2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 21:24:00 +08:00
linux-next/drivers/spi/spi-atmel.c
Jonas Bonn 473a78a7bb
spi-atmel: support inter-word delay
If the SPI slave requires an inter-word delay, configure the DLYBCT
register accordingly.

Tested on a SAMA5D2 board (derived from SAMA5D2-Xplained reference
board).

Signed-off-by: Jonas Bonn <jonas@norrbonn.se>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com>
CC: Nicolas Ferre <nicolas.ferre@microchip.com>
CC: Mark Brown <broonie@kernel.org>
CC: Alexandre Belloni <alexandre.belloni@bootlin.com>
CC: Ludovic Desroches <ludovic.desroches@microchip.com>
CC: linux-spi@vger.kernel.org
CC: linux-arm-kernel@lists.infradead.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-01-30 23:02:11 +00:00

1800 lines
46 KiB
C

/*
* Driver for Atmel AT32 and AT91 SPI Controllers
*
* Copyright (C) 2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/platform_data/dma-atmel.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/gpio/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
/* SPI register offsets */
#define SPI_CR 0x0000
#define SPI_MR 0x0004
#define SPI_RDR 0x0008
#define SPI_TDR 0x000c
#define SPI_SR 0x0010
#define SPI_IER 0x0014
#define SPI_IDR 0x0018
#define SPI_IMR 0x001c
#define SPI_CSR0 0x0030
#define SPI_CSR1 0x0034
#define SPI_CSR2 0x0038
#define SPI_CSR3 0x003c
#define SPI_FMR 0x0040
#define SPI_FLR 0x0044
#define SPI_VERSION 0x00fc
#define SPI_RPR 0x0100
#define SPI_RCR 0x0104
#define SPI_TPR 0x0108
#define SPI_TCR 0x010c
#define SPI_RNPR 0x0110
#define SPI_RNCR 0x0114
#define SPI_TNPR 0x0118
#define SPI_TNCR 0x011c
#define SPI_PTCR 0x0120
#define SPI_PTSR 0x0124
/* Bitfields in CR */
#define SPI_SPIEN_OFFSET 0
#define SPI_SPIEN_SIZE 1
#define SPI_SPIDIS_OFFSET 1
#define SPI_SPIDIS_SIZE 1
#define SPI_SWRST_OFFSET 7
#define SPI_SWRST_SIZE 1
#define SPI_LASTXFER_OFFSET 24
#define SPI_LASTXFER_SIZE 1
#define SPI_TXFCLR_OFFSET 16
#define SPI_TXFCLR_SIZE 1
#define SPI_RXFCLR_OFFSET 17
#define SPI_RXFCLR_SIZE 1
#define SPI_FIFOEN_OFFSET 30
#define SPI_FIFOEN_SIZE 1
#define SPI_FIFODIS_OFFSET 31
#define SPI_FIFODIS_SIZE 1
/* Bitfields in MR */
#define SPI_MSTR_OFFSET 0
#define SPI_MSTR_SIZE 1
#define SPI_PS_OFFSET 1
#define SPI_PS_SIZE 1
#define SPI_PCSDEC_OFFSET 2
#define SPI_PCSDEC_SIZE 1
#define SPI_FDIV_OFFSET 3
#define SPI_FDIV_SIZE 1
#define SPI_MODFDIS_OFFSET 4
#define SPI_MODFDIS_SIZE 1
#define SPI_WDRBT_OFFSET 5
#define SPI_WDRBT_SIZE 1
#define SPI_LLB_OFFSET 7
#define SPI_LLB_SIZE 1
#define SPI_PCS_OFFSET 16
#define SPI_PCS_SIZE 4
#define SPI_DLYBCS_OFFSET 24
#define SPI_DLYBCS_SIZE 8
/* Bitfields in RDR */
#define SPI_RD_OFFSET 0
#define SPI_RD_SIZE 16
/* Bitfields in TDR */
#define SPI_TD_OFFSET 0
#define SPI_TD_SIZE 16
/* Bitfields in SR */
#define SPI_RDRF_OFFSET 0
#define SPI_RDRF_SIZE 1
#define SPI_TDRE_OFFSET 1
#define SPI_TDRE_SIZE 1
#define SPI_MODF_OFFSET 2
#define SPI_MODF_SIZE 1
#define SPI_OVRES_OFFSET 3
#define SPI_OVRES_SIZE 1
#define SPI_ENDRX_OFFSET 4
#define SPI_ENDRX_SIZE 1
#define SPI_ENDTX_OFFSET 5
#define SPI_ENDTX_SIZE 1
#define SPI_RXBUFF_OFFSET 6
#define SPI_RXBUFF_SIZE 1
#define SPI_TXBUFE_OFFSET 7
#define SPI_TXBUFE_SIZE 1
#define SPI_NSSR_OFFSET 8
#define SPI_NSSR_SIZE 1
#define SPI_TXEMPTY_OFFSET 9
#define SPI_TXEMPTY_SIZE 1
#define SPI_SPIENS_OFFSET 16
#define SPI_SPIENS_SIZE 1
#define SPI_TXFEF_OFFSET 24
#define SPI_TXFEF_SIZE 1
#define SPI_TXFFF_OFFSET 25
#define SPI_TXFFF_SIZE 1
#define SPI_TXFTHF_OFFSET 26
#define SPI_TXFTHF_SIZE 1
#define SPI_RXFEF_OFFSET 27
#define SPI_RXFEF_SIZE 1
#define SPI_RXFFF_OFFSET 28
#define SPI_RXFFF_SIZE 1
#define SPI_RXFTHF_OFFSET 29
#define SPI_RXFTHF_SIZE 1
#define SPI_TXFPTEF_OFFSET 30
#define SPI_TXFPTEF_SIZE 1
#define SPI_RXFPTEF_OFFSET 31
#define SPI_RXFPTEF_SIZE 1
/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET 0
#define SPI_CPOL_SIZE 1
#define SPI_NCPHA_OFFSET 1
#define SPI_NCPHA_SIZE 1
#define SPI_CSAAT_OFFSET 3
#define SPI_CSAAT_SIZE 1
#define SPI_BITS_OFFSET 4
#define SPI_BITS_SIZE 4
#define SPI_SCBR_OFFSET 8
#define SPI_SCBR_SIZE 8
#define SPI_DLYBS_OFFSET 16
#define SPI_DLYBS_SIZE 8
#define SPI_DLYBCT_OFFSET 24
#define SPI_DLYBCT_SIZE 8
/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET 0
#define SPI_RXCTR_SIZE 16
/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET 0
