2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/drivers/crypto/padlock-aes.c
Suresh Siddha e49140120c crypto: padlock - fix VIA PadLock instruction usage with irq_ts_save/restore()
Wolfgang Walter reported this oops on his via C3 using padlock for
AES-encryption:

##################################################################

BUG: unable to handle kernel NULL pointer dereference at 000001f0
IP: [<c01028c5>] __switch_to+0x30/0x117
*pde = 00000000
Oops: 0002 [#1] PREEMPT
Modules linked in:

Pid: 2071, comm: sleep Not tainted (2.6.26 #11)
EIP: 0060:[<c01028c5>] EFLAGS: 00010002 CPU: 0
EIP is at __switch_to+0x30/0x117
EAX: 00000000 EBX: c0493300 ECX: dc48dd00 EDX: c0493300
ESI: dc48dd00 EDI: c0493530 EBP: c04cff8c ESP: c04cff7c
 DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 0068
Process sleep (pid: 2071, ti=c04ce000 task=dc48dd00 task.ti=d2fe6000)
Stack: dc48df30 c0493300 00000000 00000000 d2fe7f44 c03b5b43 c04cffc8 00000046
       c0131856 0000005a dc472d3c c0493300 c0493470 d983ae00 00002696 00000000
       c0239f54 00000000 c04c4000 c04cffd8 c01025fe c04f3740 00049800 c04cffe0
Call Trace:
 [<c03b5b43>] ? schedule+0x285/0x2ff
 [<c0131856>] ? pm_qos_requirement+0x3c/0x53
 [<c0239f54>] ? acpi_processor_idle+0x0/0x434
 [<c01025fe>] ? cpu_idle+0x73/0x7f
 [<c03a4dcd>] ? rest_init+0x61/0x63
 =======================

Wolfgang also found out that adding kernel_fpu_begin() and kernel_fpu_end()
around the padlock instructions fix the oops.

Suresh wrote:

These padlock instructions though don't use/touch SSE registers, but it behaves
similar to other SSE instructions. For example, it might cause DNA faults
when cr0.ts is set. While this is a spurious DNA trap, it might cause
oops with the recent fpu code changes.

This is the code sequence  that is probably causing this problem:

a) new app is getting exec'd and it is somewhere in between
   start_thread() and flush_old_exec() in the load_xyz_binary()

b) At pont "a", task's fpu state (like TS_USEDFPU, used_math() etc) is
   cleared.

c) Now we get an interrupt/softirq which starts using these encrypt/decrypt
   routines in the network stack. This generates a math fault (as
   cr0.ts is '1') which sets TS_USEDFPU and restores the math that is
   in the task's xstate.

d) Return to exec code path, which does start_thread() which does
   free_thread_xstate() and sets xstate pointer to NULL while
   the TS_USEDFPU is still set.

e) At the next context switch from the new exec'd task to another task,
   we have a scenarios where TS_USEDFPU is set but xstate pointer is null.
   This can cause an oops during unlazy_fpu() in __switch_to()

Now:

1) This should happen with or with out pre-emption. Viro also encountered
   similar problem with out CONFIG_PREEMPT.

2) kernel_fpu_begin() and kernel_fpu_end() will fix this problem, because
   kernel_fpu_begin() will manually do a clts() and won't run in to the
   situation of setting TS_USEDFPU in step "c" above.

3) This was working before the fpu changes, because its a spurious
   math fault  which doesn't corrupt any fpu/sse registers and the task's
   math state was always in an allocated state.

With out the recent lazy fpu allocation changes, while we don't see oops,
there is a possible race still present in older kernels(for example,
while kernel is using kernel_fpu_begin() in some optimized clear/copy
page and an interrupt/softirq happens which uses these padlock
instructions generating DNA fault).

This is the failing scenario that existed even before the lazy fpu allocation
changes:

0. CPU's TS flag is set

1. kernel using FPU in some optimized copy  routine and while doing
kernel_fpu_begin() takes an interrupt just before doing clts()

2. Takes an interrupt and ipsec uses padlock instruction. And we
take a DNA fault as TS flag is still set.

3. We handle the DNA fault and set TS_USEDFPU and clear cr0.ts

4. We complete the padlock routine

5. Go back to step-1, which resumes clts() in kernel_fpu_begin(), finishes
the optimized copy routine and does kernel_fpu_end(). At this point,
we have cr0.ts again set to '1' but the task's TS_USEFPU is stilll
set and not cleared.

