2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/arch/parisc/kernel/smp.c
Helge Deller 6f0c4aa61d parisc: do not count IPI calls twice
The number of IPI calls is already visible as per-cpu IPI irq counters
in/proc/cpuinfo, so let's drop this additional counting.

This partly reverts:
cd85d55 parisc: more irq statistics in /proc/interrupts

Signed-off-by: Helge Deller <deller@gmx.de>
2013-11-07 22:28:54 +01:00

431 lines
9.5 KiB
C

/*
** SMP Support
**
** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
**
** Lots of stuff stolen from arch/alpha/kernel/smp.c
** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
**
** Thanks to John Curry and Ullas Ponnadi. I learned a lot from their work.
** -grant (1/12/2001)
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
*/
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/ftrace.h>
#include <linux/cpu.h>
#include <linux/atomic.h>
#include <asm/current.h>
#include <asm/delay.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
#include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
#include <asm/mmu_context.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/unistd.h>
#include <asm/cacheflush.h>
#undef DEBUG_SMP
#ifdef DEBUG_SMP
static int smp_debug_lvl = 0;
#define smp_debug(lvl, printargs...) \
if (lvl >= smp_debug_lvl) \
printk(printargs);
#else
#define smp_debug(lvl, ...) do { } while(0)
#endif /* DEBUG_SMP */
volatile struct task_struct *smp_init_current_idle_task;
/* track which CPU is booting */
static volatile int cpu_now_booting;
static int parisc_max_cpus = 1;
static DEFINE_PER_CPU(spinlock_t, ipi_lock);
enum ipi_message_type {
IPI_NOP=0,
IPI_RESCHEDULE=1,
IPI_CALL_FUNC,
IPI_CPU_START,
IPI_CPU_STOP,
IPI_CPU_TEST
};
/********** SMP inter processor interrupt and communication routines */
#undef PER_CPU_IRQ_REGION
#ifdef PER_CPU_IRQ_REGION
/* XXX REVISIT Ignore for now.
** *May* need this "hook" to register IPI handler
** once we have perCPU ExtIntr switch tables.
*/
static void
ipi_init(int cpuid)
{
#error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
if(cpu_online(cpuid) )
{
switch_to_idle_task(current);
}
return;
}
#endif
/*
** Yoink this CPU from the runnable list...
**
*/
static void
halt_processor(void)
{
/* REVISIT : redirect I/O Interrupts to another CPU? */
/* REVISIT : does PM *know* this CPU isn't available? */
set_cpu_online(smp_processor_id(), false);
local_irq_disable();
for (;;)
;
}
irqreturn_t __irq_entry
ipi_interrupt(int irq, void *dev_id)
{
int this_cpu = smp_processor_id();
struct cpuinfo_parisc *p = &per_cpu(cpu_data, this_cpu);
unsigned long ops;
unsigned long flags;
for (;;) {
spinlock_t *lock = &per_cpu(ipi_lock, this_cpu);
spin_lock_irqsave(lock, flags);
ops = p->pending_ipi;
p->pending_ipi = 0;
spin_unlock_irqrestore(lock, flags);
mb(); /* Order bit clearing and data access. */
if (!ops)
break;
while (ops) {
unsigned long which = ffz(~ops);
ops &= ~(1 << which);
switch (which) {
case IPI_NOP:
smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu);
break;
case IPI_RESCHEDULE:
smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu);
inc_irq_stat(irq_resched_count);
scheduler_ipi();
break;
case IPI_CALL_FUNC:
smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu);
generic_smp_call_function_interrupt();
break;
case IPI_CPU_START:
smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu);
break;
case IPI_CPU_STOP:
smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu);
halt_processor();
break;
case IPI_CPU_TEST:
smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu);
break;
default:
printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
this_cpu, which);
return IRQ_NONE;
} /* Switch */
/* let in any pending interrupts */
local_irq_enable();
local_irq_disable();
} /* while (ops) */
}
return IRQ_HANDLED;
}
static inline void
ipi_send(int cpu, enum ipi_message_type op)
{
struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpu);
spinlock_t *lock = &per_cpu(ipi_lock, cpu);
unsigned long flags;
spin_lock_irqsave(lock, flags);
p->pending_ipi |= 1 << op;
gsc_writel(IPI_IRQ - CPU_IRQ_BASE, p->hpa);
spin_unlock_irqrestore(lock, flags);
}
static void
send_IPI_mask(const struct cpumask *mask, enum ipi_message_type op)
{
int cpu;
for_each_cpu(cpu, mask)
ipi_send(cpu, op);
}
static inline void
send_IPI_single(int dest_cpu, enum ipi_message_type op)
{
BUG_ON(dest_cpu == NO_PROC_ID);
ipi_send(dest_cpu, op);