#define SPI_TXCTR_SIZE 16
/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET 0
#define SPI_RXNCR_SIZE 16
/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET 0
#define SPI_TXNCR_SIZE 16
/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET 0
#define SPI_RXTEN_SIZE 1
#define SPI_RXTDIS_OFFSET 1
#define SPI_RXTDIS_SIZE 1
#define SPI_TXTEN_OFFSET 8
#define SPI_TXTEN_SIZE 1
#define SPI_TXTDIS_OFFSET 9
#define SPI_TXTDIS_SIZE 1
/* Bitfields in FMR */
#define SPI_TXRDYM_OFFSET 0
#define SPI_TXRDYM_SIZE 2
#define SPI_RXRDYM_OFFSET 4
#define SPI_RXRDYM_SIZE 2
#define SPI_TXFTHRES_OFFSET 16
#define SPI_TXFTHRES_SIZE 6
#define SPI_RXFTHRES_OFFSET 24
#define SPI_RXFTHRES_SIZE 6
/* Bitfields in FLR */
#define SPI_TXFL_OFFSET 0
#define SPI_TXFL_SIZE 6
#define SPI_RXFL_OFFSET 16
#define SPI_RXFL_SIZE 6
/* Constants for BITS */
#define SPI_BITS_8_BPT 0
#define SPI_BITS_9_BPT 1
#define SPI_BITS_10_BPT 2
#define SPI_BITS_11_BPT 3
#define SPI_BITS_12_BPT 4
#define SPI_BITS_13_BPT 5
#define SPI_BITS_14_BPT 6
#define SPI_BITS_15_BPT 7
#define SPI_BITS_16_BPT 8
#define SPI_ONE_DATA 0
#define SPI_TWO_DATA 1
#define SPI_FOUR_DATA 2
/* Bit manipulation macros */
#define SPI_BIT(name) \
(1 << SPI_##name##_OFFSET)
#define SPI_BF(name, value) \
(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
#define SPI_BFEXT(name, value) \
(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
#define SPI_BFINS(name, value, old) \
(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
| SPI_BF(name, value))
/* Register access macros */
#ifdef CONFIG_AVR32
#define spi_readl(port, reg) \
__raw_readl((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
__raw_writel((value), (port)->regs + SPI_##reg)
#define spi_readw(port, reg) \
__raw_readw((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
__raw_writew((value), (port)->regs + SPI_##reg)
#define spi_readb(port, reg) \
__raw_readb((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
__raw_writeb((value), (port)->regs + SPI_##reg)
#else
#define spi_readl(port, reg) \
readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
writel_relaxed((value), (port)->regs + SPI_##reg)
#define spi_readw(port, reg) \
readw_relaxed((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
writew_relaxed((value), (port)->regs + SPI_##reg)
#define spi_readb(port, reg) \
readb_relaxed((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
writeb_relaxed((value), (port)->regs + SPI_##reg)
#endif
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
* cache operations; better heuristics consider wordsize and bitrate.
*/
#define DMA_MIN_BYTES 16
#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
#define AUTOSUSPEND_TIMEOUT 2000
struct atmel_spi_caps {
bool is_spi2;
bool has_wdrbt;
bool has_dma_support;
bool has_pdc_support;
};
/*
* The core SPI transfer engine just talks to a register bank to set up
* DMA transfers; transfer queue progress is driven by IRQs. The clock
* framework provides the base clock, subdivided for each spi_device.
*/
struct atmel_spi {
spinlock_t lock;
unsigned long flags;
phys_addr_t phybase;
void __iomem *regs;
int irq;
struct clk *clk;
struct platform_device *pdev;
unsigned long spi_clk;
struct spi_transfer *current_transfer;
int current_remaining_bytes;
int done_status;
dma_addr_t dma_addr_rx_bbuf;
dma_addr_t dma_addr_tx_bbuf;
void *addr_rx_bbuf;
void *addr_tx_bbuf;
struct completion xfer_completion;
struct atmel_spi_caps caps;
bool use_dma;
bool use_pdc;
bool use_cs_gpios;
bool keep_cs;
bool cs_active;
u32 fifo_size;
};
/* Controller-specific per-slave state */
struct atmel_spi_device {
struct gpio_desc *npcs_pin;
u32 csr;
};
#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
#define INVALID_DMA_ADDRESS 0xffffffff
/*
* Version 2 of the SPI controller has
* - CR.LASTXFER
* - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
* - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
* - SPI_CSRx.CSAAT
* - SPI_CSRx.SBCR allows faster clocking
*/
static bool atmel_spi_is_v2(struct atmel_spi *as)
{
return as->caps.is_spi2;
}
/*
* Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
* they assume that spi slave device state will not change on deselect, so
* that automagic deselection is OK. ("NPCSx rises if no data is to be
* transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
* controllers have CSAAT and friends.
