2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/sound/soc/codecs/tscs42xx.c
Colin Ian King 3511108a79
ASoC: TSCS42xx: make functions pll_event and dac_event static
The functions pll_event and dac_event are local to the source and do
not need to be in global scope, so make them static.

Cleans up sparse warnings:
symbol 'pll_event' was not declared. Should it be static?
symbol 'dac_event' was not declared. Should it be static?

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Steven Eckhoff <steven.eckhoff.opensource@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2018-01-09 17:02:42 +00:00

1457 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
// tscs42xx.c -- TSCS42xx ALSA SoC Audio driver
// Copyright 2017 Tempo Semiconductor, Inc.
// Author: Steven Eckhoff <steven.eckhoff.opensource@gmail.com>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include "tscs42xx.h"
#define COEFF_SIZE 3
#define BIQUAD_COEFF_COUNT 5
#define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT)
#define COEFF_RAM_MAX_ADDR 0xcd
#define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1)
#define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT)
struct tscs42xx {
int bclk_ratio;
int samplerate;
unsigned int blrcm;
struct mutex audio_params_lock;
u8 coeff_ram[COEFF_RAM_SIZE];
bool coeff_ram_synced;
struct mutex coeff_ram_lock;
struct mutex pll_lock;
struct regmap *regmap;
struct device *dev;
};
struct coeff_ram_ctl {
unsigned int addr;
struct soc_bytes_ext bytes_ext;
};
static bool tscs42xx_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_DACCRWRL:
case R_DACCRWRM:
case R_DACCRWRH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_DACCRSTAT:
case R_DACCRADDR:
case R_PLLCTL0:
return true;
default:
return false;
};
}
static bool tscs42xx_precious(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_DACCRWRL:
case R_DACCRWRM:
case R_DACCRWRH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
return true;
default:
return false;
};
}
static const struct regmap_config tscs42xx_regmap = {
.reg_bits = 8,
.val_bits = 8,
.volatile_reg = tscs42xx_volatile,
.precious_reg = tscs42xx_precious,
.max_register = R_DACMBCREL3H,
.cache_type = REGCACHE_RBTREE,
.can_multi_write = true,
};
#define MAX_PLL_LOCK_20MS_WAITS 1
static bool plls_locked(struct snd_soc_codec *codec)
{
int ret;
int count = MAX_PLL_LOCK_20MS_WAITS;
do {
ret = snd_soc_read(codec, R_PLLCTL0);
if (ret < 0) {
dev_err(codec->dev,
"Failed to read PLL lock status (%d)\n", ret);
return false;
} else if (ret > 0) {
return true;
}
msleep(20);
} while (count--);
return false;
}
static int sample_rate_to_pll_freq_out(int sample_rate)
{
switch (sample_rate) {
case 11025:
case 22050:
case 44100:
case 88200:
return 112896000;
case 8000:
case 16000:
case 32000:
case 48000:
case 96000:
return 122880000;
default:
return -EINVAL;
}
}
#define DACCRSTAT_MAX_TRYS 10
static int write_coeff_ram(struct snd_soc_codec *codec, u8 *coeff_ram,
unsigned int addr, unsigned int coeff_cnt)
{
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
int cnt;
int trys;
int ret;
for (cnt = 0; cnt < coeff_cnt; cnt++, addr++) {
for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) {
ret = snd_soc_read(codec, R_DACCRSTAT);
if (ret < 0) {
dev_err(codec->dev,
"Failed to read stat (%d)\n", ret);
return ret;
}
if (!ret)
break;
}
if (trys == DACCRSTAT_MAX_TRYS) {
ret = -EIO;
dev_err(codec->dev,
"dac coefficient write error (%d)\n", ret);
return ret;
}
ret = regmap_write(tscs42xx->regmap, R_DACCRADDR, addr);
if (ret < 0) {
dev_err(codec->dev,
"Failed to write dac ram address (%d)\n", ret);
return ret;
}
ret = regmap_bulk_write(tscs42xx->regmap, R_DACCRWRL,
&coeff_ram[addr * COEFF_SIZE],
COEFF_SIZE);
if (ret < 0) {
dev_err(codec->dev,
"Failed to write dac ram (%d)\n", ret);
return ret;
}
}
return 0;
}
static int power_up_audio_plls(struct snd_soc_codec *codec)
{
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
int freq_out;
int ret;
unsigned int mask;
unsigned int val;
freq_out = sample_rate_to_pll_freq_out(tscs42xx->samplerate);
switch (freq_out) {
case 122880000: /* 48k */
mask = RM_PLLCTL1C_PDB_PLL1;
val = RV_PLLCTL1C_PDB_PLL1_ENABLE;
break;
case 112896000: /* 44.1k */
mask = RM_PLLCTL1C_PDB_PLL2;
val = RV_PLLCTL1C_PDB_PLL2_ENABLE;
break;
default:
ret = -EINVAL;
dev_err(codec->dev, "Unrecognized PLL output freq (%d)\n", ret);
return ret;
}
mutex_lock(&tscs42xx->pll_lock);
ret = snd_soc_update_bits(codec, R_PLLCTL1C, mask, val);
if (ret < 0) {
dev_err(codec->dev, "Failed to turn PLL on (%d)\n", ret);
goto exit;
}
if (!plls_locked(codec)) {
