mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-03 11:13:56 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
505 lines
13 KiB
C
505 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* cpuidle-powernv - idle state cpuidle driver.
|
|
* Adapted from drivers/cpuidle/cpuidle-pseries
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/cpuidle.h>
|
|
|
|
/*
|
|
* Expose only those Hardware idle states via the cpuidle framework
|
|
* that have latency value below POWERNV_THRESHOLD_LATENCY_NS.
|
|
*/
|
|
#define POWERNV_THRESHOLD_LATENCY_NS 200000
|
|
|
|
static struct cpuidle_driver powernv_idle_driver = {
|
|
.name = "powernv_idle",
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int max_idle_state __read_mostly;
|
|
static struct cpuidle_state *cpuidle_state_table __read_mostly;
|
|
|
|
struct stop_psscr_table {
|
|
u64 val;
|
|
u64 mask;
|
|
};
|
|
|
|
static struct stop_psscr_table stop_psscr_table[CPUIDLE_STATE_MAX] __read_mostly;
|
|
|
|
static u64 snooze_timeout __read_mostly;
|
|
static bool snooze_timeout_en __read_mostly;
|
|
|
|
static int snooze_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
u64 snooze_exit_time;
|
|
|
|
set_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
local_irq_enable();
|
|
|
|
snooze_exit_time = get_tb() + snooze_timeout;
|
|
ppc64_runlatch_off();
|
|
HMT_very_low();
|
|
while (!need_resched()) {
|
|
if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
|
|
/*
|
|
* Task has not woken up but we are exiting the polling
|
|
* loop anyway. Require a barrier after polling is
|
|
* cleared to order subsequent test of need_resched().
|
|
*/
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
smp_mb();
|
|
break;
|
|
}
|
|
}
|
|
|
|
HMT_medium();
|
|
ppc64_runlatch_on();
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
return index;
|
|
}
|
|
|
|
static int nap_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
power7_idle_type(PNV_THREAD_NAP);
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Register for fastsleep only in oneshot mode of broadcast */
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
static int fastsleep_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
unsigned long old_lpcr = mfspr(SPRN_LPCR);
|
|
unsigned long new_lpcr;
|
|
|
|
if (unlikely(system_state < SYSTEM_RUNNING))
|
|
return index;
|
|
|
|
new_lpcr = old_lpcr;
|
|
/* Do not exit powersave upon decrementer as we've setup the timer
|
|
* offload.
|
|
*/
|
|
new_lpcr &= ~LPCR_PECE1;
|
|
|
|
mtspr(SPRN_LPCR, new_lpcr);
|
|
|
|
power7_idle_type(PNV_THREAD_SLEEP);
|
|
|
|
mtspr(SPRN_LPCR, old_lpcr);
|
|
|
|
return index;
|
|
}
|
|
#endif
|
|
|
|
static int stop_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
power9_idle_type(stop_psscr_table[index].val,
|
|
stop_psscr_table[index].mask);
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* States for dedicated partition case.
|
|
*/
|
|
static struct cpuidle_state powernv_states[CPUIDLE_STATE_MAX] = {
|
|
{ /* Snooze */
|
|
.name = "snooze",
|
|
.desc = "snooze",
|
|
.exit_latency = 0,
|
|
.target_residency = 0,
|
|
.enter = snooze_loop },
|
|
};
|
|
|
|
static int powernv_cpuidle_cpu_online(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_enable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int powernv_cpuidle_cpu_dead(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_disable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* powernv_cpuidle_driver_init()
|
|
*/
|
|
static int powernv_cpuidle_driver_init(void)
|
|
{
|
|
int idle_state;
|
|
struct cpuidle_driver *drv = &powernv_idle_driver;
|
|
|
|
drv->state_count = 0;
|
|
|
|
for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
|
|
/* Is the state not enabled? */
|
|
if (cpuidle_state_table[idle_state].enter == NULL)
|
|
continue;
|
|
|
|
drv->states[drv->state_count] = /* structure copy */
|
|
cpuidle_state_table[idle_state];
|
|
|
|
drv->state_count += 1;
|
|
}
|
|
|
|
/*
|
|
* On the PowerNV platform cpu_present may be less than cpu_possible in
|
|
* cases when firmware detects the CPU, but it is not available to the
|
|
* OS. If CONFIG_HOTPLUG_CPU=n, then such CPUs are not hotplugable at
|
|
* run time and hence cpu_devices are not created for those CPUs by the
|
|
* generic topology_init().