*
* Since the CSAAT functionality is a bit weird on newer controllers as
* well, we use GPIO to control nCSx pins on all controllers, updating
* MR.PCS to avoid confusing the controller. Using GPIOs also lets us
* support active-high chipselects despite the controller's belief that
* only active-low devices/systems exists.
*
* However, at91rm9200 has a second erratum whereby nCS0 doesn't work
* right when driven with GPIO. ("Mode Fault does not allow more than one
* Master on Chip Select 0.") No workaround exists for that ... so for
* nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
* and (c) will trigger that first erratum in some cases.
*/
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
{
struct atmel_spi_device *asd = spi->controller_state;
u32 mr;
if (atmel_spi_is_v2(as)) {
spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
/* For the low SPI version, there is a issue that PDC transfer
* on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
*/
spi_writel(as, CSR0, asd->csr);
if (as->caps.has_wdrbt) {
spi_writel(as, MR,
SPI_BF(PCS, ~(0x01 << spi->chip_select))
| SPI_BIT(WDRBT)
| SPI_BIT(MODFDIS)
| SPI_BIT(MSTR));
} else {
spi_writel(as, MR,
SPI_BF(PCS, ~(0x01 << spi->chip_select))
| SPI_BIT(MODFDIS)
| SPI_BIT(MSTR));
}
mr = spi_readl(as, MR);
if (as->use_cs_gpios)
gpiod_set_value(asd->npcs_pin, 1);
} else {
u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
int i;
u32 csr;
/* Make sure clock polarity is correct */
for (i = 0; i < spi->master->num_chipselect; i++) {
csr = spi_readl(as, CSR0 + 4 * i);
if ((csr ^ cpol) & SPI_BIT(CPOL))
spi_writel(as, CSR0 + 4 * i,
csr ^ SPI_BIT(CPOL));
}
mr = spi_readl(as, MR);
mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
if (as->use_cs_gpios && spi->chip_select != 0)
gpiod_set_value(asd->npcs_pin, 1);
spi_writel(as, MR, mr);
}
dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
}
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
{
struct atmel_spi_device *asd = spi->controller_state;
u32 mr;
/* only deactivate *this* device; sometimes transfers to
* another device may be active when this routine is called.
*/
mr = spi_readl(as, MR);
if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
mr = SPI_BFINS(PCS, 0xf, mr);
spi_writel(as, MR, mr);
}
dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
if (!as->use_cs_gpios)
spi_writel(as, CR, SPI_BIT(LASTXFER));
else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
gpiod_set_value(asd->npcs_pin, 0);
}
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
{
spin_lock_irqsave(&as->lock, as->flags);
}
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
{
spin_unlock_irqrestore(&as->lock, as->flags);
}
static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
{
return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
}
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
struct spi_transfer *xfer)
{
return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}
static bool atmel_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
return atmel_spi_use_dma(as, xfer) &&
!atmel_spi_is_vmalloc_xfer(xfer);
else
return atmel_spi_use_dma(as, xfer);
}
static int atmel_spi_dma_slave_config(struct atmel_spi *as,
struct dma_slave_config *slave_config,
u8 bits_per_word)
{
struct spi_master *master = platform_get_drvdata(as->pdev);
int err = 0;
if (bits_per_word > 8) {
slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
} else {
slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
}
slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
slave_config->src_maxburst = 1;
slave_config->dst_maxburst = 1;
slave_config->device_fc = false;
/*
* This driver uses fixed peripheral select mode (PS bit set to '0' in
* the Mode Register).
* So according to the datasheet, when FIFOs are available (and
* enabled), the Transmit FIFO operates in Multiple Data Mode.
* In this mode, up to 2 data, not 4, can be written into the Transmit
* Data Register in a single access.
* However, the first data has to be written into the lowest 16 bits and
* the second data into the highest 16 bits of the Transmit
* Data Register. For 8bit data (the most frequent case), it would
* require to rework tx_buf so each data would actualy fit 16 bits.
* So we'd rather write only one data at the time. Hence the transmit
* path works the same whether FIFOs are available (and enabled) or not.
*/
slave_config->direction = DMA_MEM_TO_DEV;
if (dmaengine_slave_config(master->dma_tx, slave_config)) {
dev_err(&as->pdev->dev,
"failed to configure tx dma channel\n");
err = -EINVAL;
}
/*
* This driver configures the spi controller for master mode (MSTR bit
* set to '1' in the Mode Register).
* So according to the datasheet, when FIFOs are available (and
* enabled), the Receive FIFO operates in Single Data Mode.
* So the receive path works the same whether FIFOs are available (and
* enabled) or not.
*/
slave_config->direction = DMA_DEV_TO_MEM;
if (dmaengine_slave_config(master->dma_rx, slave_config)) {
dev_err(&as->pdev->dev,
"failed to configure rx dma channel\n");
err = -EINVAL;
}
return err;
}
static int atmel_spi_configure_dma(struct spi_master *master,
struct atmel_spi *as)
{
struct dma_slave_config slave_config;
struct device *dev = &as->pdev->dev;
int err;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
if (IS_ERR(master->dma_tx)) {
err = PTR_ERR(master->dma_tx);
if (err == -EPROBE_DEFER) {
dev_warn(dev, "no DMA channel available at the moment\n");
goto error_clear;
}
dev_err(dev,
"DMA TX channel not available, SPI unable to use DMA\n");
err = -EBUSY;
goto error_clear;
}
/*
* No reason to check EPROBE_DEFER here since we have already requested
* tx channel. If it fails here, it's for another reason.