dev_err(codec->dev, "Failed to lock plls\n");
ret = -ENOMSG;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&tscs42xx->pll_lock);
return ret;
}
static int power_down_audio_plls(struct snd_soc_codec *codec)
{
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
int ret;
mutex_lock(&tscs42xx->pll_lock);
ret = snd_soc_update_bits(codec, R_PLLCTL1C,
RM_PLLCTL1C_PDB_PLL1,
RV_PLLCTL1C_PDB_PLL1_DISABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to turn PLL off (%d)\n", ret);
goto exit;
}
ret = snd_soc_update_bits(codec, R_PLLCTL1C,
RM_PLLCTL1C_PDB_PLL2,
RV_PLLCTL1C_PDB_PLL2_DISABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to turn PLL off (%d)\n", ret);
goto exit;
}
ret = 0;
exit:
mutex_unlock(&tscs42xx->pll_lock);
return ret;
}
static int coeff_ram_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
mutex_lock(&tscs42xx->coeff_ram_lock);
memcpy(ucontrol->value.bytes.data,
&tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE], params->max);
mutex_unlock(&tscs42xx->coeff_ram_lock);
return 0;
}
static int coeff_ram_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
unsigned int coeff_cnt = params->max / COEFF_SIZE;
int ret;
mutex_lock(&tscs42xx->coeff_ram_lock);
tscs42xx->coeff_ram_synced = false;
memcpy(&tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE],
ucontrol->value.bytes.data, params->max);
mutex_lock(&tscs42xx->pll_lock);
if (plls_locked(codec)) {
ret = write_coeff_ram(codec, tscs42xx->coeff_ram,
ctl->addr, coeff_cnt);
if (ret < 0) {
dev_err(codec->dev,
"Failed to flush coeff ram cache (%d)\n", ret);
goto exit;
}
tscs42xx->coeff_ram_synced = true;
}
ret = 0;
exit:
mutex_unlock(&tscs42xx->pll_lock);
mutex_unlock(&tscs42xx->coeff_ram_lock);
return ret;
}
/* Input L Capture Route */
static char const * const input_select_text[] = {
"Line 1", "Line 2", "Line 3", "D2S"
};
static const struct soc_enum left_input_select_enum =
SOC_ENUM_SINGLE(R_INSELL, FB_INSELL, ARRAY_SIZE(input_select_text),
input_select_text);
static const struct snd_kcontrol_new left_input_select =
SOC_DAPM_ENUM("LEFT_INPUT_SELECT_ENUM", left_input_select_enum);
/* Input R Capture Route */
static const struct soc_enum right_input_select_enum =
SOC_ENUM_SINGLE(R_INSELR, FB_INSELR, ARRAY_SIZE(input_select_text),
input_select_text);
static const struct snd_kcontrol_new right_input_select =
SOC_DAPM_ENUM("RIGHT_INPUT_SELECT_ENUM", right_input_select_enum);
/* Input Channel Mapping */
static char const * const ch_map_select_text[] = {
"Normal", "Left to Right", "Right to Left", "Swap"
};
static const struct soc_enum ch_map_select_enum =
SOC_ENUM_SINGLE(R_AIC2, FB_AIC2_ADCDSEL, ARRAY_SIZE(ch_map_select_text),
ch_map_select_text);
static int dapm_vref_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
msleep(20);
return 0;
}
static int dapm_micb_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
msleep(20);
return 0;
}
static int pll_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
int ret;
if (SND_SOC_DAPM_EVENT_ON(event))
ret = power_up_audio_plls(codec);
else
ret = power_down_audio_plls(codec);
return ret;
}
static int dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
int ret;
mutex_lock(&tscs42xx->coeff_ram_lock);
if (tscs42xx->coeff_ram_synced == false) {
ret = write_coeff_ram(codec, tscs42xx->coeff_ram, 0x00,
COEFF_RAM_COEFF_COUNT);
if (ret < 0)
goto exit;
tscs42xx->coeff_ram_synced = true;
}
ret = 0;
exit:
mutex_unlock(&tscs42xx->coeff_ram_lock);
return ret;
}
static const struct snd_soc_dapm_widget tscs42xx_dapm_widgets[] = {
/* Vref */
SND_SOC_DAPM_SUPPLY_S("Vref", 1, R_PWRM2, FB_PWRM2_VREF, 0,
dapm_vref_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
/* PLL */
SND_SOC_DAPM_SUPPLY("PLL", SND_SOC_NOPM, 0, 0, pll_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* Headphone */
SND_SOC_DAPM_DAC_E("DAC L", "HiFi Playback", R_PWRM2, FB_PWRM2_HPL, 0,
dac_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_DAC_E("DAC R", "HiFi Playback", R_PWRM2, FB_PWRM2_HPR, 0,
dac_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_OUTPUT("Headphone L"),
SND_SOC_DAPM_OUTPUT("Headphone R"),
/* Speaker */
SND_SOC_DAPM_DAC_E("ClassD L", "HiFi Playback",
R_PWRM2, FB_PWRM2_SPKL, 0,
dac_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_DAC_E("ClassD R", "HiFi Playback",
R_PWRM2, FB_PWRM2_SPKR, 0,
dac_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_OUTPUT("Speaker L"),
SND_SOC_DAPM_OUTPUT("Speaker R"),
/* Capture */
SND_SOC_DAPM_PGA("Analog In PGA L", R_PWRM1, FB_PWRM1_PGAL, 0, NULL, 0),
SND_SOC_DAPM_PGA("Analog In PGA R", R_PWRM1, FB_PWRM1_PGAR, 0, NULL, 0),
