
return ret;
}
#endif
#if defined(CONFIG_COMPAT_32BIT_TIME)
SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
__s32, min_nr,
__s32, nr,
struct io_event __user *, events,
struct old_timespec32 __user *, timeout)
{
struct timespec64 t;
int ret;
if (timeout && get_old_timespec32(&t, timeout))
return -EFAULT;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
if (!ret && signal_pending(current))
ret = -EINTR;
return ret;
}
#endif
#ifdef CONFIG_COMPAT
struct __compat_aio_sigset {
compat_uptr_t sigmask;
compat_size_t sigsetsize;
};
#if defined(CONFIG_COMPAT_32BIT_TIME)
COMPAT_SYSCALL_DEFINE6(io_pgetevents,
compat_aio_context_t, ctx_id,
compat_long_t, min_nr,
compat_long_t, nr,
struct io_event __user *, events,
struct old_timespec32 __user *, timeout,
const struct __compat_aio_sigset __user *, usig)
{
struct __compat_aio_sigset ksig = { 0, };
struct timespec64 t;
bool interrupted;
int ret;
if (timeout && get_old_timespec32(&t, timeout))
return -EFAULT;
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
return -EFAULT;
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
if (ret)
return ret;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
interrupted = signal_pending(current);
restore_saved_sigmask_unless(interrupted);
if (interrupted && !ret)
ret = -ERESTARTNOHAND;
return ret;
}
#endif
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
compat_aio_context_t, ctx_id,
compat_long_t, min_nr,
compat_long_t, nr,
struct io_event __user *, events,
struct __kernel_timespec __user *, timeout,
const struct __compat_aio_sigset __user *, usig)
{
struct __compat_aio_sigset ksig = { 0, };
struct timespec64 t;
bool interrupted;
int ret;
if (timeout && get_timespec64(&t, timeout))
return -EFAULT;
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
return -EFAULT;
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
if (ret)
return ret;
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
interrupted = signal_pending(current);
restore_saved_sigmask_unless(interrupted);
if (interrupted && !ret)
ret = -ERESTARTNOHAND;
return ret;
}
#endif