*/
master->dma_rx = dma_request_slave_channel(dev, "rx");
if (!master->dma_rx) {
dev_err(dev,
"DMA RX channel not available, SPI unable to use DMA\n");
err = -EBUSY;
goto error;
}
err = atmel_spi_dma_slave_config(as, &slave_config, 8);
if (err)
goto error;
dev_info(&as->pdev->dev,
"Using %s (tx) and %s (rx) for DMA transfers\n",
dma_chan_name(master->dma_tx),
dma_chan_name(master->dma_rx));
return 0;
error:
if (master->dma_rx)
dma_release_channel(master->dma_rx);
if (!IS_ERR(master->dma_tx))
dma_release_channel(master->dma_tx);
error_clear:
master->dma_tx = master->dma_rx = NULL;
return err;
}
static void atmel_spi_stop_dma(struct spi_master *master)
{
if (master->dma_rx)
dmaengine_terminate_all(master->dma_rx);
if (master->dma_tx)
dmaengine_terminate_all(master->dma_tx);
}
static void atmel_spi_release_dma(struct spi_master *master)
{
if (master->dma_rx) {
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
}
if (master->dma_tx) {
dma_release_channel(master->dma_tx);
master->dma_tx = NULL;
}
}
/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
struct spi_master *master = data;
struct atmel_spi *as = spi_master_get_devdata(master);
if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
as->current_transfer->len);
}
complete(&as->xfer_completion);
}
/*
* Next transfer using PIO without FIFO.
*/
static void atmel_spi_next_xfer_single(struct spi_master *master,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
/* Make sure data is not remaining in RDR */
spi_readl(as, RDR);
while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
spi_readl(as, RDR);
cpu_relax();
}
if (xfer->bits_per_word > 8)
spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
else
spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
dev_dbg(master->dev.parent,
" start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
xfer->bits_per_word);
/* Enable relevant interrupts */
spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}
/*
* Next transfer using PIO with FIFO.
*/
static void atmel_spi_next_xfer_fifo(struct spi_master *master,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
u32 current_remaining_data, num_data;
u32 offset = xfer->len - as->current_remaining_bytes;
const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
u16 td0, td1;
u32 fifomr;
dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
/* Compute the number of data to transfer in the current iteration */
current_remaining_data = ((xfer->bits_per_word > 8) ?
((u32)as->current_remaining_bytes >> 1) :
(u32)as->current_remaining_bytes);
num_data = min(current_remaining_data, as->fifo_size);
/* Flush RX and TX FIFOs */
spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
while (spi_readl(as, FLR))
cpu_relax();
/* Set RX FIFO Threshold to the number of data to transfer */
fifomr = spi_readl(as, FMR);
spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
/* Clear FIFO flags in the Status Register, especially RXFTHF */
(void)spi_readl(as, SR);
/* Fill TX FIFO */
while (num_data >= 2) {
if (xfer->bits_per_word > 8) {
td0 = *words++;
td1 = *words++;
} else {
td0 = *bytes++;
td1 = *bytes++;
}
spi_writel(as, TDR, (td1 << 16) | td0);
num_data -= 2;
}
if (num_data) {
if (xfer->bits_per_word > 8)
td0 = *words++;
else
td0 = *bytes++;
spi_writew(as, TDR, td0);
num_data--;
}
dev_dbg(master->dev.parent,
" start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
xfer->bits_per_word);
/*
* Enable RX FIFO Threshold Flag interrupt to be notified about
* transfer completion.
*/
spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
}
/*
* Next transfer using PIO.
*/
static void atmel_spi_next_xfer_pio(struct spi_master *master,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
if (as->fifo_size)
atmel_spi_next_xfer_fifo(master, xfer);
else
atmel_spi_next_xfer_single(master, xfer);
}
/*
* Submit next transfer for DMA.
*/
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
struct spi_transfer *xfer,
u32 *plen)
{
struct atmel_spi *as = spi_master_get_devdata(master);
struct dma_chan *rxchan = master->dma_rx;
struct dma_chan *txchan = master->dma_tx;
struct dma_async_tx_descriptor *rxdesc;
struct dma_async_tx_descriptor *txdesc;
struct dma_slave_config slave_config;
dma_cookie_t cookie;
dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
/* Check that the channels are available */
if (!rxchan || !txchan)
return -ENODEV;
/* release lock for DMA operations */
atmel_spi_unlock(as);
*plen = xfer->len;
if (atmel_spi_dma_slave_config(as, &slave_config,
xfer->bits_per_word))
goto err_exit;
/* Send both scatterlists */
if (atmel_spi_is_vmalloc_xfer(xfer) &&
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
rxdesc = dmaengine_prep_slave_single(rxchan,
as->dma_addr_rx_bbuf,
xfer->len,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
} else {
rxdesc = dmaengine_prep_slave_sg(rxchan,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
}
if (!rxdesc)
goto err_dma;
if (atmel_spi_is_vmalloc_xfer(xfer) &&
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
txdesc = dmaengine_prep_slave_single(txchan,
as->dma_addr_tx_bbuf,
xfer->len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
} else {
txdesc = dmaengine_prep_slave_sg(txchan,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
}
if (!txdesc)
goto err_dma;
dev_dbg(master->dev.parent,
" start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
xfer->rx_buf, (unsigned long long)xfer->rx_dma);
/* Enable relevant interrupts */
spi_writel(as, IER, SPI_BIT(OVRES));
/* Put the callback on the RX transfer only, that should finish last */
rxdesc->callback = dma_callback;
rxdesc->callback_param = master;
/* Submit and fire RX and TX with TX last so we're ready to read! */
cookie = rxdesc->tx_submit(rxdesc);
if (dma_submit_error(cookie))
goto err_dma;
cookie = txdesc->tx_submit(txdesc);
if (dma_submit_error(cookie))
goto err_dma;
rxchan->device->device_issue_pending(rxchan);
txchan->device->device_issue_pending(txchan);
/* take back lock */
atmel_spi_lock(as);
return 0;
err_dma:
spi_writel(as, IDR, SPI_BIT(OVRES));
atmel_spi_stop_dma(master);
err_exit:
atmel_spi_lock(as);
return -ENOMEM;
}
static void atmel_spi_next_xfer_data(struct spi_master *master,
struct spi_transfer *xfer,
dma_addr_t *tx_dma,
dma_addr_t *rx_dma,
u32 *plen)
{
*rx_dma = xfer->rx_dma + xfer->len - *plen;
*tx_dma = xfer->tx_dma + xfer->len - *plen;
if (*plen > master->max_dma_len)
*plen = master->max_dma_len;
}
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
struct spi_device *spi,
struct spi_transfer *xfer)
{
u32 scbr, csr;
unsigned long bus_hz;
/* v1 chips start out at half the peripheral bus speed. */
bus_hz = as->spi_clk;
if (!atmel_spi_is_v2(as))
bus_hz /= 2;
/*
* Calculate the lowest divider that satisfies the
* constraint, assuming div32/fdiv/mbz == 0.