SND_SOC_DAPM_PGA("Analog Boost L", R_PWRM1, FB_PWRM1_BSTL, 0, NULL, 0),
SND_SOC_DAPM_PGA("Analog Boost R", R_PWRM1, FB_PWRM1_BSTR, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC Mute", R_CNVRTR0, FB_CNVRTR0_HPOR, true, NULL, 0),
SND_SOC_DAPM_ADC("ADC L", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCL, 0),
SND_SOC_DAPM_ADC("ADC R", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCR, 0),
/* Capture Input */
SND_SOC_DAPM_MUX("Input L Capture Route", R_PWRM2,
FB_PWRM2_INSELL, 0, &left_input_select),
SND_SOC_DAPM_MUX("Input R Capture Route", R_PWRM2,
FB_PWRM2_INSELR, 0, &right_input_select),
/* Digital Mic */
SND_SOC_DAPM_SUPPLY_S("Digital Mic Enable", 2, R_DMICCTL,
FB_DMICCTL_DMICEN, 0, NULL,
SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
/* Analog Mic */
SND_SOC_DAPM_SUPPLY_S("Mic Bias", 2, R_PWRM1, FB_PWRM1_MICB,
0, dapm_micb_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
/* Line In */
SND_SOC_DAPM_INPUT("Line In 1 L"),
SND_SOC_DAPM_INPUT("Line In 1 R"),
SND_SOC_DAPM_INPUT("Line In 2 L"),
SND_SOC_DAPM_INPUT("Line In 2 R"),
SND_SOC_DAPM_INPUT("Line In 3 L"),
SND_SOC_DAPM_INPUT("Line In 3 R"),
};
static const struct snd_soc_dapm_route tscs42xx_intercon[] = {
{"DAC L", NULL, "PLL"},
{"DAC R", NULL, "PLL"},
{"DAC L", NULL, "Vref"},
{"DAC R", NULL, "Vref"},
{"Headphone L", NULL, "DAC L"},
{"Headphone R", NULL, "DAC R"},
{"ClassD L", NULL, "PLL"},
{"ClassD R", NULL, "PLL"},
{"ClassD L", NULL, "Vref"},
{"ClassD R", NULL, "Vref"},
{"Speaker L", NULL, "ClassD L"},
{"Speaker R", NULL, "ClassD R"},
{"Input L Capture Route", NULL, "Vref"},
{"Input R Capture Route", NULL, "Vref"},
{"Mic Bias", NULL, "Vref"},
{"Input L Capture Route", "Line 1", "Line In 1 L"},
{"Input R Capture Route", "Line 1", "Line In 1 R"},
{"Input L Capture Route", "Line 2", "Line In 2 L"},
{"Input R Capture Route", "Line 2", "Line In 2 R"},
{"Input L Capture Route", "Line 3", "Line In 3 L"},
{"Input R Capture Route", "Line 3", "Line In 3 R"},
{"Analog In PGA L", NULL, "Input L Capture Route"},
{"Analog In PGA R", NULL, "Input R Capture Route"},
{"Analog Boost L", NULL, "Analog In PGA L"},
{"Analog Boost R", NULL, "Analog In PGA R"},
{"ADC Mute", NULL, "Analog Boost L"},
{"ADC Mute", NULL, "Analog Boost R"},
{"ADC L", NULL, "PLL"},
{"ADC R", NULL, "PLL"},
{"ADC L", NULL, "ADC Mute"},
{"ADC R", NULL, "ADC Mute"},
};
/************
* CONTROLS *
************/
static char const * const eq_band_enable_text[] = {
"Prescale only",
"Band1",
"Band1:2",
"Band1:3",
"Band1:4",
"Band1:5",
"Band1:6",
};
static char const * const level_detection_text[] = {
"Average",
"Peak",
};
static char const * const level_detection_window_text[] = {
"512 Samples",
"64 Samples",
};
static char const * const compressor_ratio_text[] = {
"Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1",
"7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1",
"15:1", "16:1", "17:1", "18:1", "19:1", "20:1",
};
static DECLARE_TLV_DB_SCALE(hpvol_scale, -8850, 75, 0);
static DECLARE_TLV_DB_SCALE(spkvol_scale, -7725, 75, 0);
static DECLARE_TLV_DB_SCALE(dacvol_scale, -9563, 38, 0);
static DECLARE_TLV_DB_SCALE(adcvol_scale, -7125, 38, 0);
static DECLARE_TLV_DB_SCALE(invol_scale, -1725, 75, 0);
static DECLARE_TLV_DB_SCALE(mic_boost_scale, 0, 1000, 0);
static DECLARE_TLV_DB_MINMAX(mugain_scale, 0, 4650);
static DECLARE_TLV_DB_MINMAX(compth_scale, -9562, 0);
static const struct soc_enum eq1_band_enable_enum =
SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ1_BE,
ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text);
static const struct soc_enum eq2_band_enable_enum =
SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ2_BE,
ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text);
static const struct soc_enum cle_level_detection_enum =
SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_LVL_MODE,
ARRAY_SIZE(level_detection_text),
level_detection_text);
static const struct soc_enum cle_level_detection_window_enum =
SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_WINDOWSEL,
ARRAY_SIZE(level_detection_window_text),
level_detection_window_text);
static const struct soc_enum mbc_level_detection_enums[] = {
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1,
ARRAY_SIZE(level_detection_text),
level_detection_text),
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2,
ARRAY_SIZE(level_detection_text),
level_detection_text),
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3,
ARRAY_SIZE(level_detection_text),
level_detection_text),
};
static const struct soc_enum mbc_level_detection_window_enums[] = {
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1,