|
|
*
|
|
* drv->cpumask defaults to cpu_possible_mask in
|
|
* __cpuidle_driver_init(). This breaks cpuidle on PowerNV where
|
|
* cpu_devices are not created for CPUs in cpu_possible_mask that
|
|
* cannot be hot-added later at run time.
|
|
*
|
|
* Trying cpuidle_register_device() on a CPU without a cpu_device is
|
|
* incorrect, so pass a correct CPU mask to the generic cpuidle driver.
|
|
*/
|
|
|
|
drv->cpumask = (struct cpumask *)cpu_present_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void add_powernv_state(int index, const char *name,
|
|
unsigned int flags,
|
|
int (*idle_fn)(struct cpuidle_device *,
|
|
struct cpuidle_driver *,
|
|
int),
|
|
unsigned int target_residency,
|
|
unsigned int exit_latency,
|
|
u64 psscr_val, u64 psscr_mask)
|
|
{
|
|
strlcpy(powernv_states[index].name, name, CPUIDLE_NAME_LEN);
|
|
strlcpy(powernv_states[index].desc, name, CPUIDLE_NAME_LEN);
|
|
powernv_states[index].flags = flags;
|
|
powernv_states[index].target_residency = target_residency;
|
|
powernv_states[index].exit_latency = exit_latency;
|
|
powernv_states[index].enter = idle_fn;
|
|
stop_psscr_table[index].val = psscr_val;
|
|
stop_psscr_table[index].mask = psscr_mask;
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if prop1_len == prop2_len. Else returns -1
|
|
*/
|
|
static inline int validate_dt_prop_sizes(const char *prop1, int prop1_len,
|
|
const char *prop2, int prop2_len)
|
|
{
|
|
if (prop1_len == prop2_len)
|
|
return 0;
|
|
|
|
pr_warn("cpuidle-powernv: array sizes don't match for %s and %s\n",
|
|
prop1, prop2);
|
|
return -1;
|
|
}
|
|
|
|
extern u32 pnv_get_supported_cpuidle_states(void);
|
|
static int powernv_add_idle_states(void)
|
|
{
|
|
struct device_node *power_mgt;
|
|
int nr_idle_states = 1; /* Snooze */
|
|
int dt_idle_states, count;
|
|
u32 latency_ns[CPUIDLE_STATE_MAX];
|
|
u32 residency_ns[CPUIDLE_STATE_MAX];
|
|
u32 flags[CPUIDLE_STATE_MAX];
|
|
u64 psscr_val[CPUIDLE_STATE_MAX];
|
|
u64 psscr_mask[CPUIDLE_STATE_MAX];
|
|
const char *names[CPUIDLE_STATE_MAX];
|
|
u32 has_stop_states = 0;
|
|
int i, rc;
|
|
u32 supported_flags = pnv_get_supported_cpuidle_states();
|
|
|
|
|
|
/* Currently we have snooze statically defined */
|
|
|
|
power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
|
|
if (!power_mgt) {
|
|
pr_warn("opal: PowerMgmt Node not found\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Read values of any property to determine the num of idle states */
|
|
dt_idle_states = of_property_count_u32_elems(power_mgt, "ibm,cpu-idle-state-flags");
|
|
if (dt_idle_states < 0) {
|
|
pr_warn("cpuidle-powernv: no idle states found in the DT\n");
|
|
goto out;
|
|
}
|
|
|
|
count = of_property_count_u32_elems(power_mgt,
|
|
"ibm,cpu-idle-state-latencies-ns");
|
|
|
|
if (validate_dt_prop_sizes("ibm,cpu-idle-state-flags", dt_idle_states,
|
|
"ibm,cpu-idle-state-latencies-ns",
|
|
count) != 0)
|
|
goto out;
|
|
|
|
count = of_property_count_strings(power_mgt,
|
|
"ibm,cpu-idle-state-names");
|
|
if (validate_dt_prop_sizes("ibm,cpu-idle-state-flags", dt_idle_states,
|
|
"ibm,cpu-idle-state-names",
|
|
count) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Since snooze is used as first idle state, max idle states allowed is
|
|
* CPUIDLE_STATE_MAX -1
|
|
*/
|
|
if (dt_idle_states > CPUIDLE_STATE_MAX - 1) {
|
|
pr_warn("cpuidle-powernv: discovered idle states more than allowed");
|
|
dt_idle_states = CPUIDLE_STATE_MAX - 1;
|
|
}
|
|
|
|
if (of_property_read_u32_array(power_mgt,
|
|
"ibm,cpu-idle-state-flags", flags, dt_idle_states)) {
|
|
pr_warn("cpuidle-powernv : missing ibm,cpu-idle-state-flags in DT\n");
|
|
goto out;
|
|
}
|
|
|
|
if (of_property_read_u32_array(power_mgt,
|
|
"ibm,cpu-idle-state-latencies-ns", latency_ns,
|
|
dt_idle_states)) {
|
|
pr_warn("cpuidle-powernv: missing ibm,cpu-idle-state-latencies-ns in DT\n");
|
|
goto out;
|
|
}
|
|
if (of_property_read_string_array(power_mgt,
|
|
"ibm,cpu-idle-state-names", names, dt_idle_states) < 0) {
|
|
pr_warn("cpuidle-powernv: missing ibm,cpu-idle-state-names in DT\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the idle states use stop instruction, probe for psscr values
|
|
* and psscr mask which are necessary to specify required stop level.
|
|
*/
|
|
has_stop_states = (flags[0] &
|
|
(OPAL_PM_STOP_INST_FAST | OPAL_PM_STOP_INST_DEEP));
|
|
if (has_stop_states) {
|
|
count = of_property_count_u64_elems(power_mgt,
|
|
"ibm,cpu-idle-state-psscr");
|
|
if (validate_dt_prop_sizes("ibm,cpu-idle-state-flags",
|
|
dt_idle_states,
|
|
"ibm,cpu-idle-state-psscr",
|
|
count) != 0)
|
|
goto out;
|
|
|
|
count = of_property_count_u64_elems(power_mgt,
|
|
"ibm,cpu-idle-state-psscr-mask");
|
|
if (validate_dt_prop_sizes("ibm,cpu-idle-state-flags",
|
|
dt_idle_states,
|
|
"ibm,cpu-idle-state-psscr-mask",
|
|
count) != 0)
|
|
goto out;
|
|
|
|
if (of_property_read_u64_array(power_mgt,
|
|
"ibm,cpu-idle-state-psscr", psscr_val, dt_idle_states)) {
|
|
pr_warn("cpuidle-powernv: missing ibm,cpu-idle-state-psscr in DT\n");
|
|
goto out;
|
|
}
|
|
|
|
if (of_property_read_u64_array(power_mgt,
|
|
"ibm,cpu-idle-state-psscr-mask",
|
|
psscr_mask, dt_idle_states)) {
|
|
pr_warn("cpuidle-powernv:Missing ibm,cpu-idle-state-psscr-mask in DT\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
count = of_property_count_u32_elems(power_mgt,
|
|
"ibm,cpu-idle-state-residency-ns");
|
|
|
|
if (count < 0) {
|
|
rc = count;
|
|
} else if (validate_dt_prop_sizes("ibm,cpu-idle-state-flags",
|
|
dt_idle_states,
|
|
"ibm,cpu-idle-state-residency-ns",
|
|
count) != 0) {
|
|
goto out;
|
|
} else {
|
|
rc = of_property_read_u32_array(power_mgt,
|
|
"ibm,cpu-idle-state-residency-ns",
|
|
residency_ns, dt_idle_states);
|
|
}
|
|
|
|
for (i = 0; i < dt_idle_states; i++) {
|
|
unsigned int exit_latency, target_residency;
|
|
bool stops_timebase = false;
|
|
|
|
/*
|
|
* Skip the platform idle state whose flag isn't in
|
|
* the supported_cpuidle_states flag mask.
|
|
*/
|
|
if ((flags[i] & supported_flags) != flags[i])
|
|
continue;
|
|
/*
|
|
* If an idle state has exit latency beyond
|
|
* POWERNV_THRESHOLD_LATENCY_NS then don't use it
|
|
* in cpu-idle.
|
|
*/
|
|
if (latency_ns[i] > POWERNV_THRESHOLD_LATENCY_NS)
|
|
continue;
|
|
/*
|
|
* Firmware passes residency and latency values in ns.