*/
scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
/*
* If the resulting divider doesn't fit into the
* register bitfield, we can't satisfy the constraint.
*/
if (scbr >= (1 << SPI_SCBR_SIZE)) {
dev_err(&spi->dev,
"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
xfer->speed_hz, scbr, bus_hz/255);
return -EINVAL;
}
if (scbr == 0) {
dev_err(&spi->dev,
"setup: %d Hz too high, scbr %u; max %ld Hz\n",
xfer->speed_hz, scbr, bus_hz);
return -EINVAL;
}
csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
csr = SPI_BFINS(SCBR, scbr, csr);
spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
return 0;
}
/*
* Submit next transfer for PDC.
* lock is held, spi irq is blocked
*/
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
struct spi_message *msg,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
u32 len;
dma_addr_t tx_dma, rx_dma;
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
len = as->current_remaining_bytes;
atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
as->current_remaining_bytes -= len;
spi_writel(as, RPR, rx_dma);
spi_writel(as, TPR, tx_dma);
if (msg->spi->bits_per_word > 8)
len >>= 1;
spi_writel(as, RCR, len);
spi_writel(as, TCR, len);
dev_dbg(&msg->spi->dev,
" start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
xfer, xfer->len, xfer->tx_buf,
(unsigned long long)xfer->tx_dma, xfer->rx_buf,
(unsigned long long)xfer->rx_dma);
if (as->current_remaining_bytes) {
len = as->current_remaining_bytes;
atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
as->current_remaining_bytes -= len;
spi_writel(as, RNPR, rx_dma);
spi_writel(as, TNPR, tx_dma);
if (msg->spi->bits_per_word > 8)
len >>= 1;
spi_writel(as, RNCR, len);
spi_writel(as, TNCR, len);
dev_dbg(&msg->spi->dev,
" next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
xfer, xfer->len, xfer->tx_buf,
(unsigned long long)xfer->tx_dma, xfer->rx_buf,
(unsigned long long)xfer->rx_dma);
}
/* REVISIT: We're waiting for RXBUFF before we start the next
* transfer because we need to handle some difficult timing
* issues otherwise. If we wait for TXBUFE in one transfer and
* then starts waiting for RXBUFF in the next, it's difficult
* to tell the difference between the RXBUFF interrupt we're
* actually waiting for and the RXBUFF interrupt of the
* previous transfer.
*
* It should be doable, though. Just not now...
*/
spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}
/*
* For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
* - The buffer is either valid for CPU access, else NULL
* - If the buffer is valid, so is its DMA address
*
* This driver manages the dma address unless message->is_dma_mapped.
*/
static int
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
struct device *dev = &as->pdev->dev;
xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
if (xfer->tx_buf) {
/* tx_buf is a const void* where we need a void * for the dma
* mapping */
void *nonconst_tx = (void *)xfer->tx_buf;
xfer->tx_dma = dma_map_single(dev,
nonconst_tx, xfer->len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, xfer->tx_dma))
return -ENOMEM;
}
if (xfer->rx_buf) {
xfer->rx_dma = dma_map_single(dev,
xfer->rx_buf, xfer->len,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, xfer->rx_dma)) {
if (xfer->tx_buf)
dma_unmap_single(dev,
xfer->tx_dma, xfer->len,
DMA_TO_DEVICE);
return -ENOMEM;
}
}
return 0;
}
static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
struct spi_transfer *xfer)
{
if (xfer->tx_dma != INVALID_DMA_ADDRESS)
dma_unmap_single(master->dev.parent, xfer->tx_dma,
xfer->len, DMA_TO_DEVICE);
if (xfer->rx_dma != INVALID_DMA_ADDRESS)
dma_unmap_single(master->dev.parent, xfer->rx_dma,
xfer->len, DMA_FROM_DEVICE);
}
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}
static void
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
u8 *rxp;
u16 *rxp16;
unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
if (xfer->bits_per_word > 8) {
rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
*rxp16 = spi_readl(as, RDR);
} else {
rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
*rxp = spi_readl(as, RDR);
}
if (xfer->bits_per_word > 8) {
if (as->current_remaining_bytes > 2)
as->current_remaining_bytes -= 2;
else
as->current_remaining_bytes = 0;
} else {
as->current_remaining_bytes--;
}
}
static void
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
u32 fifolr = spi_readl(as, FLR);
u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
u32 offset = xfer->len - as->current_remaining_bytes;
u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
u16 rd; /* RD field is the lowest 16 bits of RDR */
/* Update the number of remaining bytes to transfer */
num_bytes = ((xfer->bits_per_word > 8) ?