ARRAY_SIZE(level_detection_window_text),
level_detection_window_text),
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2,
ARRAY_SIZE(level_detection_window_text),
level_detection_window_text),
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3,
ARRAY_SIZE(level_detection_window_text),
level_detection_window_text),
};
static const struct soc_enum compressor_ratio_enum =
SOC_ENUM_SINGLE(R_CMPRAT, FB_CMPRAT,
ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
static const struct soc_enum dac_mbc1_compressor_ratio_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT1_RATIO,
ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
static const struct soc_enum dac_mbc2_compressor_ratio_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT2_RATIO,
ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
static const struct soc_enum dac_mbc3_compressor_ratio_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT3_RATIO,
ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
static int bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
#define COEFF_RAM_CTL(xname, xcount, xaddr) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = bytes_info_ext, \
.get = coeff_ram_get, .put = coeff_ram_put, \
.private_value = (unsigned long)&(struct coeff_ram_ctl) { \
.addr = xaddr, \
.bytes_ext = {.max = xcount, }, \
} \
}
static const struct snd_kcontrol_new tscs42xx_snd_controls[] = {
/* Volumes */
SOC_DOUBLE_R_TLV("Headphone Playback Volume", R_HPVOLL, R_HPVOLR,
FB_HPVOLL, 0x7F, 0, hpvol_scale),
SOC_DOUBLE_R_TLV("Speaker Playback Volume", R_SPKVOLL, R_SPKVOLR,
FB_SPKVOLL, 0x7F, 0, spkvol_scale),
SOC_DOUBLE_R_TLV("Master Playback Volume", R_DACVOLL, R_DACVOLR,
FB_DACVOLL, 0xFF, 0, dacvol_scale),
SOC_DOUBLE_R_TLV("PCM Capture Volume", R_ADCVOLL, R_ADCVOLR,
FB_ADCVOLL, 0xFF, 0, adcvol_scale),
SOC_DOUBLE_R_TLV("Master Capture Volume", R_INVOLL, R_INVOLR,
FB_INVOLL, 0x3F, 0, invol_scale),
/* INSEL */
SOC_DOUBLE_R_TLV("Mic Boost Capture Volume", R_INSELL, R_INSELR,
FB_INSELL_MICBSTL, FV_INSELL_MICBSTL_30DB,
0, mic_boost_scale),
/* Input Channel Map */
SOC_ENUM("Input Channel Map", ch_map_select_enum),
/* Coefficient Ram */
COEFF_RAM_CTL("Cascade1L BiQuad1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("Cascade1L BiQuad2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("Cascade1L BiQuad3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("Cascade1L BiQuad4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("Cascade1L BiQuad5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("Cascade1L BiQuad6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("Cascade1R BiQuad1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("Cascade1R BiQuad2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("Cascade1R BiQuad3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("Cascade1R BiQuad4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("Cascade1R BiQuad5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("Cascade1R BiQuad6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("Cascade1L Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("Cascade1R Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("Cascade2L BiQuad1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("Cascade2L BiQuad2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("Cascade2L BiQuad3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("Cascade2L BiQuad4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("Cascade2L BiQuad5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("Cascade2L BiQuad6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("Cascade2R BiQuad1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("Cascade2R BiQuad2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("Cascade2R BiQuad3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("Cascade2R BiQuad4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("Cascade2R BiQuad5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("Cascade2R BiQuad6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("Cascade2L Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("Cascade2R Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("Bass Extraction BiQuad1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("Bass Extraction BiQuad2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("Treb Extraction BiQuad1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("Treb Extraction BiQuad2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("MBC1 BiQuad1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("MBC1 BiQuad2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("MBC2 BiQuad1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("MBC2 BiQuad2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("MBC3 BiQuad1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("MBC3 BiQuad2", BIQUAD_SIZE, 0xc9),
