2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 07:04:04 +08:00
linux-next/drivers/mtd/mtdchar.c
Eric W. Biederman 7f78e03513 fs: Limit sys_mount to only request filesystem modules.
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.

A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.

Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.

Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives.  Allowing simple, safe,
well understood work-arounds to known problematic software.

This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work.  While writing this patch I saw a handful of such
cases.  The most significant being autofs that lives in the module
autofs4.

This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.

After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module.  The common pattern in the kernel is to call request_module()
without regards to the users permissions.  In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted.  In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 19:36:31 -08:00

1282 lines
28 KiB
C

/*
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/compat.h>
#include <linux/mount.h>
#include <linux/blkpg.h>
#include <linux/magic.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/map.h>
#include <asm/uaccess.h>
static DEFINE_MUTEX(mtd_mutex);
/*
* Data structure to hold the pointer to the mtd device as well
* as mode information of various use cases.
*/
struct mtd_file_info {
struct mtd_info *mtd;
struct inode *ino;
enum mtd_file_modes mode;
};
static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
switch (orig) {
case SEEK_SET:
break;
case SEEK_CUR:
offset += file->f_pos;
break;
case SEEK_END:
offset += mtd->size;
break;
default:
return -EINVAL;
}
if (offset >= 0 && offset <= mtd->size)
return file->f_pos = offset;
return -EINVAL;
}
static int count;
static struct vfsmount *mnt;
static struct file_system_type mtd_inodefs_type;
static int mtdchar_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
int devnum = minor >> 1;
int ret = 0;
struct mtd_info *mtd;
struct mtd_file_info *mfi;
struct inode *mtd_ino;
pr_debug("MTD_open\n");
/* You can't open the RO devices RW */
if ((file->f_mode & FMODE_WRITE) && (minor & 1))
return -EACCES;
ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count);
if (ret)
return ret;
mutex_lock(&mtd_mutex);
mtd = get_mtd_device(NULL, devnum);
if (IS_ERR(mtd)) {
ret = PTR_ERR(mtd);
goto out;
}
if (mtd->type == MTD_ABSENT) {
ret = -ENODEV;
goto out1;
}
mtd_ino = iget_locked(mnt->mnt_sb, devnum);
if (!mtd_ino) {
ret = -ENOMEM;
goto out1;
}
if (mtd_ino->i_state & I_NEW) {
mtd_ino->i_private = mtd;
mtd_ino->i_mode = S_IFCHR;
mtd_ino->i_data.backing_dev_info = mtd->backing_dev_info;
unlock_new_inode(mtd_ino);
}
file->f_mapping = mtd_ino->i_mapping;
/* You can't open it RW if it's not a writeable device */
if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
ret = -EACCES;
goto out2;
}
mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
if (!mfi) {
ret = -ENOMEM;
goto out2;
}
mfi->ino = mtd_ino;
mfi->mtd = mtd;
file->private_data = mfi;
mutex_unlock(&mtd_mutex);
return 0;
out2:
iput(mtd_ino);
out1:
put_mtd_device(mtd);
out:
mutex_unlock(&mtd_mutex);
simple_release_fs(&mnt, &count);
return ret;
} /* mtdchar_open */
/*====================================================================*/
static int mtdchar_close(struct inode *inode, struct file *file)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
pr_debug("MTD_close\n");
/* Only sync if opened RW */
if ((file->f_mode & FMODE_WRITE))
mtd_sync(mtd);
iput(mfi->ino);
put_mtd_device(mtd);
file->private_data = NULL;
kfree(mfi);
simple_release_fs(&mnt, &count);
return 0;
} /* mtdchar_close */
/* Back in June 2001, dwmw2 wrote:
*
* FIXME: This _really_ needs to die. In 2.5, we should lock the
* userspace buffer down and use it directly with readv/writev.