(num_data << 1) :
num_data);
if (as->current_remaining_bytes > num_bytes)
as->current_remaining_bytes -= num_bytes;
else
as->current_remaining_bytes = 0;
/* Handle odd number of bytes when data are more than 8bit width */
if (xfer->bits_per_word > 8)
as->current_remaining_bytes &= ~0x1;
/* Read data */
while (num_data) {
rd = spi_readl(as, RDR);
if (xfer->bits_per_word > 8)
*words++ = rd;
else
*bytes++ = rd;
num_data--;
}
}
/* Called from IRQ
*
* Must update "current_remaining_bytes" to keep track of data
* to transfer.
*/
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
if (as->fifo_size)
atmel_spi_pump_fifo_data(as, xfer);
else
atmel_spi_pump_single_data(as, xfer);
}
/* Interrupt
*
* No need for locking in this Interrupt handler: done_status is the
* only information modified.
*/
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct atmel_spi *as = spi_master_get_devdata(master);
u32 status, pending, imr;
struct spi_transfer *xfer;
int ret = IRQ_NONE;
imr = spi_readl(as, IMR);
status = spi_readl(as, SR);
pending = status & imr;
if (pending & SPI_BIT(OVRES)) {
ret = IRQ_HANDLED;
spi_writel(as, IDR, SPI_BIT(OVRES));
dev_warn(master->dev.parent, "overrun\n");
/*
* When we get an overrun, we disregard the current
* transfer. Data will not be copied back from any
* bounce buffer and msg->actual_len will not be
* updated with the last xfer.
*
* We will also not process any remaning transfers in
* the message.
*/
as->done_status = -EIO;
smp_wmb();
/* Clear any overrun happening while cleaning up */
spi_readl(as, SR);
complete(&as->xfer_completion);
} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
atmel_spi_lock(as);
if (as->current_remaining_bytes) {
ret = IRQ_HANDLED;
xfer = as->current_transfer;
atmel_spi_pump_pio_data(as, xfer);
if (!as->current_remaining_bytes)
spi_writel(as, IDR, pending);
complete(&as->xfer_completion);
}
atmel_spi_unlock(as);
} else {
WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
ret = IRQ_HANDLED;
spi_writel(as, IDR, pending);
}
return ret;
}
static irqreturn_t
atmel_spi_pdc_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct atmel_spi *as = spi_master_get_devdata(master);
u32 status, pending, imr;
int ret = IRQ_NONE;
imr = spi_readl(as, IMR);
status = spi_readl(as, SR);
pending = status & imr;
if (pending & SPI_BIT(OVRES)) {
ret = IRQ_HANDLED;
spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
| SPI_BIT(OVRES)));
/* Clear any overrun happening while cleaning up */
spi_readl(as, SR);
as->done_status = -EIO;
complete(&as->xfer_completion);
} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
ret = IRQ_HANDLED;
spi_writel(as, IDR, pending);
complete(&as->xfer_completion);
}
return ret;
}
static int atmel_spi_setup(struct spi_device *spi)
{
struct atmel_spi *as;
struct atmel_spi_device *asd;
u32 csr;
unsigned int bits = spi->bits_per_word;
as = spi_master_get_devdata(spi->master);
/* see notes above re chipselect */
if (!atmel_spi_is_v2(as)
&& spi->chip_select == 0
&& (spi->mode & SPI_CS_HIGH)) {
dev_dbg(&spi->dev, "setup: can't be active-high\n");
return -EINVAL;
}
csr = SPI_BF(BITS, bits - 8);
if (spi->mode & SPI_CPOL)
csr |= SPI_BIT(CPOL);
if (!(spi->mode & SPI_CPHA))
csr |= SPI_BIT(NCPHA);
if (!as->use_cs_gpios)
csr |= SPI_BIT(CSAAT);
/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
*/
csr |= SPI_BF(DLYBS, 0);
/* DLYBCT adds delays between words. This is useful for slow devices
* that need a bit of time to setup the next transfer.
*/
csr |= SPI_BF(DLYBCT,
(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
asd = spi->controller_state;
if (!asd) {
asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
if (!asd)
return -ENOMEM;
/*
* If use_cs_gpios is true this means that we have "cs-gpios"
* defined in the device tree node so we should have
* gotten the GPIO lines from the device tree inside the
* SPI core. Warn if this is not the case but continue since
* CS GPIOs are after all optional.
*/
if (as->use_cs_gpios) {
if (!spi->cs_gpiod) {
dev_err(&spi->dev,
"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
}
asd->npcs_pin = spi->cs_gpiod;
}
spi->controller_state = asd;
}
asd->csr = csr;
dev_dbg(&spi->dev,
"setup: bpw %u mode 0x%x -> csr%d %08x\n",
bits, spi->mode, spi->chip_select, csr);
if (!atmel_spi_is_v2(as))
spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
return 0;
}
static int atmel_spi_one_transfer(struct spi_master *master,
struct spi_message *msg,
struct spi_transfer *xfer)
{
struct atmel_spi *as;
struct spi_device *spi = msg->spi;
u8 bits;
u32 len;
struct atmel_spi_device *asd;
int timeout;
int ret;
unsigned long dma_timeout;
as = spi_master_get_devdata(master);
if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
dev_dbg(&spi->dev, "missing rx or tx buf\n");
return -EINVAL;
}
asd = spi->controller_state;
bits = (asd->csr >> 4) & 0xf;
if (bits != xfer->bits_per_word - 8) {
dev_dbg(&spi->dev,
"you can't yet change bits_per_word in transfers\n");
return -ENOPROTOOPT;
}
/*
* DMA map early, for performance (empties dcache ASAP) and
* better fault reporting.