/* EQ */
SOC_SINGLE("EQ1 Switch", R_CONFIG1, FB_CONFIG1_EQ1_EN, 1, 0),
SOC_SINGLE("EQ2 Switch", R_CONFIG1, FB_CONFIG1_EQ2_EN, 1, 0),
SOC_ENUM("EQ1 Band Enable", eq1_band_enable_enum),
SOC_ENUM("EQ2 Band Enable", eq2_band_enable_enum),
/* CLE */
SOC_ENUM("CLE Level Detect",
cle_level_detection_enum),
SOC_ENUM("CLE Level Detect Win",
cle_level_detection_window_enum),
SOC_SINGLE("Expander Switch",
R_CLECTL, FB_CLECTL_EXP_EN, 1, 0),
SOC_SINGLE("Limiter Switch",
R_CLECTL, FB_CLECTL_LIMIT_EN, 1, 0),
SOC_SINGLE("Comp Switch",
R_CLECTL, FB_CLECTL_COMP_EN, 1, 0),
SOC_SINGLE_TLV("CLE Make-Up Gain Playback Volume",
R_MUGAIN, FB_MUGAIN_CLEMUG, 0x1f, 0, mugain_scale),
SOC_SINGLE_TLV("Comp Thresh Playback Volume",
R_COMPTH, FB_COMPTH, 0xff, 0, compth_scale),
SOC_ENUM("Comp Ratio", compressor_ratio_enum),
SND_SOC_BYTES("Comp Atk Time", R_CATKTCL, 2),
/* Effects */
SOC_SINGLE("3D Switch", R_FXCTL, FB_FXCTL_3DEN, 1, 0),
SOC_SINGLE("Treble Switch", R_FXCTL, FB_FXCTL_TEEN, 1, 0),
SOC_SINGLE("Treble Bypass Switch", R_FXCTL, FB_FXCTL_TNLFBYPASS, 1, 0),
SOC_SINGLE("Bass Switch", R_FXCTL, FB_FXCTL_BEEN, 1, 0),
SOC_SINGLE("Bass Bypass Switch", R_FXCTL, FB_FXCTL_BNLFBYPASS, 1, 0),
/* MBC */
SOC_SINGLE("MBC Band1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0),
SOC_SINGLE("MBC Band2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("MBC Band3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0),
SOC_ENUM("MBC Band1 Level Detect",
mbc_level_detection_enums[0]),
SOC_ENUM("MBC Band2 Level Detect",
mbc_level_detection_enums[1]),
SOC_ENUM("MBC Band3 Level Detect",
mbc_level_detection_enums[2]),
SOC_ENUM("MBC Band1 Level Detect Win",
mbc_level_detection_window_enums[0]),
SOC_ENUM("MBC Band2 Level Detect Win",
mbc_level_detection_window_enums[1]),
SOC_ENUM("MBC Band3 Level Detect Win",
mbc_level_detection_window_enums[2]),
SOC_SINGLE("MBC1 Phase Invert Switch",
R_DACMBCMUG1, FB_DACMBCMUG1_PHASE, 1, 0),
SOC_SINGLE_TLV("DAC MBC1 Make-Up Gain Playback Volume",
R_DACMBCMUG1, FB_DACMBCMUG1_MUGAIN, 0x1f, 0, mugain_scale),
SOC_SINGLE_TLV("DAC MBC1 Comp Thresh Playback Volume",
R_DACMBCTHR1, FB_DACMBCTHR1_THRESH, 0xff, 0, compth_scale),
SOC_ENUM("DAC MBC1 Comp Ratio",
dac_mbc1_compressor_ratio_enum),
SND_SOC_BYTES("DAC MBC1 Comp Atk Time", R_DACMBCATK1L, 2),
SND_SOC_BYTES("DAC MBC1 Comp Rel Time Const",
R_DACMBCREL1L, 2),
SOC_SINGLE("MBC2 Phase Invert Switch",
R_DACMBCMUG2, FB_DACMBCMUG2_PHASE, 1, 0),
SOC_SINGLE_TLV("DAC MBC2 Make-Up Gain Playback Volume",
R_DACMBCMUG2, FB_DACMBCMUG2_MUGAIN, 0x1f, 0, mugain_scale),
SOC_SINGLE_TLV("DAC MBC2 Comp Thresh Playback Volume",
R_DACMBCTHR2, FB_DACMBCTHR2_THRESH, 0xff, 0, compth_scale),
SOC_ENUM("DAC MBC2 Comp Ratio",
dac_mbc2_compressor_ratio_enum),
SND_SOC_BYTES("DAC MBC2 Comp Atk Time", R_DACMBCATK2L, 2),
SND_SOC_BYTES("DAC MBC2 Comp Rel Time Const",
R_DACMBCREL2L, 2),
SOC_SINGLE("MBC3 Phase Invert Switch",
R_DACMBCMUG3, FB_DACMBCMUG3_PHASE, 1, 0),
SOC_SINGLE_TLV("DAC MBC3 Make-Up Gain Playback Volume",
R_DACMBCMUG3, FB_DACMBCMUG3_MUGAIN, 0x1f, 0, mugain_scale),
SOC_SINGLE_TLV("DAC MBC3 Comp Thresh Playback Volume",
R_DACMBCTHR3, FB_DACMBCTHR3_THRESH, 0xff, 0, compth_scale),
SOC_ENUM("DAC MBC3 Comp Ratio",
dac_mbc3_compressor_ratio_enum),
SND_SOC_BYTES("DAC MBC3 Comp Atk Time", R_DACMBCATK3L, 2),
SND_SOC_BYTES("DAC MBC3 Comp Rel Time Const",
R_DACMBCREL3L, 2),
};
static int setup_sample_format(struct snd_soc_codec *codec,
snd_pcm_format_t format)
{
unsigned int width;
int ret;
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
width = RV_AIC1_WL_16;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
width = RV_AIC1_WL_20;
break;
case SNDRV_PCM_FORMAT_S24_LE:
width = RV_AIC1_WL_24;
break;
case SNDRV_PCM_FORMAT_S32_LE:
width = RV_AIC1_WL_32;
break;
default:
ret = -EINVAL;
dev_err(codec->dev, "Unsupported format width (%d)\n", ret);
return ret;
}
ret = snd_soc_update_bits(codec, R_AIC1, RM_AIC1_WL, width);
if (ret < 0) {
dev_err(codec->dev, "Failed to set sample width (%d)\n", ret);
return ret;
}
return 0;
}
static int setup_sample_rate(struct snd_soc_codec *codec, unsigned int rate)
{
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
unsigned int br, bm;
int ret;
switch (rate) {
case 8000:
br = RV_DACSR_DBR_32;
bm = RV_DACSR_DBM_PT25;
break;
case 16000:
br = RV_DACSR_DBR_32;
bm = RV_DACSR_DBM_PT5;