*
* The implementation below, using mtd_kmalloc_up_to, mitigates
* allocation failures when the system is under low-memory situations
* or if memory is highly fragmented at the cost of reducing the
* performance of the requested transfer due to a smaller buffer size.
*
* A more complex but more memory-efficient implementation based on
* get_user_pages and iovecs to cover extents of those pages is a
* longer-term goal, as intimated by dwmw2 above. However, for the
* write case, this requires yet more complex head and tail transfer
* handling when those head and tail offsets and sizes are such that
* alignment requirements are not met in the NAND subdriver.
*/
static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
size_t size = count;
char *kbuf;
pr_debug("MTD_read\n");
if (*ppos + count > mtd->size)
count = mtd->size - *ppos;
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_read_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops;
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.len = len;
ret = mtd_read_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
}
/* Nand returns -EBADMSG on ECC errors, but it returns
* the data. For our userspace tools it is important
* to dump areas with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occurred and has
* been corrected by the ECC algorithm.
* Userspace software which accesses NAND this way
* must be aware of the fact that it deals with NAND
*/
if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
*ppos += retlen;
if (copy_to_user(buf, kbuf, retlen)) {
kfree(kbuf);
return -EFAULT;
}
else
total_retlen += retlen;
count -= retlen;
buf += retlen;
if (retlen == 0)
count = 0;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_read */
static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t size = count;
char *kbuf;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
pr_debug("MTD_write\n");
if (*ppos == mtd->size)
return -ENOSPC;
if (*ppos + count > mtd->size)
count = mtd->size - *ppos;
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
if (copy_from_user(kbuf, buf, len)) {
kfree(kbuf);
return -EFAULT;
}
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = -EROFS;
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_write_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops;
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.ooboffs = 0;
ops.len = len;
ret = mtd_write_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
}
if (!ret) {
*ppos += retlen;
total_retlen += retlen;
count -= retlen;
buf += retlen;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_write */
/*======================================================================
IOCTL calls for getting device parameters.
======================================================================*/
static void mtdchar_erase_callback (struct erase_info *instr)
{
wake_up((wait_queue_head_t *)instr->priv);
}
#ifdef CONFIG_HAVE_MTD_OTP
static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
{
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
int ret = 0;
/*
* Make a fake call to mtd_read_fact_prot_reg() to check if OTP
* operations are supported.
*/
if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == -EOPNOTSUPP)
return -EOPNOTSUPP;
switch (mode) {
case MTD_OTP_FACTORY:
mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
break;
case MTD_OTP_USER:
mfi->mode = MTD_FILE_MODE_OTP_USER;
break;
default:
ret = -EINVAL;
case MTD_OTP_OFF:
break;
}
return ret;
}
#else
# define otp_select_filemode(f,m) -EOPNOTSUPP
#endif
static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops;
uint32_t retlen;
int ret = 0;
if (!(file->f_mode & FMODE_WRITE))
return -EPERM;
if (length > 4096)
return -EINVAL;
if (!mtd->_write_oob)
ret = -EOPNOTSUPP;
else
ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT;
if (ret)
return ret;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = memdup_user(ptr, length);
if (IS_ERR(ops.oobbuf))
return PTR_ERR(ops.oobbuf);
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_write_oob(mtd, start, &ops);
if (ops.oobretlen > 0xFFFFFFFFU)
ret = -EOVERFLOW;
retlen = ops.oobretlen;
if (copy_to_user(retp, &retlen, sizeof(length)))
ret = -EFAULT;
kfree(ops.oobbuf);
return ret;
}
static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops;
int ret = 0;
if (length > 4096)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = kmalloc(length, GFP_KERNEL);
if (!ops.oobbuf)
return -ENOMEM;
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_read_oob(mtd, start, &ops);
if (put_user(ops.oobretlen, retp))
ret = -EFAULT;
else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
ops.oobretlen))
ret = -EFAULT;
kfree(ops.oobbuf);
/*
* NAND returns -EBADMSG on ECC errors, but it returns the OOB
* data. For our userspace tools it is important to dump areas
* with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occured and has
* been corrected by the ECC algorithm.