*/
if ((!msg->is_dma_mapped)
&& as->use_pdc) {
if (atmel_spi_dma_map_xfer(as, xfer) < 0)
return -ENOMEM;
}
atmel_spi_set_xfer_speed(as, msg->spi, xfer);
as->done_status = 0;
as->current_transfer = xfer;
as->current_remaining_bytes = xfer->len;
while (as->current_remaining_bytes) {
reinit_completion(&as->xfer_completion);
if (as->use_pdc) {
atmel_spi_pdc_next_xfer(master, msg, xfer);
} else if (atmel_spi_use_dma(as, xfer)) {
len = as->current_remaining_bytes;
ret = atmel_spi_next_xfer_dma_submit(master,
xfer, &len);
if (ret) {
dev_err(&spi->dev,
"unable to use DMA, fallback to PIO\n");
atmel_spi_next_xfer_pio(master, xfer);
} else {
as->current_remaining_bytes -= len;
if (as->current_remaining_bytes < 0)
as->current_remaining_bytes = 0;
}
} else {
atmel_spi_next_xfer_pio(master, xfer);
}
/* interrupts are disabled, so free the lock for schedule */
atmel_spi_unlock(as);
dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
SPI_DMA_TIMEOUT);
atmel_spi_lock(as);
if (WARN_ON(dma_timeout == 0)) {
dev_err(&spi->dev, "spi transfer timeout\n");
as->done_status = -EIO;
}
if (as->done_status)
break;
}
if (as->done_status) {
if (as->use_pdc) {
dev_warn(master->dev.parent,
"overrun (%u/%u remaining)\n",
spi_readl(as, TCR), spi_readl(as, RCR));
/*
* Clean up DMA registers and make sure the data
* registers are empty.
*/
spi_writel(as, RNCR, 0);
spi_writel(as, TNCR, 0);
spi_writel(as, RCR, 0);
spi_writel(as, TCR, 0);
for (timeout = 1000; timeout; timeout--)
if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
break;
if (!timeout)
dev_warn(master->dev.parent,
"timeout waiting for TXEMPTY");
while (spi_readl(as, SR) & SPI_BIT(RDRF))
spi_readl(as, RDR);
/* Clear any overrun happening while cleaning up */
spi_readl(as, SR);
} else if (atmel_spi_use_dma(as, xfer)) {
atmel_spi_stop_dma(master);
}
if (!msg->is_dma_mapped
&& as->use_pdc)
atmel_spi_dma_unmap_xfer(master, xfer);
return 0;
} else {
/* only update length if no error */
msg->actual_length += xfer->len;
}
if (!msg->is_dma_mapped
&& as->use_pdc)
atmel_spi_dma_unmap_xfer(master, xfer);
if (xfer->delay_usecs)
udelay(xfer->delay_usecs);
if (xfer->cs_change) {
if (list_is_last(&xfer->transfer_list,
&msg->transfers)) {
as->keep_cs = true;
} else {
as->cs_active = !as->cs_active;
if (as->cs_active)
cs_activate(as, msg->spi);
else
cs_deactivate(as, msg->spi);
}
}
return 0;
}
static int atmel_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct atmel_spi *as;
struct spi_transfer *xfer;
struct spi_device *spi = msg->spi;
int ret = 0;
as = spi_master_get_devdata(master);
dev_dbg(&spi->dev, "new message %p submitted for %s\n",
msg, dev_name(&spi->dev));
atmel_spi_lock(as);
cs_activate(as, spi);
as->cs_active = true;
as->keep_cs = false;
msg->status = 0;
msg->actual_length = 0;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
ret = atmel_spi_one_transfer(master, msg, xfer);
if (ret)
goto msg_done;
}
if (as->use_pdc)
atmel_spi_disable_pdc_transfer(as);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
dev_dbg(&spi->dev,
" xfer %p: len %u tx %p/%pad rx %p/%pad\n",
xfer, xfer->len,
xfer->tx_buf, &xfer->tx_dma,
xfer->rx_buf, &xfer->rx_dma);
}
msg_done:
if (!as->keep_cs)
cs_deactivate(as, msg->spi);
atmel_spi_unlock(as);
msg->status = as->done_status;
spi_finalize_current_message(spi->master);
return ret;
}
static void atmel_spi_cleanup(struct spi_device *spi)
{
struct atmel_spi_device *asd = spi->controller_state;
if (!asd)
return;
spi->controller_state = NULL;
kfree(asd);
}
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
return spi_readl(as, VERSION) & 0x00000fff;
}
static void atmel_get_caps(struct atmel_spi *as)
{
unsigned int version;
version = atmel_get_version(as);
as->caps.is_spi2 = version > 0x121;
as->caps.has_wdrbt = version >= 0x210;
as->caps.has_dma_support = version >= 0x212;
as->caps.has_pdc_support = version < 0x212;
}
static void atmel_spi_init(struct atmel_spi *as)
{
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
/* It is recommended to enable FIFOs first thing after reset */
if (as->fifo_size)
spi_writel(as, CR, SPI_BIT(FIFOEN));
if (as->caps.has_wdrbt) {
spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
| SPI_BIT(MSTR));
} else {
spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
}
if (as->use_pdc)
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
spi_writel(as, CR, SPI_BIT(SPIEN));
}
static int atmel_spi_probe(struct platform_device *pdev)
{
struct resource *regs;
int irq;
struct clk *clk;
int ret;
struct spi_master *master;
struct atmel_spi *as;
/* Select default pin state */
pinctrl_pm_select_default_state(&pdev->dev);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
clk = devm_clk_get(&pdev->dev, "spi_clk");
if (IS_ERR(clk))
return PTR_ERR(clk);
/* setup spi core then atmel-specific driver state */
ret = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof(*as));
if (!master)
goto out_free;
/* the spi->mode bits understood by this driver: */
master->use_gpio_descriptors = true;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
master->num_chipselect = master->dev.of_node ? 0 : 4;
master->setup = atmel_spi_setup;
master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
master->transfer_one_message = atmel_spi_transfer_one_message;
master->cleanup = atmel_spi_cleanup;
master->auto_runtime_pm = true;
master->max_dma_len = SPI_MAX_DMA_XFER;
master->can_dma = atmel_spi_can_dma;
platform_set_drvdata(pdev, master);
as = spi_master_get_devdata(master);
spin_lock_init(&as->lock);
as->pdev = pdev;
as->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(as->regs)) {
ret = PTR_ERR(as->regs);
goto out_unmap_regs;
}
as->phybase = regs->start;
as->irq = irq;
as->clk = clk;
init_completion(&as->xfer_completion);
atmel_get_caps(as);
/*
* If there are chip selects in the device tree, those will be
* discovered by the SPI core when registering the SPI master
* and assigned to each SPI device.