break;
case 24000:
br = RV_DACSR_DBR_48;
bm = RV_DACSR_DBM_PT5;
break;
case 32000:
br = RV_DACSR_DBR_32;
bm = RV_DACSR_DBM_1;
break;
case 48000:
br = RV_DACSR_DBR_48;
bm = RV_DACSR_DBM_1;
break;
case 96000:
br = RV_DACSR_DBR_48;
bm = RV_DACSR_DBM_2;
break;
case 11025:
br = RV_DACSR_DBR_44_1;
bm = RV_DACSR_DBM_PT25;
break;
case 22050:
br = RV_DACSR_DBR_44_1;
bm = RV_DACSR_DBM_PT5;
break;
case 44100:
br = RV_DACSR_DBR_44_1;
bm = RV_DACSR_DBM_1;
break;
case 88200:
br = RV_DACSR_DBR_44_1;
bm = RV_DACSR_DBM_2;
break;
default:
dev_err(codec->dev, "Unsupported sample rate %d\n", rate);
return -EINVAL;
}
/* DAC and ADC share bit and frame clock */
ret = snd_soc_update_bits(codec, R_DACSR, RM_DACSR_DBR, br);
if (ret < 0) {
dev_err(codec->dev, "Failed to update register (%d)\n", ret);
return ret;
}
ret = snd_soc_update_bits(codec, R_DACSR, RM_DACSR_DBM, bm);
if (ret < 0) {
dev_err(codec->dev, "Failed to update register (%d)\n", ret);
return ret;
}
ret = snd_soc_update_bits(codec, R_ADCSR, RM_DACSR_DBR, br);
if (ret < 0) {
dev_err(codec->dev, "Failed to update register (%d)\n", ret);
return ret;
}
ret = snd_soc_update_bits(codec, R_ADCSR, RM_DACSR_DBM, bm);
if (ret < 0) {
dev_err(codec->dev, "Failed to update register (%d)\n", ret);
return ret;
}
mutex_lock(&tscs42xx->audio_params_lock);
tscs42xx->samplerate = rate;
mutex_unlock(&tscs42xx->audio_params_lock);
return 0;
}
struct reg_setting {
unsigned int addr;
unsigned int val;
unsigned int mask;
};
#define PLL_REG_SETTINGS_COUNT 13
struct pll_ctl {
int input_freq;
struct reg_setting settings[PLL_REG_SETTINGS_COUNT];
};
#define PLL_CTL(f, rt, rd, r1b_l, r9, ra, rb, \
rc, r12, r1b_h, re, rf, r10, r11) \
{ \
.input_freq = f, \
.settings = { \
{R_TIMEBASE, rt, 0xFF}, \
{R_PLLCTLD, rd, 0xFF}, \
{R_PLLCTL1B, r1b_l, 0x0F}, \
{R_PLLCTL9, r9, 0xFF}, \
{R_PLLCTLA, ra, 0xFF}, \
{R_PLLCTLB, rb, 0xFF}, \
{R_PLLCTLC, rc, 0xFF}, \
{R_PLLCTL12, r12, 0xFF}, \
{R_PLLCTL1B, r1b_h, 0xF0}, \
{R_PLLCTLE, re, 0xFF}, \
{R_PLLCTLF, rf, 0xFF}, \
{R_PLLCTL10, r10, 0xFF}, \
{R_PLLCTL11, r11, 0xFF}, \
}, \
}
static const struct pll_ctl pll_ctls[] = {
PLL_CTL(1411200, 0x05,
0x39, 0x04, 0x07, 0x02, 0xC3, 0x04,
0x1B, 0x10, 0x03, 0x03, 0xD0, 0x02),
PLL_CTL(1536000, 0x05,
0x1A, 0x04, 0x02, 0x03, 0xE0, 0x01,
0x1A, 0x10, 0x02, 0x03, 0xB9, 0x01),
PLL_CTL(2822400, 0x0A,
0x23, 0x04, 0x07, 0x04, 0xC3, 0x04,
0x22, 0x10, 0x05, 0x03, 0x58, 0x02),
PLL_CTL(3072000, 0x0B,
0x22, 0x04, 0x07, 0x03, 0x48, 0x03,
0x1A, 0x10, 0x04, 0x03, 0xB9, 0x01),
PLL_CTL(5644800, 0x15,
0x23, 0x04, 0x0E, 0x04, 0xC3, 0x04,
0x1A, 0x10, 0x08, 0x03, 0xE0, 0x01),
PLL_CTL(6144000, 0x17,
0x1A, 0x04, 0x08, 0x03, 0xE0, 0x01,
0x1A, 0x10, 0x08, 0x03, 0xB9, 0x01),
PLL_CTL(12000000, 0x2E,
0x1B, 0x04, 0x19, 0x03, 0x00, 0x03,
0x2A, 0x10, 0x19, 0x05, 0x98, 0x04),
PLL_CTL(19200000, 0x4A,
0x13, 0x04, 0x14, 0x03, 0x80, 0x01,
0x1A, 0x10, 0x19, 0x03, 0xB9, 0x01),
PLL_CTL(22000000, 0x55,
0x2A, 0x04, 0x37, 0x05, 0x00, 0x06,
0x22, 0x10, 0x26, 0x03, 0x49, 0x02),
PLL_CTL(22579200, 0x57,
0x22, 0x04, 0x31, 0x03, 0x20, 0x03,
0x1A, 0x10, 0x1D, 0x03, 0xB3, 0x01),
PLL_CTL(24000000, 0x5D,
0x13, 0x04, 0x19, 0x03, 0x80, 0x01,
0x1B, 0x10, 0x19, 0x05, 0x4C, 0x02),
PLL_CTL(24576000, 0x5F,
0x13, 0x04, 0x1D, 0x03, 0xB3, 0x01,
0x22, 0x10, 0x40, 0x03, 0x72, 0x03),
PLL_CTL(27000000, 0x68,
0x22, 0x04, 0x4B, 0x03, 0x00, 0x04,
0x2A, 0x10, 0x7D, 0x03, 0x20, 0x06),
PLL_CTL(36000000, 0x8C,
0x1B, 0x04, 0x4B, 0x03, 0x00, 0x03,
0x2A, 0x10, 0x7D, 0x03, 0x98, 0x04),
PLL_CTL(25000000, 0x61,
0x1B, 0x04, 0x37, 0x03, 0x2B, 0x03,
0x1A, 0x10, 0x2A, 0x03, 0x39, 0x02),
PLL_CTL(26000000, 0x65,
0x23, 0x04, 0x41, 0x05, 0x00, 0x06,
0x1A, 0x10, 0x26, 0x03, 0xEF, 0x01),
PLL_CTL(12288000, 0x2F,
0x1A, 0x04, 0x12, 0x03, 0x1C, 0x02,
0x22, 0x10, 0x20, 0x03, 0x72, 0x03),
PLL_CTL(40000000, 0x9B,
0x22, 0x08, 0x7D, 0x03, 0x80, 0x04,
0x23, 0x10, 0x7D, 0x05, 0xE4, 0x06),
PLL_CTL(512000, 0x01,
0x22, 0x04, 0x01, 0x03, 0xD0, 0x02,
0x1B, 0x10, 0x01, 0x04, 0x72, 0x03),
PLL_CTL(705600, 0x02,
0x22, 0x04, 0x02, 0x03, 0x15, 0x04,
0x22, 0x10, 0x01, 0x04, 0x80, 0x02),
PLL_CTL(1024000, 0x03,
0x22, 0x04, 0x02, 0x03, 0xD0, 0x02,
0x1B, 0x10, 0x02, 0x04, 0x72, 0x03),
PLL_CTL(2048000, 0x07,
0x22, 0x04, 0x04, 0x03, 0xD0, 0x02,
0x1B, 0x10, 0x04, 0x04, 0x72, 0x03),
PLL_CTL(2400000, 0x08,
0x22, 0x04, 0x05, 0x03, 0x00, 0x03,
0x23, 0x10, 0x05, 0x05, 0x98, 0x04),
};
static const struct pll_ctl *get_pll_ctl(int input_freq)
{
int i;
const struct pll_ctl *pll_ctl = NULL;
for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i)
if (input_freq == pll_ctls[i].input_freq) {
pll_ctl = &pll_ctls[i];
break;
}