*
* Note: currently the standard NAND function, nand_read_oob_std,
* does not calculate ECC for the OOB area, so do not rely on
* this behavior unless you have replaced it with your own.
*/
if (mtd_is_bitflip_or_eccerr(ret))
return 0;
return ret;
}
/*
* Copies (and truncates, if necessary) data from the larger struct,
* nand_ecclayout, to the smaller, deprecated layout struct,
* nand_ecclayout_user. This is necessary only to support the deprecated
* API ioctl ECCGETLAYOUT while allowing all new functionality to use
* nand_ecclayout flexibly (i.e. the struct may change size in new
* releases without requiring major rewrites).
*/
static int shrink_ecclayout(const struct nand_ecclayout *from,
struct nand_ecclayout_user *to)
{
int i;
if (!from || !to)
return -EINVAL;
memset(to, 0, sizeof(*to));
to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES);
for (i = 0; i < to->eccbytes; i++)
to->eccpos[i] = from->eccpos[i];
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
if (from->oobfree[i].length == 0 &&
from->oobfree[i].offset == 0)
break;
to->oobavail += from->oobfree[i].length;
to->oobfree[i] = from->oobfree[i];
}
return 0;
}
static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
struct blkpg_ioctl_arg __user *arg)
{
struct blkpg_ioctl_arg a;
struct blkpg_partition p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg)))
return -EFAULT;
if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition)))
return -EFAULT;
switch (a.op) {
case BLKPG_ADD_PARTITION:
/* Only master mtd device must be used to add partitions */
if (mtd_is_partition(mtd))
return -EINVAL;
return mtd_add_partition(mtd, p.devname, p.start, p.length);
case BLKPG_DEL_PARTITION:
if (p.pno < 0)
return -EINVAL;
return mtd_del_partition(mtd, p.pno);
default:
return -EINVAL;
}
}
static int mtdchar_write_ioctl(struct mtd_info *mtd,
struct mtd_write_req __user *argp)
{
struct mtd_write_req req;
struct mtd_oob_ops ops;
void __user *usr_data, *usr_oob;
int ret;
if (copy_from_user(&req, argp, sizeof(req)) ||
!access_ok(VERIFY_READ, req.usr_data, req.len) ||
!access_ok(VERIFY_READ, req.usr_oob, req.ooblen))
return -EFAULT;
if (!mtd->_write_oob)
return -EOPNOTSUPP;
ops.mode = req.mode;
ops.len = (size_t)req.len;
ops.ooblen = (size_t)req.ooblen;
ops.ooboffs = 0;
usr_data = (void __user *)(uintptr_t)req.usr_data;
usr_oob = (void __user *)(uintptr_t)req.usr_oob;
if (req.usr_data) {
ops.datbuf = memdup_user(usr_data, ops.len);
if (IS_ERR(ops.datbuf))
return PTR_ERR(ops.datbuf);
} else {
ops.datbuf = NULL;
}
if (req.usr_oob) {
ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
if (IS_ERR(ops.oobbuf)) {
kfree(ops.datbuf);
return PTR_ERR(ops.oobbuf);
}
} else {
ops.oobbuf = NULL;
}
ret = mtd_write_oob(mtd, (loff_t)req.start, &ops);
kfree(ops.datbuf);
kfree(ops.oobbuf);
return ret;
}
static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
void __user *argp = (void __user *)arg;
int ret = 0;
u_long size;
struct mtd_info_user info;
pr_debug("MTD_ioctl\n");
size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT;
if (cmd & IOC_IN) {
if (!access_ok(VERIFY_READ, argp, size))
return -EFAULT;
}
if (cmd & IOC_OUT) {
if (!access_ok(VERIFY_WRITE, argp, size))
return -EFAULT;
}
switch (cmd) {
case MEMGETREGIONCOUNT:
if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
return -EFAULT;
break;
case MEMGETREGIONINFO:
{
uint32_t ur_idx;
struct mtd_erase_region_info *kr;
struct region_info_user __user *ur = argp;
if (get_user(ur_idx, &(ur->regionindex)))
return -EFAULT;
if (ur_idx >= mtd->numeraseregions)
return -EINVAL;
kr = &(mtd->eraseregions[ur_idx]);
if (put_user(kr->offset, &(ur->offset))
|| put_user(kr->erasesize, &(ur->erasesize))