6. Now kernel resumes its user operation. And at the next context
switch, kernel sees it has do a FP save as TS_USEDFPU is still set
and then will do a unlazy_fpu() in __switch_to(). unlazy_fpu()
will take a DNA fault, as cr0.ts is '1' and now, because we are
in __switch_to(), math_state_restore() will get confused and will
restore the next task's FP state and will save it in prev tasks's FP state.
Remember, in __switch_to() we are already on the stack of the next task
but take a DNA fault for the prev task.

This causes the fpu leakage.

Fix the padlock instruction usage by calling them inside the
context of new routines irq_ts_save/restore(), which clear/restore cr0.ts
manually in the interrupt context. This will not generate spurious DNA
in the  context of the interrupt which will fix the oops encountered and
the possible FPU leakage issue.

Reported-and-bisected-by: Wolfgang Walter <wolfgang.walter@stwm.de>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2008-08-13 22:02:26 +10:00

461 lines
12 KiB
C

/*
* Cryptographic API.
*
* Support for VIA PadLock hardware crypto engine.
*
* Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
*
*/
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include <asm/i387.h>
#include "padlock.h"
/* Control word. */
struct cword {
unsigned int __attribute__ ((__packed__))
rounds:4,
algo:3,
keygen:1,
interm:1,
encdec:1,
ksize:2;
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
/* Whenever making any changes to the following
* structure *make sure* you keep E, d_data
* and cword aligned on 16 Bytes boundaries and
* the Hardware can access 16 * 16 bytes of E and d_data
* (only the first 15 * 16 bytes matter but the HW reads
* more).
*/
struct aes_ctx {
u32 E[AES_MAX_KEYLENGTH_U32]
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
u32 d_data[AES_MAX_KEYLENGTH_U32]
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
struct {
struct cword encrypt;
struct cword decrypt;
} cword;
u32 *D;
};
/* Tells whether the ACE is capable to generate
the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
/* TODO: We should check the actual CPU model/stepping
as it's possible that the capability will be
added in the next CPU revisions. */
if (key_len == 16)
return 1;
return 0;
}
static inline struct aes_ctx *aes_ctx_common(void *ctx)
{
unsigned long addr = (unsigned long)ctx;
unsigned long align = PADLOCK_ALIGNMENT;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct aes_ctx *)ALIGN(addr, align);
}
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
{
return aes_ctx_common(crypto_tfm_ctx(tfm));
}
static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
{
return aes_ctx_common(crypto_blkcipher_ctx(tfm));
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct aes_ctx *ctx = aes_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
u32 *flags = &tfm->crt_flags;
struct crypto_aes_ctx gen_aes;
if (key_len % 8) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/*
* If the hardware is capable of generating the extended key
* itself we must supply the plain key for both encryption
* and decryption.
*/
ctx->D = ctx->E;
ctx->E[0] = le32_to_cpu(key[0]);
ctx->E[1] = le32_to_cpu(key[1]);
ctx->E[2] = le32_to_cpu(key[2]);
ctx->E[3] = le32_to_cpu(key[3]);
/* Prepare control words. */
memset(&ctx->cword, 0, sizeof(ctx->cword));
ctx->cword.decrypt.encdec = 1;
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
/* Don't generate extended keys if the hardware can do it. */
if (aes_hw_extkey_available(key_len))
return 0;
ctx->D = ctx->d_data;
ctx->cword.encrypt.keygen = 1;
ctx->cword.decrypt.keygen = 1;
if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
return 0;
}
/* ====== Encryption/decryption routines ====== */
/* These are the real call to PadLock. */
static inline void padlock_reset_key(void)
{
asm volatile ("pushfl; popfl");
}
/*
* While the padlock instructions don't use FP/SSE registers, they
* generate a spurious DNA fault when cr0.ts is '1'. These instructions
* should be used only inside the irq_ts_save/restore() context
*/
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
void *control_word)
{
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
: "+S"(input), "+D"(output)
: "d"(control_word), "b"(key), "c"(1));
}
static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
{
u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
memcpy(tmp, in, AES_BLOCK_SIZE);
padlock_xcrypt(tmp, out, key, cword);
}
static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