*/
as->use_cs_gpios = true;
if (atmel_spi_is_v2(as) &&
pdev->dev.of_node &&
!of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
as->use_cs_gpios = false;
master->num_chipselect = 4;
}
as->use_dma = false;
as->use_pdc = false;
if (as->caps.has_dma_support) {
ret = atmel_spi_configure_dma(master, as);
if (ret == 0) {
as->use_dma = true;
} else if (ret == -EPROBE_DEFER) {
return ret;
}
} else if (as->caps.has_pdc_support) {
as->use_pdc = true;
}
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
SPI_MAX_DMA_XFER,
&as->dma_addr_rx_bbuf,
GFP_KERNEL | GFP_DMA);
if (!as->addr_rx_bbuf) {
as->use_dma = false;
} else {
as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
SPI_MAX_DMA_XFER,
&as->dma_addr_tx_bbuf,
GFP_KERNEL | GFP_DMA);
if (!as->addr_tx_bbuf) {
as->use_dma = false;
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
as->addr_rx_bbuf,
as->dma_addr_rx_bbuf);
}
}
if (!as->use_dma)
dev_info(master->dev.parent,
" can not allocate dma coherent memory\n");
}
if (as->caps.has_dma_support && !as->use_dma)
dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
if (as->use_pdc) {
ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
0, dev_name(&pdev->dev), master);
} else {
ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
0, dev_name(&pdev->dev), master);
}
if (ret)
goto out_unmap_regs;
/* Initialize the hardware */
ret = clk_prepare_enable(clk);
if (ret)
goto out_free_irq;
as->spi_clk = clk_get_rate(clk);
as->fifo_size = 0;
if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
&as->fifo_size)) {
dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
}
atmel_spi_init(as);
pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret)
goto out_free_dma;
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
atmel_get_version(as), (unsigned long)regs->start,
irq);
return 0;
out_free_dma:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
if (as->use_dma)
atmel_spi_release_dma(master);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
clk_disable_unprepare(clk);
out_free_irq:
out_unmap_regs:
out_free:
spi_master_put(master);
return ret;
}
static int atmel_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct atmel_spi *as = spi_master_get_devdata(master);
pm_runtime_get_sync(&pdev->dev);
/* reset the hardware and block queue progress */
if (as->use_dma) {
atmel_spi_stop_dma(master);
atmel_spi_release_dma(master);
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
as->addr_tx_bbuf,
as->dma_addr_tx_bbuf);
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
as->addr_rx_bbuf,
as->dma_addr_rx_bbuf);
}
}
spin_lock_irq(&as->lock);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
spi_readl(as, SR);
spin_unlock_irq(&as->lock);
clk_disable_unprepare(as->clk);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int atmel_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct atmel_spi *as = spi_master_get_devdata(master);
clk_disable_unprepare(as->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int atmel_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct atmel_spi *as = spi_master_get_devdata(master);
pinctrl_pm_select_default_state(dev);
return clk_prepare_enable(as->clk);
}
#ifdef CONFIG_PM_SLEEP
static int atmel_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
int ret;
/* Stop the queue running */
ret = spi_master_suspend(master);
if (ret)
return ret;
if (!pm_runtime_suspended(dev))
atmel_spi_runtime_suspend(dev);
return 0;
}
static int atmel_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct atmel_spi *as = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(as->clk);
if (ret)
return ret;
atmel_spi_init(as);
clk_disable_unprepare(as->clk);
if (!pm_runtime_suspended(dev)) {
ret = atmel_spi_runtime_resume(dev);
if (ret)
return ret;
}
/* Start the queue running */
return spi_master_resume(master);
}
#endif
static const struct dev_pm_ops atmel_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
atmel_spi_runtime_resume, NULL)
};
#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
#else
#define ATMEL_SPI_PM_OPS NULL
#endif
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
{ .compatible = "atmel,at91rm9200-spi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
static struct platform_driver atmel_spi_driver = {
.driver = {
.name = "atmel_spi",
.pm = ATMEL_SPI_PM_OPS,
.of_match_table = of_match_ptr(atmel_spi_dt_ids),
},
.probe = atmel_spi_probe,
.remove = atmel_spi_remove,
};
module_platform_driver(atmel_spi_driver);
MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:atmel_spi");