|| put_user(kr->numblocks, &(ur->numblocks)))
return -EFAULT;
break;
}
case MEMGETINFO:
memset(&info, 0, sizeof(info));
info.type = mtd->type;
info.flags = mtd->flags;
info.size = mtd->size;
info.erasesize = mtd->erasesize;
info.writesize = mtd->writesize;
info.oobsize = mtd->oobsize;
/* The below field is obsolete */
info.padding = 0;
if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
return -EFAULT;
break;
case MEMERASE:
case MEMERASE64:
{
struct erase_info *erase;
if(!(file->f_mode & FMODE_WRITE))
return -EPERM;
erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
if (!erase)
ret = -ENOMEM;
else {
wait_queue_head_t waitq;
DECLARE_WAITQUEUE(wait, current);
init_waitqueue_head(&waitq);
if (cmd == MEMERASE64) {
struct erase_info_user64 einfo64;
if (copy_from_user(&einfo64, argp,
sizeof(struct erase_info_user64))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo64.start;
erase->len = einfo64.length;
} else {
struct erase_info_user einfo32;
if (copy_from_user(&einfo32, argp,
sizeof(struct erase_info_user))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo32.start;
erase->len = einfo32.length;
}
erase->mtd = mtd;
erase->callback = mtdchar_erase_callback;
erase->priv = (unsigned long)&waitq;
/*
FIXME: Allow INTERRUPTIBLE. Which means
not having the wait_queue head on the stack.
If the wq_head is on the stack, and we
leave because we got interrupted, then the
wq_head is no longer there when the
callback routine tries to wake us up.
*/
ret = mtd_erase(mtd, erase);
if (!ret) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&waitq, &wait);
if (erase->state != MTD_ERASE_DONE &&
erase->state != MTD_ERASE_FAILED)
schedule();
remove_wait_queue(&waitq, &wait);
set_current_state(TASK_RUNNING);
ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0;
}
kfree(erase);
}
break;
}
case MEMWRITEOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
/* NOTE: writes return length to buf_user->length */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->length);
break;
}
case MEMREADOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
/* NOTE: writes return length to buf_user->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->start);
break;
}
case MEMWRITEOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMREADOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMWRITE:
{
ret = mtdchar_write_ioctl(mtd,
(struct mtd_write_req __user *)arg);
break;
}
case MEMLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_lock(mtd, einfo.start, einfo.length);
break;
}
case MEMUNLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_unlock(mtd, einfo.start, einfo.length);
break;
}
case MEMISLOCKED:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_is_locked(mtd, einfo.start, einfo.length);
break;
}
/* Legacy interface */
case MEMGETOOBSEL:
{
struct nand_oobinfo oi;
if (!mtd->ecclayout)
return -EOPNOTSUPP;
if (mtd->ecclayout->eccbytes > ARRAY_SIZE(oi.eccpos))
return -EINVAL;
oi.useecc = MTD_NANDECC_AUTOPLACE;
memcpy(&oi.eccpos, mtd->ecclayout->eccpos, sizeof(oi.eccpos));
memcpy(&oi.oobfree, mtd->ecclayout->oobfree,
sizeof(oi.oobfree));
oi.eccbytes = mtd->ecclayout->eccbytes;
if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
return -EFAULT;
break;
}
case MEMGETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_isbad(mtd, offs);
break;
}
case MEMSETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_markbad(mtd, offs);
break;
}
#ifdef CONFIG_HAVE_MTD_OTP
case OTPSELECT:
{
int mode;
if (copy_from_user(&mode, argp, sizeof(int)))
return -EFAULT;
mfi->mode = MTD_FILE_MODE_NORMAL;
ret = otp_select_filemode(mfi, mode);
file->f_pos = 0;
break;
}
case OTPGETREGIONCOUNT:
case OTPGETREGIONINFO:
{
struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