struct cword *cword)
{
/* padlock_xcrypt requires at least two blocks of data. */
if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
(PAGE_SIZE - 1)))) {
aes_crypt_copy(in, out, key, cword);
return;
}
padlock_xcrypt(in, out, key, cword);
}
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
void *control_word, u32 count)
{
if (count == 1) {
aes_crypt(input, output, key, control_word);
return;
}
asm volatile ("test $1, %%cl;"
"je 1f;"
"lea -1(%%ecx), %%eax;"
"mov $1, %%ecx;"
".byte 0xf3,0x0f,0xa7,0xc8;" /* rep xcryptecb */
"mov %%eax, %%ecx;"
"1:"
".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
: "+S"(input), "+D"(output)
: "d"(control_word), "b"(key), "c"(count)
: "ax");
}
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
u8 *iv, void *control_word, u32 count)
{
/* rep xcryptcbc */
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
: "+S" (input), "+D" (output), "+a" (iv)
: "d" (control_word), "b" (key), "c" (count));
return iv;
}
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aes_ctx *ctx = aes_ctx(tfm);
int ts_state;
padlock_reset_key();
ts_state = irq_ts_save();
aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
irq_ts_restore(ts_state);
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aes_ctx *ctx = aes_ctx(tfm);
int ts_state;
padlock_reset_key();
ts_state = irq_ts_save();
aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
irq_ts_restore(ts_state);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt,
}
}
};
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
int ts_state;
padlock_reset_key();
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
ts_state = irq_ts_save();
while ((nbytes = walk.nbytes)) {
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
ctx->E, &ctx->cword.encrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
irq_ts_restore(ts_state);
return err;
}
static int ecb_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
int ts_state;
padlock_reset_key();
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
ts_state = irq_ts_save();
while ((nbytes = walk.nbytes)) {
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
ctx->D, &ctx->cword.decrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
irq_ts_restore(ts_state);
return err;
}
static struct crypto_alg ecb_aes_alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-padlock",
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_aes_encrypt,
.decrypt = ecb_aes_decrypt,
}
}
};
static int cbc_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
int ts_state;
padlock_reset_key();
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
ts_state = irq_ts_save();
while ((nbytes = walk.nbytes)) {
u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
walk.dst.virt.addr, ctx->E,
walk.iv, &ctx->cword.encrypt,
nbytes / AES_BLOCK_SIZE);
memcpy(walk.iv, iv, AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
irq_ts_restore(ts_state);
return err;
}
static int cbc_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
int ts_state;
padlock_reset_key();
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
ts_state = irq_ts_save();
while ((nbytes = walk.nbytes)) {
padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
ctx->D, walk.iv, &ctx->cword.decrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
irq_ts_restore(ts_state);
return err;
}
static struct crypto_alg cbc_aes_alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-padlock",
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_aes_encrypt,
.decrypt = cbc_aes_decrypt,
}
}
};
static int __init padlock_init(void)
{
int ret;
if (!cpu_has_xcrypt) {
printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
return -ENODEV;
}
if (!cpu_has_xcrypt_enabled) {
printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
return -ENODEV;
}
if ((ret = crypto_register_alg(&aes_alg)))
goto aes_err;
if ((ret = crypto_register_alg(&ecb_aes_alg)))
goto ecb_aes_err;
if ((ret = crypto_register_alg(&cbc_aes_alg)))
goto cbc_aes_err;
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
out:
return ret;
cbc_aes_err:
crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
crypto_unregister_alg(&aes_alg);
aes_err:
printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
goto out;
}
static void __exit padlock_fini(void)
{
crypto_unregister_alg(&cbc_aes_alg);
crypto_unregister_alg(&ecb_aes_alg);
crypto_unregister_alg(&aes_alg);
}
module_init(padlock_init);
module_exit(padlock_fini);
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");
MODULE_ALIAS("aes");