return pll_ctl;
}
static int set_pll_ctl_from_input_freq(struct snd_soc_codec *codec,
const int input_freq)
{
int ret;
int i;
const struct pll_ctl *pll_ctl;
pll_ctl = get_pll_ctl(input_freq);
if (!pll_ctl) {
ret = -EINVAL;
dev_err(codec->dev, "No PLL input entry for %d (%d)\n",
input_freq, ret);
return ret;
}
for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) {
ret = snd_soc_update_bits(codec,
pll_ctl->settings[i].addr,
pll_ctl->settings[i].mask,
pll_ctl->settings[i].val);
if (ret < 0) {
dev_err(codec->dev, "Failed to set pll ctl (%d)\n",
ret);
return ret;
}
}
return 0;
}
static int tscs42xx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *codec_dai)
{
struct snd_soc_codec *codec = codec_dai->codec;
int ret;
ret = setup_sample_format(codec, params_format(params));
if (ret < 0) {
dev_err(codec->dev, "Failed to setup sample format (%d)\n",
ret);
return ret;
}
ret = setup_sample_rate(codec, params_rate(params));
if (ret < 0) {
dev_err(codec->dev, "Failed to setup sample rate (%d)\n", ret);
return ret;
}
return 0;
}
static inline int dac_mute(struct snd_soc_codec *codec)
{
int ret;
ret = snd_soc_update_bits(codec, R_CNVRTR1, RM_CNVRTR1_DACMU,
RV_CNVRTR1_DACMU_ENABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to mute DAC (%d)\n",
ret);
return ret;
}
return 0;
}
static inline int dac_unmute(struct snd_soc_codec *codec)
{
int ret;
ret = snd_soc_update_bits(codec, R_CNVRTR1, RM_CNVRTR1_DACMU,
RV_CNVRTR1_DACMU_DISABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to unmute DAC (%d)\n",
ret);
return ret;
}
return 0;
}
static inline int adc_mute(struct snd_soc_codec *codec)
{
int ret;
ret = snd_soc_update_bits(codec, R_CNVRTR0, RM_CNVRTR0_ADCMU,
RV_CNVRTR0_ADCMU_ENABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to mute ADC (%d)\n",
ret);
return ret;
}
return 0;
}
static inline int adc_unmute(struct snd_soc_codec *codec)
{
int ret;
ret = snd_soc_update_bits(codec, R_CNVRTR0, RM_CNVRTR0_ADCMU,
RV_CNVRTR0_ADCMU_DISABLE);
if (ret < 0) {
dev_err(codec->dev, "Failed to unmute ADC (%d)\n",
ret);
return ret;
}
return 0;
}
static int tscs42xx_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
{
struct snd_soc_codec *codec = dai->codec;
int ret;
if (mute)
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
ret = dac_mute(codec);
else
ret = adc_mute(codec);
else
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
ret = dac_unmute(codec);
else
ret = adc_unmute(codec);
return ret;
}
static int tscs42xx_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
int ret;
/* Slave mode not supported since it needs always-on frame clock */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ret = snd_soc_update_bits(codec, R_AIC1, RM_AIC1_MS,
RV_AIC1_MS_MASTER);
if (ret < 0) {
dev_err(codec->dev,
"Failed to set codec DAI master (%d)\n", ret);
return ret;
}
break;
default:
ret = -EINVAL;
dev_err(codec->dev, "Unsupported format (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs42xx_set_dai_bclk_ratio(struct snd_soc_dai *codec_dai,
unsigned int ratio)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct tscs42xx *tscs42xx = snd_soc_codec_get_drvdata(codec);
unsigned int value;
int ret = 0;
switch (ratio) {
case 32:
value = RV_DACSR_DBCM_32;
break;
case 40:
value = RV_DACSR_DBCM_40;
break;
case 64:
value = RV_DACSR_DBCM_64;
break;
default:
dev_err(codec->dev, "Unsupported bclk ratio (%d)\n", ret);
return -EINVAL;
}
ret = snd_soc_update_bits(codec, R_DACSR, RM_DACSR_DBCM, value);
if (ret < 0) {
dev_err(codec->dev, "Failed to set DAC BCLK ratio (%d)\n", ret);
return ret;
}
ret = snd_soc_update_bits(codec, R_ADCSR, RM_ADCSR_ABCM, value);
if (ret < 0) {
dev_err(codec->dev, "Failed to set ADC BCLK ratio (%d)\n", ret);
return ret;
}
mutex_lock(&tscs42xx->audio_params_lock);
tscs42xx->bclk_ratio = ratio;
mutex_unlock(&tscs42xx->audio_params_lock);
return 0;
}
static int tscs42xx_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
int ret;
switch (clk_id) {
case TSCS42XX_PLL_SRC_XTAL:
case TSCS42XX_PLL_SRC_MCLK1:
ret = snd_soc_write(codec, R_PLLREFSEL,
RV_PLLREFSEL_PLL1_REF_SEL_XTAL_MCLK1 |
RV_PLLREFSEL_PLL2_REF_SEL_XTAL_MCLK1);
if (ret < 0) {
dev_err(codec->dev,
"Failed to set pll reference input (%d)\n",
ret);
return ret;
}
break;
case TSCS42XX_PLL_SRC_MCLK2:
ret = snd_soc_write(codec, R_PLLREFSEL,
RV_PLLREFSEL_PLL1_REF_SEL_MCLK2 |
RV_PLLREFSEL_PLL2_REF_SEL_MCLK2);
if (ret < 0) {
dev_err(codec->dev,
"Failed to set PLL reference (%d)\n", ret);
return ret;
}
break;
default:
dev_err(codec->dev, "pll src is unsupported\n");
return -EINVAL;
}
ret = set_pll_ctl_from_input_freq(codec, freq);