if (!buf)
return -ENOMEM;
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_get_fact_prot_info(mtd, buf, 4096);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_get_user_prot_info(mtd, buf, 4096);
break;
default:
ret = -EINVAL;
break;
}
if (ret >= 0) {
if (cmd == OTPGETREGIONCOUNT) {
int nbr = ret / sizeof(struct otp_info);
ret = copy_to_user(argp, &nbr, sizeof(int));
} else
ret = copy_to_user(argp, buf, ret);
if (ret)
ret = -EFAULT;
}
kfree(buf);
break;
}
case OTPLOCK:
{
struct otp_info oinfo;
if (mfi->mode != MTD_FILE_MODE_OTP_USER)
return -EINVAL;
if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
return -EFAULT;
ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
break;
}
#endif
/* This ioctl is being deprecated - it truncates the ECC layout */
case ECCGETLAYOUT:
{
struct nand_ecclayout_user *usrlay;
if (!mtd->ecclayout)
return -EOPNOTSUPP;
usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
if (!usrlay)
return -ENOMEM;
shrink_ecclayout(mtd->ecclayout, usrlay);
if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
ret = -EFAULT;
kfree(usrlay);
break;
}
case ECCGETSTATS:
{
if (copy_to_user(argp, &mtd->ecc_stats,
sizeof(struct mtd_ecc_stats)))
return -EFAULT;
break;
}
case MTDFILEMODE:
{
mfi->mode = 0;
switch(arg) {
case MTD_FILE_MODE_OTP_FACTORY:
case MTD_FILE_MODE_OTP_USER:
ret = otp_select_filemode(mfi, arg);
break;
case MTD_FILE_MODE_RAW:
if (!mtd_has_oob(mtd))
return -EOPNOTSUPP;
mfi->mode = arg;
case MTD_FILE_MODE_NORMAL:
break;
default:
ret = -EINVAL;
}
file->f_pos = 0;
break;
}
case BLKPG:
{
ret = mtdchar_blkpg_ioctl(mtd,
(struct blkpg_ioctl_arg __user *)arg);
break;
}
case BLKRRPART:
{
/* No reread partition feature. Just return ok */
ret = 0;
break;
}
default:
ret = -ENOTTY;
}
return ret;
} /* memory_ioctl */
static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
{
int ret;
mutex_lock(&mtd_mutex);
ret = mtdchar_ioctl(file, cmd, arg);
mutex_unlock(&mtd_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
struct mtd_oob_buf32 {
u_int32_t start;
u_int32_t length;
compat_caddr_t ptr; /* unsigned char* */
};
#define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32)
#define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32)
static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
void __user *argp = compat_ptr(arg);
int ret = 0;
mutex_lock(&mtd_mutex);
switch (cmd) {
case MEMWRITEOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->length);
break;
}
case MEMREADOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
/* NOTE: writes return length to buf->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->start);
break;
}
default:
ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
}
mutex_unlock(&mtd_mutex);
return ret;
}
#endif /* CONFIG_COMPAT */
/*
* try to determine where a shared mapping can be made
* - only supported for NOMMU at the moment (MMU can't doesn't copy private
* mappings)
*/
#ifndef CONFIG_MMU
static unsigned long mtdchar_get_unmapped_area(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
unsigned long offset;
int ret;
if (addr != 0)
return (unsigned long) -EINVAL;
if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
return (unsigned long) -EINVAL;
offset = pgoff << PAGE_SHIFT;
if (offset > mtd->size - len)
return (unsigned long) -EINVAL;
ret = mtd_get_unmapped_area(mtd, len, offset, flags);
return ret == -EOPNOTSUPP ? -ENOSYS : ret;
}
#endif
static inline unsigned long get_vm_size(struct vm_area_struct *vma)
{
return vma->vm_end - vma->vm_start;
}
static inline resource_size_t get_vm_offset(struct vm_area_struct *vma)
{
return (resource_size_t) vma->vm_pgoff << PAGE_SHIFT;
}
/*
* Set a new vm offset.