|
|
* cpuidle expects it in us.
|
|
*/
|
|
exit_latency = latency_ns[i] / 1000;
|
|
if (!rc)
|
|
target_residency = residency_ns[i] / 1000;
|
|
else
|
|
target_residency = 0;
|
|
|
|
if (has_stop_states) {
|
|
int err = validate_psscr_val_mask(&psscr_val[i],
|
|
&psscr_mask[i],
|
|
flags[i]);
|
|
if (err) {
|
|
report_invalid_psscr_val(psscr_val[i], err);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (flags[i] & OPAL_PM_TIMEBASE_STOP)
|
|
stops_timebase = true;
|
|
|
|
/*
|
|
* For nap and fastsleep, use default target_residency
|
|
* values if f/w does not expose it.
|
|
*/
|
|
if (flags[i] & OPAL_PM_NAP_ENABLED) {
|
|
if (!rc)
|
|
target_residency = 100;
|
|
/* Add NAP state */
|
|
add_powernv_state(nr_idle_states, "Nap",
|
|
CPUIDLE_FLAG_NONE, nap_loop,
|
|
target_residency, exit_latency, 0, 0);
|
|
} else if (has_stop_states && !stops_timebase) {
|
|
add_powernv_state(nr_idle_states, names[i],
|
|
CPUIDLE_FLAG_NONE, stop_loop,
|
|
target_residency, exit_latency,
|
|
psscr_val[i], psscr_mask[i]);
|
|
}
|
|
|
|
/*
|
|
* All cpuidle states with CPUIDLE_FLAG_TIMER_STOP set must come
|
|
* within this config dependency check.
|
|
*/
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
else if (flags[i] & OPAL_PM_SLEEP_ENABLED ||
|
|
flags[i] & OPAL_PM_SLEEP_ENABLED_ER1) {
|
|
if (!rc)
|
|
target_residency = 300000;
|
|
/* Add FASTSLEEP state */
|
|
add_powernv_state(nr_idle_states, "FastSleep",
|
|
CPUIDLE_FLAG_TIMER_STOP,
|
|
fastsleep_loop,
|
|
target_residency, exit_latency, 0, 0);
|
|
} else if (has_stop_states && stops_timebase) {
|
|
add_powernv_state(nr_idle_states, names[i],
|
|
CPUIDLE_FLAG_TIMER_STOP, stop_loop,
|
|
target_residency, exit_latency,
|
|
psscr_val[i], psscr_mask[i]);
|
|
}
|
|
#endif
|
|
else
|
|
continue;
|
|
nr_idle_states++;
|
|
}
|
|
out:
|
|
return nr_idle_states;
|
|
}
|
|
|
|
/*
|
|
* powernv_idle_probe()
|
|
* Choose state table for shared versus dedicated partition
|
|
*/
|
|
static int powernv_idle_probe(void)
|
|
{
|
|
if (cpuidle_disable != IDLE_NO_OVERRIDE)
|
|
return -ENODEV;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_OPAL)) {
|
|
cpuidle_state_table = powernv_states;
|
|
/* Device tree can indicate more idle states */
|
|
max_idle_state = powernv_add_idle_states();
|
|
if (max_idle_state > 1) {
|
|
snooze_timeout_en = true;
|
|
snooze_timeout = powernv_states[1].target_residency *
|
|
tb_ticks_per_usec;
|
|
}
|
|
} else
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init powernv_processor_idle_init(void)
|
|
{
|
|
int retval;
|
|
|
|
retval = powernv_idle_probe();
|
|
if (retval)
|
|
return retval;
|
|
|
|
powernv_cpuidle_driver_init();
|
|
retval = cpuidle_register(&powernv_idle_driver, NULL);
|
|
if (retval) {
|
|
printk(KERN_DEBUG "Registration of powernv driver failed.\n");
|
|
return retval;
|
|
}
|
|
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"cpuidle/powernv:online",
|
|
powernv_cpuidle_cpu_online, NULL);
|
|
WARN_ON(retval < 0);
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
|
|
"cpuidle/powernv:dead", NULL,
|
|
powernv_cpuidle_cpu_dead);
|
|
WARN_ON(retval < 0);
|
|
printk(KERN_DEBUG "powernv_idle_driver registered\n");
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(powernv_processor_idle_init);
|