if (ret < 0) {
dev_err(codec->dev,
"Failed to setup PLL input freq (%d)\n", ret);
return ret;
}
return 0;
}
static const struct snd_soc_dai_ops tscs42xx_dai_ops = {
.hw_params = tscs42xx_hw_params,
.mute_stream = tscs42xx_mute_stream,
.set_fmt = tscs42xx_set_dai_fmt,
.set_bclk_ratio = tscs42xx_set_dai_bclk_ratio,
.set_sysclk = tscs42xx_set_dai_sysclk,
};
static int part_is_valid(struct tscs42xx *tscs42xx)
{
int val;
int ret;
unsigned int reg;
ret = regmap_read(tscs42xx->regmap, R_DEVIDH, &reg);
if (ret < 0)
return ret;
val = reg << 8;
ret = regmap_read(tscs42xx->regmap, R_DEVIDL, &reg);
if (ret < 0)
return ret;
val |= reg;
switch (val) {
case 0x4A74:
case 0x4A73:
return true;
default:
return false;
};
}
static struct snd_soc_codec_driver soc_codec_dev_tscs42xx = {
.component_driver = {
.dapm_widgets = tscs42xx_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tscs42xx_dapm_widgets),
.dapm_routes = tscs42xx_intercon,
.num_dapm_routes = ARRAY_SIZE(tscs42xx_intercon),
.controls = tscs42xx_snd_controls,
.num_controls = ARRAY_SIZE(tscs42xx_snd_controls),
},
};
static inline void init_coeff_ram_cache(struct tscs42xx *tscs42xx)
{
const u8 norm_addrs[] = { 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19, 0x1f,
0x20, 0x25, 0x2a, 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45, 0x4a,
0x4f, 0x54, 0x59, 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74, 0x79,
0x7f, 0x80, 0x85, 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3, 0xa8,
0xad, 0xaf, 0xb0, 0xb5, 0xba, 0xbf, 0xc4, 0xc9, };
u8 *coeff_ram = tscs42xx->coeff_ram;
int i;
for (i = 0; i < ARRAY_SIZE(norm_addrs); i++)
coeff_ram[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40;
}
#define TSCS42XX_RATES SNDRV_PCM_RATE_8000_96000
#define TSCS42XX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver tscs42xx_dai = {
.name = "tscs42xx-HiFi",
.playback = {
.stream_name = "HiFi Playback",
.channels_min = 2,
.channels_max = 2,
.rates = TSCS42XX_RATES,
.formats = TSCS42XX_FORMATS,},
.capture = {
.stream_name = "HiFi Capture",
.channels_min = 2,
.channels_max = 2,
.rates = TSCS42XX_RATES,
.formats = TSCS42XX_FORMATS,},
.ops = &tscs42xx_dai_ops,
.symmetric_rates = 1,
.symmetric_channels = 1,
.symmetric_samplebits = 1,
};
static const struct reg_sequence tscs42xx_patch[] = {
{ R_AIC2, RV_AIC2_BLRCM_DAC_BCLK_LRCLK_SHARED },
};
static int tscs42xx_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct tscs42xx *tscs42xx;
int ret = 0;
tscs42xx = devm_kzalloc(&i2c->dev, sizeof(*tscs42xx), GFP_KERNEL);
if (!tscs42xx) {
ret = -ENOMEM;
dev_err(&i2c->dev,
"Failed to allocate memory for data (%d)\n", ret);
return ret;
}
i2c_set_clientdata(i2c, tscs42xx);
tscs42xx->dev = &i2c->dev;
tscs42xx->regmap = devm_regmap_init_i2c(i2c, &tscs42xx_regmap);
if (IS_ERR(tscs42xx->regmap)) {
ret = PTR_ERR(tscs42xx->regmap);
dev_err(tscs42xx->dev, "Failed to allocate regmap (%d)\n", ret);
return ret;
}
init_coeff_ram_cache(tscs42xx);
ret = part_is_valid(tscs42xx);
if (ret <= 0) {
dev_err(tscs42xx->dev, "No valid part (%d)\n", ret);
ret = -ENODEV;
return ret;
}
ret = regmap_write(tscs42xx->regmap, R_RESET, RV_RESET_ENABLE);
if (ret < 0) {
dev_err(tscs42xx->dev, "Failed to reset device (%d)\n", ret);
return ret;
}
ret = regmap_register_patch(tscs42xx->regmap, tscs42xx_patch,
ARRAY_SIZE(tscs42xx_patch));
if (ret < 0) {
dev_err(tscs42xx->dev, "Failed to apply patch (%d)\n", ret);
return ret;
}
mutex_init(&tscs42xx->audio_params_lock);
mutex_init(&tscs42xx->coeff_ram_lock);
mutex_init(&tscs42xx->pll_lock);
ret = snd_soc_register_codec(tscs42xx->dev, &soc_codec_dev_tscs42xx,
&tscs42xx_dai, 1);
if (ret) {
dev_err(tscs42xx->dev, "Failed to register codec (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs42xx_i2c_remove(struct i2c_client *client)
{
snd_soc_unregister_codec(&client->dev);
return 0;
}
static const struct i2c_device_id tscs42xx_i2c_id[] = {
{ "tscs42A1", 0 },
{ "tscs42A2", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tscs42xx_i2c_id);
static const struct of_device_id tscs42xx_of_match[] = {
{ .compatible = "tempo,tscs42A1", },
{ .compatible = "tempo,tscs42A2", },
{ }
};
MODULE_DEVICE_TABLE(of, tscs42xx_of_match);
static struct i2c_driver tscs42xx_i2c_driver = {
.driver = {
.name = "tscs42xx",
.owner = THIS_MODULE,
.of_match_table = tscs42xx_of_match,
},
.probe = tscs42xx_i2c_probe,
.remove = tscs42xx_i2c_remove,
.id_table = tscs42xx_i2c_id,
};
module_i2c_driver(tscs42xx_i2c_driver);
MODULE_AUTHOR("Tempo Semiconductor <steven.eckhoff.opensource@gmail.com");
MODULE_DESCRIPTION("ASoC TSCS42xx driver");
MODULE_LICENSE("GPL");