*
* Verify that the incoming offset really works as a page offset,
* and that the offset and size fit in a resource_size_t.
*/
static inline int set_vm_offset(struct vm_area_struct *vma, resource_size_t off)
{
pgoff_t pgoff = off >> PAGE_SHIFT;
if (off != (resource_size_t) pgoff << PAGE_SHIFT)
return -EINVAL;
if (off + get_vm_size(vma) - 1 < off)
return -EINVAL;
vma->vm_pgoff = pgoff;
return 0;
}
/*
* set up a mapping for shared memory segments
*/
static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_MMU
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct map_info *map = mtd->priv;
resource_size_t start, off;
unsigned long len, vma_len;
/* This is broken because it assumes the MTD device is map-based
and that mtd->priv is a valid struct map_info. It should be
replaced with something that uses the mtd_get_unmapped_area()
operation properly. */
if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
off = get_vm_offset(vma);
start = map->phys;
len = PAGE_ALIGN((start & ~PAGE_MASK) + map->size);
start &= PAGE_MASK;
vma_len = get_vm_size(vma);
/* Overflow in off+len? */
if (vma_len + off < off)
return -EINVAL;
/* Does it fit in the mapping? */
if (vma_len + off > len)
return -EINVAL;
off += start;
/* Did that overflow? */
if (off < start)
return -EINVAL;
if (set_vm_offset(vma, off) < 0)
return -EINVAL;
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
#ifdef pgprot_noncached
if (file->f_flags & O_DSYNC || off >= __pa(high_memory))
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
#endif
if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot))
return -EAGAIN;
return 0;
}
return -ENOSYS;
#else
return vma->vm_flags & VM_SHARED ? 0 : -ENOSYS;
#endif
}
static const struct file_operations mtd_fops = {
.owner = THIS_MODULE,
.llseek = mtdchar_lseek,
.read = mtdchar_read,
.write = mtdchar_write,
.unlocked_ioctl = mtdchar_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mtdchar_compat_ioctl,
#endif
.open = mtdchar_open,
.release = mtdchar_close,
.mmap = mtdchar_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = mtdchar_get_unmapped_area,
#endif
};
static const struct super_operations mtd_ops = {
.drop_inode = generic_delete_inode,
.statfs = simple_statfs,
};
static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC);
}
static struct file_system_type mtd_inodefs_type = {
.name = "mtd_inodefs",
.mount = mtd_inodefs_mount,
.kill_sb = kill_anon_super,
};
MODULE_ALIAS_FS("mtd_inodefs");
static int __init init_mtdchar(void)
{
int ret;
ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
"mtd", &mtd_fops);
if (ret < 0) {
pr_notice("Can't allocate major number %d for "
"Memory Technology Devices.\n", MTD_CHAR_MAJOR);
return ret;
}
ret = register_filesystem(&mtd_inodefs_type);
if (ret) {
pr_notice("Can't register mtd_inodefs filesystem: %d\n", ret);
goto err_unregister_chdev;
}
return ret;
err_unregister_chdev:
__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
return ret;
}
static void __exit cleanup_mtdchar(void)
{
unregister_filesystem(&mtd_inodefs_type);
__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
}
module_init(init_mtdchar);
module_exit(cleanup_mtdchar);
MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("Direct character-device access to MTD devices");
MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);