}
static inline void
send_IPI_allbutself(enum ipi_message_type op)
{
int i;
for_each_online_cpu(i) {
if (i != smp_processor_id())
send_IPI_single(i, op);
}
}
inline void
smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
static inline void
smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
void
smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
void
smp_send_all_nop(void)
{
send_IPI_allbutself(IPI_NOP);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
send_IPI_mask(mask, IPI_CALL_FUNC);
}
void arch_send_call_function_single_ipi(int cpu)
{
send_IPI_single(cpu, IPI_CALL_FUNC);
}
/*
* Called by secondaries to update state and initialize CPU registers.
*/
static void __init
smp_cpu_init(int cpunum)
{
extern int init_per_cpu(int); /* arch/parisc/kernel/processor.c */
extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */
/* Set modes and Enable floating point coprocessor */
(void) init_per_cpu(cpunum);
disable_sr_hashing();
mb();
/* Well, support 2.4 linux scheme as well. */
if (cpu_online(cpunum)) {
extern void machine_halt(void); /* arch/parisc.../process.c */
printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
machine_halt();
}
notify_cpu_starting(cpunum);
set_cpu_online(cpunum, true);
/* Initialise the idle task for this CPU */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
BUG_ON(current->mm);
enter_lazy_tlb(&init_mm, current);
init_IRQ(); /* make sure no IRQs are enabled or pending */
start_cpu_itimer();
}
/*
* Slaves start using C here. Indirectly called from smp_slave_stext.
* Do what start_kernel() and main() do for boot strap processor (aka monarch)
*/
void __init smp_callin(void)
{
int slave_id = cpu_now_booting;
smp_cpu_init(slave_id);
preempt_disable();
flush_cache_all_local(); /* start with known state */
flush_tlb_all_local(NULL);
local_irq_enable(); /* Interrupts have been off until now */
cpu_startup_entry(CPUHP_ONLINE);
/* NOTREACHED */
panic("smp_callin() AAAAaaaaahhhh....\n");
}
/*
* Bring one cpu online.
*/
int smp_boot_one_cpu(int cpuid, struct task_struct *idle)
{
const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid);
long timeout;
task_thread_info(idle)->cpu = cpuid;
/* Let _start know what logical CPU we're booting
** (offset into init_tasks[],cpu_data[])
*/
cpu_now_booting = cpuid;
/*
** boot strap code needs to know the task address since
** it also contains the process stack.
*/
smp_init_current_idle_task = idle ;
mb();
printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa);
/*
** This gets PDC to release the CPU from a very tight loop.
**
** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
** is executed after receiving the rendezvous signal (an interrupt to
** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
** contents of memory are valid."
*/
gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa);
mb();
/*
* OK, wait a bit for that CPU to finish staggering about.
* Slave will set a bit when it reaches smp_cpu_init().
* Once the "monarch CPU" sees the bit change, it can move on.
*/
for (timeout = 0; timeout < 10000; timeout++) {
if(cpu_online(cpuid)) {
/* Which implies Slave has started up */
cpu_now_booting = 0;
smp_init_current_idle_task = NULL;
goto alive ;
}
udelay(100);
barrier();
}
printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
return -1;
alive:
/* Remember the Slave data */
smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
cpuid, timeout * 100);
return 0;
}
void __init smp_prepare_boot_cpu(void)
{
int bootstrap_processor = per_cpu(cpu_data, 0).cpuid;
/* Setup BSP mappings */
printk(KERN_INFO "SMP: bootstrap CPU ID is %d\n", bootstrap_processor);
set_cpu_online(bootstrap_processor, true);
set_cpu_present(bootstrap_processor, true);
}
/*
** inventory.c:do_inventory() hasn't yet been run and thus we
** don't 'discover' the additional CPUs until later.
*/
void __init smp_prepare_cpus(unsigned int max_cpus)
{
int cpu;
for_each_possible_cpu(cpu)
spin_lock_init(&per_cpu(ipi_lock, cpu));
init_cpu_present(cpumask_of(0));
parisc_max_cpus = max_cpus;
if (!max_cpus)
printk(KERN_INFO "SMP mode deactivated.\n");
}
void smp_cpus_done(unsigned int cpu_max)
{
return;
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
if (cpu != 0 && cpu < parisc_max_cpus)
smp_boot_one_cpu(cpu, tidle);
return cpu_online(cpu) ? 0 : -ENOSYS;
}
#ifdef CONFIG_PROC_FS
int __init
setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
#endif